Use of Sampling in the Census Technical Session 5.2

Total Page:16

File Type:pdf, Size:1020Kb

Use of Sampling in the Census Technical Session 5.2 Regional Workshop on the Operational Guidelines of the WCA 2020 Dar es Salaam, Tanzania 23-27 March 2020 Use of sampling in the census Technical Session 5.2 Eloi OUEDRAOGO Statistician, Agricultural Census Team FAO Statistics Division (ESS) 1 CONTENTS Complete enumeration censuses versus sample-based censuses Uses of sampling at other census stages Sample designs based on list frames Sample designs based on area frames Sample designs based on multiple frames Choice of sample design Country examples 2 Background As mentioned in the WCA 2020, Vol. 1 (Chapter 4, paragraph 4.34), when deciding whether to conduct a census by complete or sample enumeration, in addition to efficiency considerations (precision versus costs), one should take into account: desired level of aggregation for census data; use of the census as a frame for ongoing sampling surveys; data content of the census; and capacity to deal with sampling methods and subsequent statistical analysis based on samples. 3 Complete enumeration versus sample enumeration census Complete enumeration Sample enumeration Advantages 1. Reliable census results for the 1. Is generally less costly that a smallest administrative and complete enumeration geographic units and on rare events 2. Contributes to decrease the overall (such as crops/livestock types) response burden 2. Provides a reliable frame for the organization of subsequent regular 3. Requires a smaller number of infra-annual and annual sample enumerators and supervisors than a surveys. In terms of frames, it is census conducted by complete much less demanding in respect of enumeration. Consequently, the the holdings’ characteristics non-sampling errors can be 3. Requires fewer highly qualified expected to be lower because of statistical personnel with expert the employment of better trained knowledge of sampling methods enumerators and supervisors and than a census conducted on a sample basis. Important in countries better quality control with limited technical expertise 4. Require less processing capacity and 4. Aggregating data from a complete the results are usually available enumeration is straightforward and sooner does not involve statistical estimations 4 Complete enumeration versus sample enumeration census (contd.) Complete enumeration Sample enumeration Disadvantages 1. High cost and administrative 1. The amount of subnational data and cross- complexity tabulations that can be produced is limited 2. High overall response burden 2. Cannot provide accurate information on 3. Requires a very large number of events that occur infrequently field staff. As a result: 3. May not ensure an adequate or complete • candidates with the desired frame for subsequent agricultural surveys qualifications might not be 4. Requires a reliable sampling frame available in the required number; 5. Auxiliary information (such as total area of • the standard might be lowered ; the holding, area by main land use types, • adequate training of a large number of livestock by main types) is number of field census staff in a needed for a sound sample design short period of time is also 6. Requires personnel who are well trained in challenging with a consequent sampling methods and analysis effect on data quality. 7. Analysing the data from a sample 4. The amount of data to be processed enumeration requires the use of more is very large. The results may be complicated techniques. considerably delayed if not sufficient data processing capacities are in place. 5 Factors for consideration in choosing between complete or sample enumeration ◦ Sample enumeration is an optimal alternative where there is severe limitation of funds and personnel . ◦ However, it requires a reliable sampling frame, as well as the capacity to deal with sampling methods and subsequent statistical analysis based on samples. ◦ A decision will depend on the level at which the census data are required (i.e. for the entire country, provinces, districts or even for smaller administrative units (such as communities)). ◦ Even countries that lack resources should seriously consider undertaking at least a part of the census items on a complete enumeration basis. This ensures a good base for preparing an efficient sampling design, e.g. for planning future agricultural surveys to collect current agricultural statistics. 6 Combination of complete and sample enumeration There are different ways: ◦ Complete enumeration in the most important agricultural regions of the country and/or with easy access and a sample of villages or EAs for the rest of the country. ◦ Complete enumeration for some types of holdings or for those above an established threshold and sample enumeration for the remaining holdings. In the second case the following scenarios could be used: ◦ Complete enumeration for agricultural holdings with the largest contribution to the agricultural production, which usually constitute the bulk of the holdings. The remaining holdings are enumerated on a sample basis. ◦ Complete enumeration for large or “special” holdings, which may account for a significant contribution to agricultural production and sample enumeration for smaller holdings. 7 Use of sampling for census enumeration • In a classical census sampling may be applied when: using the short-long questionnaire concept (the short questionnaire is administered to all target population of holdings, while the long questionnaire is administered only to a sample of such holdings); or conducting a sample-based census as a single one-off operation. • In the modular approach sampling is needed for selection of holdings to apply the supplementary module(s). • When the census is part of an integrated census/survey modality, rotating modules are conducted on a sample basis. • Use of registers as a source of census data could also be combined with filed enumeration on a sample basis. 