Three-Dimensional Structures of Carbohydrates and Where to Find Them

Total Page:16

File Type:pdf, Size:1020Kb

Three-Dimensional Structures of Carbohydrates and Where to Find Them International Journal of Molecular Sciences Review Three-Dimensional Structures of Carbohydrates and Where to Find Them Sofya I. Scherbinina 1,2,* and Philip V. Toukach 1,* 1 N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky prospect 47, 119991 Moscow, Russia 2 Higher Chemical College, D. Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, 125047 Moscow, Russia * Correspondence: [email protected] (S.I.S.); [email protected] (P.V.T.) Received: 26 September 2020; Accepted: 16 October 2020; Published: 18 October 2020 Abstract: Analysis and systematization of accumulated data on carbohydrate structural diversity is a subject of great interest for structural glycobiology. Despite being a challenging task, development of computational methods for efficient treatment and management of spatial (3D) structural features of carbohydrates breaks new ground in modern glycoscience. This review is dedicated to approaches of chemo- and glyco-informatics towards 3D structural data generation, deposition and processing in regard to carbohydrates and their derivatives. Databases, molecular modeling and experimental data validation services, and structure visualization facilities developed for last five years are reviewed. Keywords: carbohydrate; spatial structure; model build; database; web-tool; glycoinformatics; structure validation; PDB glycans; structure visualization; molecular modeling 1. Introduction Knowledge of carbohydrate spatial (3D) structure is crucial for investigation of glycoconjugate biological activity [1,2], vaccine development [3,4], estimation of ligand-receptor interaction energy [5–7] studies of conformational mobility of macromolecules [8], drug design [9], studies of cell wall construction aspects [10], glycosylation processes [11], and many other aspects of carbohydrate chemistry and biology. Therefore, providing information support for carbohydrate 3D structure is vital for the development of modern glycomics and glycoproteomics. As result of growing interest to glycoprofiling, glycan microarrays, carbohydrate active enzymes (CAZy) and glycan-binding proteins (GBP) which are involved in biological processes, several major international projects (e.g., GlySpace [12], GlyCosmos [13], Glycomics@ExPASy [14], GlyGen [15], JCGGDB [16], Glytoucan [17], MIRAGE [18], CFG [19], RINGS [20], GLIC (https://glic.glycoinfo.org/), SysGlyco (https://sysglyco.org/)) were launched to integrate variety of data produced by glycobiological research. The main goal of existing glycoinformatics projects is to provide versatile resources with user-friendly access helpful for disease diagnostics [21,22], glycobioinformatics studies [23], glycosylation site prediction [24], CAZy activity prognosis [25,26] and other applications. Appending of structural repositories with 3D structural data opens the way for computational glycobiology and modeling of carbohydrate structures at atomic resolution. Design of novel workflows and techniques to connect carbohydrate spatial structure modes and experimental data with verification, processing, analysis and deposition of associated data has gained increased popularity in glycoscience community [27]. A Carbohydrate Structure Database (CSDB, [28]) module for carbohydrate 3D structure modeling is a demonstrative example of 3D structural data integration facilities (as a database) combined with dedicated interface (as a glycoinformatics project). Further details on CSDB 3D facilities are discussed below. Int. J. Mol. Sci. 2020, 21, 7702; doi:10.3390/ijms21207702 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 48 Int. J. Mol. Sci. 2020, 21, 7702 2 of 46 integration facilities (as a database) combined with dedicated interface (as a glycoinformatics project). Further details on CSDB 3D facilities are discussed below. The typical types of knowledge about a carbohydrate 3D structure include (Figure1): The typical types of knowledge about a carbohydrate 3D structure include (Figure 1): Primary structure (atom connectivity); • Primary structure (atom connectivity); Monosaccharide ring conformation; • Monosaccharide ring conformation; • Rotational states of inter-residue and exocyclic linkages and their energies; • Rotational states of inter-residue and exocyclic linkages and their energies; • Ring puckering and transitions of glycosidic linkage conformation on a time scale; • Ring puckering and transitions of glycosidic linkage conformation on a time scale; • Large-scaleLarge-scale spatialspatial arrangementarrangement (tertiary(tertiary structure).structure). • Figure 1.1. Typical componentscomponents of aa carbohydratecarbohydrate 3D3D structurestructure exemplifiedexemplified onon sucrose:sucrose: (a) primaryprimary structurestructure (in(in SymbolSymbol Nomenclature Nomenclature for for Glycans Glycans (SNFG)); (SNFG)); (b) ( superimposedb) superimposed conformational conformational states states and c Cremer–Popleand Cremer–Pople