8 Uses of sampling at other census stages Sampling techniques can also be used: During the preparation phase, in pilot censuses, sampling methods may be applied to test census instruments and procedures For quality checks during field operations when the work of enumerators and supervisors is evaluated using sampling to avoid selections biases To improve the census coverage (holdings outside of list frame) For non-response follow-up In post-enumeration surveys (PES) sampling methods are applied to assess the census coverage and the accuracy of responses For the preparation of flash census preliminary results to be disseminated shortly after census data collection 9 Sampling techniques used in a census The following sampling techniques can be used for the construction of probability sample designs for agricultural censuses and surveys: o simple random sampling (SRS), o systematic sampling (SYS), o stratified sampling (STR), o sampling with probability proportional to size (PPS), o multivariate probability proportional to size, o cluster sampling, o multi-stage sampling, etc. Advances in sampling theory, such as calibration, ratio and regression estimation may also be used to improve the reliability of census data collected by sample enumeration. 10 One-stage or element sampling • Some conditions are essential for cost-efficient element sampling (using SRS, SYS, STR or PPS): o A fairly complete and up-to-date frame (listing of elements, e.g. holdings or households) of the target population must be available. o Locating the elements and collecting the data must be feasible and economical. o Techniques such as PPS and STR have strong requirements for prior auxiliary information for each element in the population. Therefore, element sampling is not always feasible in ACs, especially in countries that do not have a well-established system of agricultural surveys. For a given sample size: o Sampling errors are smaller in an element sampling than in a cluster sampling. o However, the element sampling involves a larger frame development and data collection costs because the sample in that case is more widely dispersed than, for example, if two-stage sample design is used. 11 Clustering and multi-stage sampling procedure Typically, the sample design for an AC consists of a combination of various sample selection techniques. A manageable sample design often involves clustering and several stages of sampling. In cluster sampling, a sample of clusters (PSUs, such as districts, villages, EAs) is first drawn from the population of clusters. In the next stage, all elements of the sampled clusters are taken if one-stage cluster sampling is applied, or a sample of elements (SSUs) is drawn from each sample cluster in the case of two-stage cluster sampling. The practical aspects of sampling and data collection are the main motivation for use of clustering. ◦ An important advantage in cluster sampling is that a sampling frame at the element level (e.g. AH) is not needed for the whole population, but cluster- level frames are often accessible. ◦ Cluster sampling is especially motivated by cost efficiency, that is, the relatively low cost per sample element (AH), because of lower costs for both listing and data collection (locating). 12 Clustering and multi-stage sampling procedure (contd.) • However, in practice, clusters (such as villages, EAs) tend to be internally homogeneous, and this intra-cluster homogeneity increases standard errors and thus decreases statistical efficiency. Therefore, when constructing a sample design for ACs and surveys, more clusters will need to be selected and then subsampled using measures of size. • The multi-stage sampling
Recommended publications
  • Choosing the Sample
    CHAPTER IV CHOOSING THE SAMPLE This chapter is written for survey coordinators and technical resource persons. It will enable you to: U Understand the basic concepts of sampling. U Calculate the required sample size for national and subnational estimates. U Determine the number of clusters to be used. U Choose a sampling scheme. UNDERSTANDING THE BASIC CONCEPTS OF SAMPLING In the context of multiple-indicator surveys, sampling is a process for selecting respondents from a population. In our case, the respondents will usually be the mothers, or caretakers, of children in each household visited,1 who will answer all of the questions in the Child Health modules. The Water and Sanitation and Salt Iodization modules refer to the whole household and may be answered by any adult. Questions in these modules are asked even where there are no children under the age of 15 years. In principle, our survey could cover all households in the population. If all mothers being interviewed could provide perfect answers, we could measure all indicators with complete accuracy. However, interviewing all mothers would be time-consuming, expensive and wasteful. It is therefore necessary to interview a sample of these women to obtain estimates of the actual indicators. The difference between the estimate and the actual indicator is called sampling error. Sampling errors are caused by the fact that a sample&and not the entire population&is surveyed. Sampling error can be minimized by taking certain precautions: 3 Choose your sample of respondents in an unbiased way. 3 Select a large enough sample for your estimates to be precise.
    [Show full text]
  • 811D Ecollomic Statistics Adrllillistra!Tioll
    811d Ecollomic Statistics Adrllillistra!tioll BUREAU THE CENSUS • I n i • I Charles G. Langham Issued 1973 U.S. D OF COM ERCE Frederick B. Dent. Secretary Social Economic Statistics Edward D. Administrator BU OF THE CENSUS Vincent P. Barabba, Acting Director Vincent Director Associate Director for Economic Associate Director for Statistical Standards and 11/1",1"\"/1,, DATA USER SERVICES OFFICE Robert B. Chief ACKNOWLEDGMENTS This report was in the Data User Services Office Charles G. direction of Chief, Review and many persons the Bureau. Library of Congress Card No.: 13-600143 SUGGESTED CiTATION U.S. Bureau of the Census. The Economic Censuses of the United by Charles G. longham. Working Paper D.C., U.S. Government Printing Office, 1B13 For sale by Publication Oistribution Section. Social and Economic Statistics Administration, Washington, D.C. 20233. Price 50 cents. N Page Economic Censuses in the 19th Century . 1 The First "Economic Censuses" . 1 Economic Censuses Discontinued, Resumed, and Augmented . 1 Improvements in the 1850 Census . 2 The "Kennedy Report" and the Civil War . • . 3 Economic Censuses and the Industrial Revolution. 4 Economic Censuses Adjust to the Times: The Censuses of 1880, 1890, and 1900 .........................•.. , . 4 Economic Censuses in the 20th Century . 8 Enumerations on Specialized Economic Topics, 1902 to 1937 . 8 Censuses of Manufacturing and Mineral Industries, 1905 to 1920. 8 Wartime Data Needs and Biennial Censuses of Manufactures. 9 Economic Censuses and the Great Depression. 10 The War and Postwar Developments: Economic Censuses Discontinued, Resumed, and Rescheduled. 13 The 1954 Budget Crisis. 15 Postwar Developments in Economic Census Taking: The Computer, and" Administrative Records" .
    [Show full text]
  • 2019 TIGER/Line Shapefiles Technical Documentation
    TIGER/Line® Shapefiles 2019 Technical Documentation ™ Issued September 2019220192018 SUGGESTED CITATION FILES: 2019 TIGER/Line Shapefiles (machine- readable data files) / prepared by the U.S. Census Bureau, 2019 U.S. Department of Commerce Economic and Statistics Administration Wilbur Ross, Secretary TECHNICAL DOCUMENTATION: Karen Dunn Kelley, 2019 TIGER/Line Shapefiles Technical Under Secretary for Economic Affairs Documentation / prepared by the U.S. Census Bureau, 2019 U.S. Census Bureau Dr. Steven Dillingham, Albert Fontenot, Director Associate Director for Decennial Census Programs Dr. Ron Jarmin, Deputy Director and Chief Operating Officer GEOGRAPHY DIVISION Deirdre Dalpiaz Bishop, Chief Andrea G. Johnson, Michael R. Ratcliffe, Assistant Division Chief for Assistant Division Chief for Address and Spatial Data Updates Geographic Standards, Criteria, Research, and Quality Monique Eleby, Assistant Division Chief for Gregory F. Hanks, Jr., Geographic Program Management Deputy Division Chief and External Engagement Laura Waggoner, Assistant Division Chief for Geographic Data Collection and Products 1-0 Table of Contents 1. Introduction ...................................................................................................................... 1-1 1. Introduction 1.1 What is a Shapefile? A shapefile is a geospatial data format for use in geographic information system (GIS) software. Shapefiles spatially describe vector data such as points, lines, and polygons, representing, for instance, landmarks, roads, and lakes. The Environmental Systems Research Institute (Esri) created the format for use in their software, but the shapefile format works in additional Geographic Information System (GIS) software as well. 1.2 What are TIGER/Line Shapefiles? The TIGER/Line Shapefiles are the fully supported, core geographic product from the U.S. Census Bureau. They are extracts of selected geographic and cartographic information from the U.S.