diagram; diagram; ( ) conformational (c) conformational space of a two-torsionspace of a glycosidic two-torsion linkage glycosidic (Ramachandran linkage plot); (d) transitions of glycosidic dihedrals. (Ramachandran plot); (d) transitions of glycosidic dihedrals. Herein we focus on the important aspects of carbohydrate 3D structure availability to researchers: Herein we focus on the important aspects of carbohydrate 3D structure availability to structural repositories; glycoinformatics tools and workflows to assist structure building, modeling and researchers: structural repositories; glycoinformatics tools and workflows to assist structure erroneous molecular geometry data detection and remediation; carbohydrate 3D structure presentation building, modeling and erroneous molecular geometry data detection and remediation; and visualization methods. carbohydrate 3D structure presentation and visualization methods. 2. Structural Databases 2. Structural Databases Structural databases make significant contribution to bringing information technologies to glycoscienceStructural [29 databases]. With no make focus significant on spatial structure,contribution glycan to bringing databases information and online toolstechnologies have been to recentlyglycoscience reviewed [29]. With [30–32 no]. focus Depositing on spatial huge struct numberure, ofglycan carbohydrates databases withand online detailed tools data have for eachbeen entry,recently databases reviewed are [30–32]. valuable Depositing sources of structuralhuge number information, of carbohydrates biological with assignments, detailedreferences data for each and externalentry, databases links. Structural are valuable data are sources often accompaniedof structural byinformation, original and biological sometimes assignments, assigned experimental references observables:and external NMRlinks. spectra,Structural HPLC data and are MS often profiles, accompanied etc. The servicesby original built and on topsometimes of the databases assigned canexperimental include 3D observables: structure simulation, NMR spec validation,tra, HPLC and MS storage. profiles, A viewpoint etc. The services of the authors built on at top the of ideal the integrationdatabases can of datainclude resources 3D structure and services simulation, in glycoinformatics validation, and is storage. summarized A viewpoint in Figure of2 .the A subjectauthors of at thisthe ideal review integration is databases of data providing resources theoretical and services or empirical in glycoinformatics 3D structures is of summarized carbohydrates in andFigure related 2. A data-miningsubject of this tools. review is databases providing theoretical or empirical 3D structures of carbohydrates and related data-mining tools. Int. J. Mol. Sci. 2020, 21, 7702 3 of 46 Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 48 Figure 2.2.Networking Networking between between glycoinformatics glycoinformatics projects projec and relatedts and servicesrelated that services promotes that achievement promotes achievementof data integration of data in glycomics.integration Reproduced in glycomics. with Reproduced permission with from [permission29], © 2020 from Wiley-VCH [29], © Verlag 2020 Wiley-VCHGmbH & Co. Verlag KGaA, GmbH Weinheim. & Co. KGaA, Weinheim. The majoritymajority ofof existingexisting repositories repositories for for carbohydrate carbohydrate 3D 3D structures structures offer offer open-access open-access data data via web via webinterface. interface. Deposited Deposited datasets datasets can be representedcan be repres byented glycoproteins, by glycoproteins, protein-carbohydrate protein-carbohydrate complexes, poly-complexes, and oligosaccharides poly- and oligosaccharides with 3D structure with experimentally3D structure experimentally resolved or specified resolved by or means specified of NMR, by X-raymeans crystallography,of NMR, X-ray cryoEM,crystallography, small angle cryoEM, X-ray sm scattering,all angle etc.X-ray [27 ].scattering, Several databasesetc. [27]. suchSeveral as databasesGLYCAM-Web, such EK3D,as GLYCAM-Web, 3DSDSCAR, GlycoMapsDBEK3D, 3DSDSCAR contain, GlycoMapsDB data from molecular contain dynamicsdata from simulations. molecular Wedynamics have also simulations. mentioned databasesWe have featuringalso mentioned information databases on protein featuring structures information involving carbohydrate on protein structuresmoiety in termsinvolving of glycosylation carbohydrate (as post-translationalmoiety in terms modification, of glycosylation dbPTM), (as carbohydrate post-translational
Recommended publications
  • Zebrafish Disease Models to Study the Pathogenesis of Inherited Manganese Transporter Defects and Provide A