    [Show full text]
  • 2020 Census Barriers, Attitudes, and Motivators Study Survey Report
    2020 Census Barriers, Attitudes, and Motivators Study Survey Report A New Design for the 21st Century January 24, 2019 Version 2.0 Prepared by Kyley McGeeney, Brian Kriz, Shawnna Mullenax, Laura Kail, Gina Walejko, Monica Vines, Nancy Bates, and Yazmín García Trejo 2020 Census Research | 2020 CBAMS Survey Report Page intentionally left blank. ii 2020 Census Research | 2020 CBAMS Survey Report Table of Contents List of Tables ................................................................................................................................... iv List of Figures .................................................................................................................................. iv Executive Summary ......................................................................................................................... 1 Introduction ............................................................................................................................. 3 Background .............................................................................................................................. 5 CBAMS I ......................................................................................................................................... 5 CBAMS II ........................................................................................................................................ 6 2020 CBAMS Survey Climate ........................................................................................................
    [Show full text]
  • Sampling Methods It’S Impractical to Poll an Entire Population—Say, All 145 Million Registered Voters in the United States
    Sampling Methods It’s impractical to poll an entire population—say, all 145 million registered voters in the United States. That is why pollsters select a sample of individuals that represents the whole population. Understanding how respondents come to be selected to be in a poll is a big step toward determining how well their views and opinions mirror those of the voting population. To sample individuals, polling organizations can choose from a wide variety of options. Pollsters generally divide them into two types: those that are based on probability sampling methods and those based on non-probability sampling techniques. For more than five decades probability sampling was the standard method for polls. But in recent years, as fewer people respond to polls and the costs of polls have gone up, researchers have turned to non-probability based sampling methods. For example, they may collect data on-line from volunteers who have joined an Internet panel. In a number of instances, these non-probability samples have produced results that were comparable or, in some cases, more accurate in predicting election outcomes than probability-based surveys. Now, more than ever, journalists and the public need to understand the strengths and weaknesses of both sampling techniques to effectively evaluate the quality of a survey, particularly election polls. Probability and Non-probability Samples In a probability sample, all persons in the target population have a change of being selected for the survey sample and we know what that chance is. For example, in a telephone survey based on random digit dialing (RDD) sampling, researchers know the chance or probability that a particular telephone number will be selected.
    [Show full text]
  • THE CENSUS in U.S. HISTORY Library of Congress of Library
    Bill of Rights Constitutional Rights in Action Foundation FALL 2019 Volume 35 No1 THE CENSUS IN U.S. HISTORY Library of Congress of Library A census taker talks to a group of women, men, and children in 1870. The Constitution requires that a census be taken every ten After the 1910 census, the House set the total num- years. This means counting all persons, citizens and ber of House seats at 435. Since then, when Congress noncitizens alike, in the United States. In addition to reapportions itself after each census, those states gain- conducting a population count, the census has evolved to collect massive amounts of information on the growth and ing population may pick up more seats in the House at development of the nation. the expense of states declining in population that have to lose seats. Why Do We Have a Census? Who is counted in apportioning seats in the House? The original purpose of the census was to determine The Constitution originally included “the whole Number the number of representatives each state is entitled to in of free persons” plus indentured servants but excluded the U.S. House of Representatives. The apportionment “Indians not taxed.” What about slaves? The North and (distribution) of seats in the House depends on the pop- South argued about this at the Constitutional Conven- ulation of each state. Every state is guaranteed at least tion, finally agreeing to the three-fifths compromise. one seat. Slaves would be counted in each census, but only three- After the first census in 1790, the House decided a fifths of the count would be included in a state’s popu- state was allowed one representative for each approxi- lation for the purpose of House apportionment.
    [Show full text]
  • Survey Nonresponse Bias and the Coronavirus Pandemic∗
    Coronavirus Infects Surveys, Too: Survey Nonresponse Bias and the Coronavirus Pandemic∗ Jonathan Rothbaum U.S. Census Bureau† Adam Bee U.S. Census Bureau‡ May 3, 2021 Abstract Nonresponse rates have been increasing in household surveys over time, increasing the potential of nonresponse bias. We make two contributions to the literature on nonresponse bias. First, we expand the set of data sources used. We use information returns filings (such as W-2's and 1099 forms) to identify individuals in respondent and nonrespondent households in the Current Population Survey Annual Social and Eco- nomic Supplement (CPS ASEC). We link those individuals to income, demographic, and socioeconomic information available in administrative data and prior surveys and the decennial census. We show that survey nonresponse was unique during the pan- demic | nonresponse increased substantially and was more strongly associated with income than in prior years. Response patterns changed by education, Hispanic origin, and citizenship and nativity. Second, We adjust for nonrandom nonresponse using entropy balance weights { a computationally efficient method of adjusting weights to match to a high-dimensional vector of moment constraints. In the 2020 CPS ASEC, nonresponse biased income estimates up substantially, whereas in other years, we do not find evidence of nonresponse bias in income or poverty statistics. With the sur- vey weights, real median household income was $68,700 in 2019, up 6.8 percent from 2018. After adjusting for nonresponse bias during the pandemic, we estimate that real median household income in 2019 was 2.8 percent lower than the survey estimate at $66,790. ∗This report is released to inform interested parties of ongoing research and to encourage discussion.
    [Show full text]
  • MRS Guidance on How to Read Opinion Polls
    What are opinion polls? MRS guidance on how to read opinion polls June 2016 1 June 2016 www.mrs.org.uk MRS Guidance Note: How to read opinion polls MRS has produced this Guidance Note to help individuals evaluate, understand and interpret Opinion Polls. This guidance is primarily for non-researchers who commission and/or use opinion polls. Researchers can use this guidance to support their understanding of the reporting rules contained within the MRS Code of Conduct. Opinion Polls – The Essential Points What is an Opinion Poll? An opinion poll is a survey of public opinion obtained by questioning a representative sample of individuals selected from a clearly defined target audience or population. For example, it may be a survey of c. 1,000 UK adults aged 16 years and over. When conducted appropriately, opinion polls can add value to the national debate on topics of interest, including voting intentions. Typically, individuals or organisations commission a research organisation to undertake an opinion poll. The results to an opinion poll are either carried out for private use or for publication. What is sampling? Opinion polls are carried out among a sub-set of a given target audience or population and this sub-set is called a sample. Whilst the number included in a sample may differ, opinion poll samples are typically between c. 1,000 and 2,000 participants. When a sample is selected from a given target audience or population, the possibility of a sampling error is introduced. This is because the demographic profile of the sub-sample selected may not be identical to the profile of the target audience / population.
    [Show full text]
  • Computing Effect Sizes for Clustered Randomized Trials
    Computing Effect Sizes for Clustered Randomized Trials Terri Pigott, C2 Methods Editor & Co-Chair Professor, Loyola University Chicago [email protected] The Campbell Collaboration www.campbellcollaboration.org Computing effect sizes in clustered trials • In an experimental study, we are interested in the difference in performance between the treatment and control group • In this case, we use the standardized mean difference, given by YYTC− d = gg Control group sp mean Treatment group mean Pooled sample standard deviation Campbell Collaboration Colloquium – August 2011 www.campbellcollaboration.org 1 Variance of the standardized mean difference NNTC+ d2 Sd2 ()=+ NNTC2( N T+ N C ) where NT is the sample size for the treatment group, and NC is the sample size for the control group Campbell Collaboration Colloquium – August 2011 www.campbellcollaboration.org TREATMENT GROUP CONTROL GROUP TT T CC C YY,,..., Y YY12,,..., YC 12 NT N Overall Trt Mean Overall Cntl Mean T Y C Yg g S 2 2 Trt SCntl 2 S pooled Campbell Collaboration Colloquium – August 2011 www.campbellcollaboration.org 2 In cluster randomized trials, SMD more complex • In cluster randomized trials, we have clusters such as schools or clinics randomized to treatment and control • We have at least two means: mean performance for each cluster, and the overall group mean • We also have several components of variance – the within- cluster variance, the variance between cluster means, and the total variance • Next slide is an illustration Campbell Collaboration Colloquium – August 2011 www.campbellcollaboration.org TREATMENT GROUP CONTROL GROUP Cntl Cluster mC Trt Cluster 1 Trt Cluster mT Cntl Cluster 1 TT T T CC C C YY,...ggg Y ,..., Y YY11,..
    [Show full text]
  • Categorical Data Analysis
    Categorical Data Analysis Related topics/headings: Categorical data analysis; or, Nonparametric statistics; or, chi-square tests for the analysis of categorical data. OVERVIEW For our hypothesis testing so far, we have been using parametric statistical methods. Parametric methods (1) assume some knowledge about the characteristics of the parent population (e.g. normality) (2) require measurement equivalent to at least an interval scale (calculating a mean or a variance makes no sense otherwise). Frequently, however, there are research problems in which one wants to make direct inferences about two or more distributions, either by asking if a population distribution has some particular specifiable form, or by asking if two or more population distributions are identical. These questions occur most often when variables are qualitative in nature, making it impossible to carry out the usual inferences in terms of means or variances. For such problems, we use nonparametric methods. Nonparametric methods (1) do not depend on any assumptions about the parameters of the parent population (2) generally assume data are only measured at the nominal or ordinal level. There are two common types of hypothesis-testing problems that are addressed with nonparametric methods: (1) How well does a sample distribution correspond with a hypothetical population distribution? As you might guess, the best evidence one has about a population distribution is the sample distribution. The greater the discrepancy between the sample and theoretical distributions, the more we question the “goodness” of the theory. EX: Suppose we wanted to see whether the distribution of educational achievement had changed over the last 25 years. We might take as our null hypothesis that the distribution of educational achievement had not changed, and see how well our modern-day sample supported that theory.