    Zebrafish disease models to study the pathogenesis of inherited manganese transporter defects and provide a route for drug discovery Dr Karin Tuschl University College London PhD Supervisors: Dr Philippa Mills & Prof Stephen Wilson A thesis submitted for the degree of Doctor of Philosophy University College London August 2016 Declaration I, Karin Tuschl, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Part of the work of this thesis has been published in the following articles for which copyright clearance has been obtained (see Appendix): - Tuschl K, et al. Manganese and the brain. Int Rev Neurobiol. 2013. 110:277- 312. - Tuschl K, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat Comms. 2016. 7:11601. I confirm that these publications were written by me and may therefore partly overlap with my thesis. 2 Abstract Although manganese is required as an essential trace element excessive amounts are neurotoxic and lead to manganism, an extrapyramidal movement disorder associated with deposition of manganese in the basal ganglia. Recently, we have identified the first inborn error of manganese metabolism caused by mutations in SLC30A10, encoding a manganese transporter facilitating biliary manganese excretion. Treatment is limited to chelation therapy with intravenous disodium calcium edetate which is burdensome due to its route of administration and associated with high socioeconomic costs. Whole exome sequencing in patients with inherited hypermanganesaemia and early- onset parkinsonism-dystonia but absent SLC30A10 mutations identified SLC39A14 as a novel disease gene associated with manganese dyshomeostasis.
    [Show full text]
  • Uniprot at EMBL-EBI's Role in CTTV
    Barbara P. Palka, Daniel Gonzalez, Edd Turner, Xavier Watkins, Maria J. Martin, Claire O’Donovan European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK UniProt at EMBL-EBI’s role in CTTV: contributing to improved disease knowledge Introduction The mission of UniProt is to provide the scientific community with a The Centre for Therapeutic Target Validation (CTTV) comprehensive, high quality and freely accessible resource of launched in Dec 2015 a new web platform for life- protein sequence and functional information. science researchers that helps them identify The UniProt Knowledgebase (UniProtKB) is the central hub for the collection of therapeutic targets for new and repurposed medicines. functional information on proteins, with accurate, consistent and rich CTTV is a public-private initiative to generate evidence on the annotation. As much annotation information as possible is added to each validity of therapeutic targets based on genome-scale experiments UniProtKB record and this includes widely accepted biological ontologies, and analysis. CTTV is working to create an R&D framework that classifications and cross-references, and clear indications of the quality of applies to a wide range of human diseases, and is committed to annotation in the form of evidence attribution of experimental and sharing its data openly with the scientific community. CTTV brings computational data. together expertise from four complementary institutions: GSK, Biogen, EMBL-EBI and Wellcome Trust Sanger Institute. UniProt’s disease expert curation Q5VWK5 (IL23R_HUMAN) This section provides information on the disease(s) associated with genetic variations in a given protein. The information is extracted from the scientific literature and diseases that are also described in the OMIM database are represented with a controlled vocabulary.
    [Show full text]
  • Glycomics Goes Visual and Interactive
    Glycomics & Lipidomics Extended Abstract Glycomics goes visual and interactive Alessandra Gastaldello structures attached to each of these sites. Mass spectrometry Abstract (MS) and microarray are high-throughput technologies that are commonly used in glycomics and glycoproteomics, which often result in the generation of large experimental datasets. Glycomics@ExPASy the glycomics tab of the Swiss Institute of Bioinformatics approaches play an essential role in automated Bioinformatics server (www.expasy.org/glycomics) was created analysis and interpretation of such data. This unit describes in 2016 to centralise web-based glycoinformatics resources and discusses the computational tools currently available for developed within an international network of glycoscientists. these analyses, and their glycomics and glycoproteomics The philosophy of this toolbox is to be {glycoscientist AND applications. protein scientist}???friendly with the aim of popularising (a) the use of bioinformatics in glycobiology and (b) the relation A key point in achieving accurate intact glycopeptide between glycobiology and protein-oriented bioinformatics identification is the definition of the glycan composition file resources. The scarcity of bridging data led us to design tools that is used to match experimental with theoretical masses by a as interactive as possible based on database connectivity in glycoproteomics search engine. At present, these files are order to facilitate data exploration and support hypothesis mainly built from searching the literature and/or querying building. The current set of resources is mostly built on top of data sources focused on posttranslational modifications. Most curated or experimental data relative to glycan structures, glycoproteomics search engines include a default composition glycoproteins, host-pathogen interactions and mass file that is readily used when processing MS data.