    [Show full text]
  • Evaluating Probability Sampling Strategies for Estimating Redd Counts: an Example with Chinook Salmon (Oncorhynchus Tshawytscha)
    1814 Evaluating probability sampling strategies for estimating redd counts: an example with Chinook salmon (Oncorhynchus tshawytscha) Jean-Yves Courbois, Stephen L. Katz, Daniel J. Isaak, E. Ashley Steel, Russell F. Thurow, A. Michelle Wargo Rub, Tony Olsen, and Chris E. Jordan Abstract: Precise, unbiased estimates of population size are an essential tool for fisheries management. For a wide variety of salmonid fishes, redd counts from a sample of reaches are commonly used to monitor annual trends in abundance. Using a 9-year time series of georeferenced censuses of Chinook salmon (Oncorhynchus tshawytscha) redds from central Idaho, USA, we evaluated a wide range of common sampling strategies for estimating the total abundance of redds. We evaluated two sampling-unit sizes (200 and 1000 m reaches), three sample proportions (0.05, 0.10, and 0.29), and six sampling strat- egies (index sampling, simple random sampling, systematic sampling, stratified sampling, adaptive cluster sampling, and a spatially balanced design). We evaluated the strategies based on their accuracy (confidence interval coverage), precision (relative standard error), and cost (based on travel time). Accuracy increased with increasing number of redds, increasing sample size, and smaller sampling units. The total number of redds in the watershed and budgetary constraints influenced which strategies were most precise and effective. For years with very few redds (<0.15 reddsÁkm–1), a stratified sampling strategy and inexpensive strategies were most efficient, whereas for years with more redds (0.15–2.9 reddsÁkm–1), either of two more expensive systematic strategies were most precise. Re´sume´ : La gestion des peˆches requiert comme outils essentiels des estimations pre´cises et non fausse´es de la taille des populations.
    [Show full text]
  • Cluster Sampling
    Day 5 sampling - clustering SAMPLE POPULATION SAMPLING: IS ESTIMATING THE CHARACTERISTICS OF THE WHOLE POPULATION USING INFORMATION COLLECTED FROM A SAMPLE GROUP. The sampling process comprises several stages: •Defining the population of concern •Specifying a sampling frame, a set of items or events possible to measure •Specifying a sampling method for selecting items or events from the frame •Determining the sample size •Implementing the sampling plan •Sampling and data collecting 2 Simple random sampling 3 In a simple random sample (SRS) of a given size, all such subsets of the frame are given an equal probability. In particular, the variance between individual results within the sample is a good indicator of variance in the overall population, which makes it relatively easy to estimate the accuracy of results. SRS can be vulnerable to sampling error because the randomness of the selection may result in a sample that doesn't reflect the makeup of the population. Systematic sampling 4 Systematic sampling (also known as interval sampling) relies on arranging the study population according to some ordering scheme and then selecting elements at regular intervals through that ordered list Systematic sampling involves a random start and then proceeds with the selection of every kth element from then onwards. In this case, k=(population size/sample size). It is important that the starting point is not automatically the first in the list, but is instead randomly chosen from within the first to the kth element in the list. STRATIFIED SAMPLING 5 WHEN THE POPULATION EMBRACES A NUMBER OF DISTINCT CATEGORIES, THE FRAME CAN BE ORGANIZED BY THESE CATEGORIES INTO SEPARATE "STRATA." EACH STRATUM IS THEN SAMPLED AS AN INDEPENDENT SUB-POPULATION, OUT OF WHICH INDIVIDUAL ELEMENTS CAN BE RANDOMLY SELECTED Cluster sampling Sometimes it is more cost-effective to select respondents in groups ('clusters') Quota sampling Minimax sampling Accidental sampling Voluntary Sampling ….
    [Show full text]