    [Show full text]
  • Immunological Approaches to Biomass Characterization and Utilization
    REVIEW published: 28 October 2015 doi: 10.3389/fbioe.2015.00173 Immunological approaches to biomass characterization and utilization Sivakumar Pattathil1,2* , Utku Avci1,2 , Tiantian Zhang1 , Claudia L. Cardenas1† and Michael G. Hahn1,2 1 Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA, 2 Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among Edited by: Jason Lupoi, different organs, cells, and developmental stages of plants. Hence, tools are needed that University of Queensland, USA are highly efficient and broadly applicable at various levels of plant biomass-based bioen- Reviewed by: ergy research. The use of plant cell wall glycan-directed probes has seen increasing use Xu Fang, Shandong University, China over the past decade as an excellent approach for the detailed characterization of cell Arumugam Muthu, walls. Large collections of such probes directed against most major cell wall glycans are Council of Scientific and Industrial currently available worldwide. The largest and most diverse set of such probes consists Research, India of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used *Correspondence: Sivakumar Pattathil as immunological probes to comprehensively monitor the overall presence, extractability, [email protected] and distribution patterns among cell types of most major cell wall glycan epitopes using †Present address: two mutually complementary immunological approaches, glycome profiling (an in vitro Claudia L.
    [Show full text]
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The
    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
    [Show full text]
  • Bioinformatics Study of Lectins: New Classification and Prediction In
    Bioinformatics study of lectins : new classification and prediction in genomes François Bonnardel To cite this version: François Bonnardel. Bioinformatics study of lectins : new classification and prediction in genomes. Structural Biology [q-bio.BM]. Université Grenoble Alpes [2020-..]; Université de Genève, 2021. En- glish. NNT : 2021GRALV010. tel-03331649 HAL Id: tel-03331649 https://tel.archives-ouvertes.fr/tel-03331649 Submitted on 2 Sep 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES préparée dans le cadre d’une cotutelle entre la Communauté Université Grenoble Alpes et l’Université de Genève Spécialités: Chimie Biologie Arrêté ministériel : le 6 janvier 2005 – 25 mai 2016 Présentée par François Bonnardel Thèse dirigée par la Dr. Anne Imberty codirigée par la Dr/Prof. Frédérique Lisacek préparée au sein du laboratoire CERMAV, CNRS et du Computer Science Department, UNIGE et de l’équipe PIG, SIB Dans les Écoles Doctorales EDCSV et UNIGE Etude bioinformatique des lectines: nouvelle classification et prédiction dans les génomes Thèse soutenue publiquement le 8 Février 2021, devant le jury composé de : Dr. Alexandre de Brevern UMR S1134, Inserm, Université Paris Diderot, Paris, France, Rapporteur Dr.
    [Show full text]
  • Toolboxes for a Standardised and Systematic Study of Glycans
    Campbell et al. BMC Bioinformatics 2014, 15(Suppl 1):S9 http://www.biomedcentral.com/1471-2105/15/S1/S9 RESEARCH Open Access Toolboxes for a standardised and systematic study of glycans Matthew P Campbell1, René Ranzinger2, Thomas Lütteke3, Julien Mariethoz4, Catherine A Hayes5, Jingyu Zhang1, Yukie Akune6, Kiyoko F Aoki-Kinoshita6, David Damerell7,11, Giorgio Carta8, Will S York2, Stuart M Haslam7, Hisashi Narimatsu9, Pauline M Rudd8, Niclas G Karlsson4, Nicolle H Packer1, Frédérique Lisacek4,10* From Integrated Bio-Search: 12th International Workshop on Network Tools and Applications in Biology (NETTAB 2012) Como, Italy. 14-16 November 2012 Abstract Background: Recent progress in method development for characterising the branched structures of complex carbohydrates has now enabled higher throughput technology. Automation of structure analysis then calls for software development since adding meaning to large data collections in reasonable time requires corresponding bioinformatics methods and tools. Current glycobioinformatics resources do cover information on the structure and function of glycans, their interaction with proteins or their enzymatic synthesis. However, this information is partial, scattered and often difficult to find to for non-glycobiologists. Methods: Following our diagnosis of the causes of the slow development of glycobioinformatics, we review the “objective” difficulties encountered in defining adequate formats for representing complex entities and developing efficient analysis software. Results: Various solutions already implemented and strategies defined to bridge glycobiology with different fields and integrate the heterogeneous glyco-related information are presented. Conclusions: Despite the initial stage of our integrative efforts, this paper highlights the rapid expansion of glycomics, the validity of existing resources and the bright future of glycobioinformatics.
    [Show full text]
  • Pathogenicity and Selective Constraint on Variation Near Splice Sites
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press 1 Pathogenicity and selective constraint on variation near 2 splice sites 3 AUTHORS 4 Jenny Lord1, Giuseppe Gallone1, Patrick J. Short1, Jeremy F. McRae1, Holly Ironfield1, Elizabeth H. 5 Wynn1, Sebastian S. Gerety1, Liu He1, Bronwyn Kerr2,3, Diana S. Johnson4, Emma McCann5, Esther 6 Kinning6, Frances Flinter7, I. Karen Temple8,9 , Jill Clayton-Smith2,3, Meriel McEntagart10, Sally Ann 7 Lynch11, Shelagh Joss12, Sofia Douzgou2,3, Tabib Dabir13, Virginia Clowes14, Vivienne P. M. 8 McConnell13, Wayne Lam15, Caroline F. Wright16, David R. FitzPatrick1,15, Helen V. Firth1,17, Jeffrey 9 C. Barrett1, Matthew E. Hurles1, on behalf of the Deciphering Developmental Disorders study 10 AFFILIATIONS 11 1 Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK 12 2Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University Hospitals NHS 13 Foundation Trust Manchester Academic Health Sciences Centre 14 3Division of Evolution and Genomic Sciences School of Biological Sciences University of Manchester 15 4Sheffield Clinical Genetics Service, Sheffield Children's Hospital, OPD2, Northern General Hospital, 16 Herries Road, Sheffield, S5 7AU 17 5Liverpool Women’s Hospital Foundation Trust, Crown Street, Liverpool, L8 7SS 18 6West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of Medical 19 Genetics, Yorkhill Hospital, Glasgow G3 8SJ, UK 20 7South East Thames Regional Genetics
    [Show full text]
  • Webnetcoffee
    Hu et al. BMC Bioinformatics (2018) 19:422 https://doi.org/10.1186/s12859-018-2443-4 SOFTWARE Open Access WebNetCoffee: a web-based application to identify functionally conserved proteins from Multiple PPI networks Jialu Hu1,2, Yiqun Gao1, Junhao He1, Yan Zheng1 and Xuequn Shang1* Abstract Background: The discovery of functionally conserved proteins is a tough and important task in system biology. Global network alignment provides a systematic framework to search for these proteins from multiple protein-protein interaction (PPI) networks. Although there exist many web servers for network alignment, no one allows to perform global multiple network alignment tasks on users’ test datasets. Results: Here, we developed a web server WebNetcoffee based on the algorithm of NetCoffee to search for a global network alignment from multiple networks. To build a series of online test datasets, we manually collected 218,339 proteins, 4,009,541 interactions and many other associated protein annotations from several public databases. All these datasets and alignment results are available for download, which can support users to perform algorithm comparison and downstream analyses. Conclusion: WebNetCoffee provides a versatile, interactive and user-friendly interface for easily running alignment tasks on both online datasets and users’ test datasets, managing submitted jobs and visualizing the alignment results through a web browser. Additionally, our web server also facilitates graphical visualization of induced subnetworks for a given protein and its neighborhood. To the best of our knowledge, it is the first web server that facilitates the performing of global alignment for multiple PPI networks. Availability: http://www.nwpu-bioinformatics.com/WebNetCoffee Keywords: Multiple network alignment, Webserver, PPI networks, Protein databases, Gene ontology Background tools [7–10] have been developed to understand molec- Proteins are involved in almost all life processes.
    [Show full text]
  • The Biogrid Interaction Database
    D470–D478 Nucleic Acids Research, 2015, Vol. 43, Database issue Published online 26 November 2014 doi: 10.1093/nar/gku1204 The BioGRID interaction database: 2015 update Andrew Chatr-aryamontri1, Bobby-Joe Breitkreutz2, Rose Oughtred3, Lorrie Boucher2, Sven Heinicke3, Daici Chen1, Chris Stark2, Ashton Breitkreutz2, Nadine Kolas2, Lara O’Donnell2, Teresa Reguly2, Julie Nixon4, Lindsay Ramage4, Andrew Winter4, Adnane Sellam5, Christie Chang3, Jodi Hirschman3, Chandra Theesfeld3, Jennifer Rust3, Michael S. Livstone3, Kara Dolinski3 and Mike Tyers1,2,4,* 1Institute for Research in Immunology and Cancer, Universite´ de Montreal,´ Montreal,´ Quebec H3C 3J7, Canada, 2The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada, 3Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA, 4School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK and 5Centre Hospitalier de l’UniversiteLaval´ (CHUL), Quebec,´ Quebec´ G1V 4G2, Canada Received September 26, 2014; Revised November 4, 2014; Accepted November 5, 2014 ABSTRACT semi-automated text-mining approaches, and to en- hance curation quality control. The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein in- INTRODUCTION teractions curated from the primary biomedical lit- Massive increases in high-throughput DNA sequencing erature for all major model organism species and technologies (1) have enabled an unprecedented level of humans. As of September 2014, the BioGRID con- genome annotation for many hundreds of species (2–6), tains 749 912 interactions as drawn from 43 149 pub- which has led to tremendous progress in the understand- lications that represent 30 model organisms.
    [Show full text]
  • Viroinformatics Investigation of B-Cell Epitope Conserved Region in SARS
    © 2021 Journal of Pharmacy & Pharmacognosy Research, 9 (6), 766-779, 2021 ISSN 0719-4250 http://jppres.com/jppres Original Article Viroinformatics investigation of B-cell epitope conserved region in SARS- CoV-2 lineage B.1.1.7 isolates originated from Indonesia to develop vaccine candidate against COVID-19 [Investigación viroinformática de la región conservada del epítopo de células B en el linaje SARS-CoV-2 B.1.1.7 aislamientos originados en Indonesia para desarrollar una vacuna candidata contra COVID-19] Arif N. M. Ansori1,2#, Reviany V. Nidom1,3*#, Muhammad K. J. Kusala1,2, Setyarina Indrasari1,3, Irine Normalina1,4, Astria N. Nidom1,3, Balqis Afifah1,3, Kartika B. Sari1,5, Nor L. Ramadhaniyah1,5, Mohammad Y. Alamudi1,3, Umi Cahyaningsih6, Kuncoro P. Santoso1,2, Heri Kuswanto5, Chairul A. Nidom1,2,3* 1Coronavirus and Vaccine Formulation Research Group, Professor Nidom Foundation, Surabaya, Indonesia. 2Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia. 3Riset AIRC Indonesia, Surabaya, Indonesia. 4Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. 5Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia. 6Faculty of Veterinary Medicine, IPB University, Bogor, Indonesia. #Both authors contributed equally. *E-mail: [email protected], [email protected], [email protected] Abstract Resumen Context: SARS-CoV-2, a member of family Coronaviridae and the Contexto: SARS-CoV-2, un miembro de la familia Coronaviridae y el causative agent of COVID-19,
    [Show full text]
  • Designing Tools for Studying the Dynamic Glycome John F
    Marshall University Marshall Digital Scholar Chemistry Faculty Research Chemistry Winter 12-2012 Designing Tools for Studying the Dynamic Glycome John F. Rakus Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/chemistry_faculty Part of the Organic Chemistry Commons Recommended Citation Rakus, J. F. (2012, December). Designing tools for studying the dynamic glycome. Invited Lecture at Sonoma State University, Rohnert Park, CA. This Presentation is brought to you for free and open access by the Chemistry at Marshall Digital Scholar. It has been accepted for inclusion in Chemistry Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. NYU Cover Cells are primarily compose of three types of biomolecules Protein (50% dry weight) HeLa cell Nucleic acid (25% dry weight) Carbohydrate (10% dry weight) Carbohydrates are pervasive and involved in many cellular interactions Holgersson et al, Immuno Cell Biol, 2005 Laughlin et al, Science, 2008 Nucleic acids and proteins are synthesized with a defined template and dedicated polymerases Macromolecule: Nucleic acid Macromolecule: polypeptide Polymerase: DNA Pol or RNA Pol Polymerase: Ribosome Template: DNA strand Template: mRNA strand Glycan biosynthesis lacks a dedicated polymerase and genetic template Formation of Glc3Man9GlcNAc2-DolPP, an intermediate in the N-linked glycosylation pathway, requires 12 separate enzymes Essentially, each linkage in an oligosaccharide is
    [Show full text]