Walking Onions: Scaling Anonymity Networks While Protecting Users Chelsea H

Total Page:16

File Type:pdf, Size:1020Kb

Walking Onions: Scaling Anonymity Networks While Protecting Users Chelsea H Walking Onions: Scaling Anonymity Networks while Protecting Users Chelsea H. Komlo, University of Waterloo; Nick Mathewson, The Tor Project; Ian Goldberg, University of Waterloo https://www.usenix.org/conference/usenixsecurity20/presentation/komlo This paper is included in the Proceedings of the 29th USENIX Security Symposium. August 12–14, 2020 978-1-939133-17-5 Open access to the Proceedings of the 29th USENIX Security Symposium is sponsored by USENIX. Walking Onions: Scaling Anonymity Networks while Protecting Users Chelsea H. Komlo Nick Mathewson Ian Goldberg University of Waterloo The Tor Project University of Waterloo Abstract Anonymity networks in practice [13] have prevented these Scaling anonymity networks offers unique security chal- attacks by requiring all participants to share a globally consis- lenges, as attackers can exploit differing views of the net- tent view of the entire state of the network, and giving clients work’s topology to perform epistemic and route capture at- complete control over selecting relays for their paths. While tacks. Anonymity networks in practice, such as Tor, have this approach prevents the described attacks, requiring a glob- opted for security over scalability by requiring participants ally consistent view results in quadratic bandwidth growth as to share a globally consistent view of all relays to prevent the number of clients increases [26], because the number of these kinds of attacks. Such an approach requires each user relays must also increase to provide more capacity, and all to maintain up-to-date information about every relay, causing parties must download information about all relays. While the total amount of data each user must download every epoch today’s Tor network requires only approximately half a per- to scale linearly with the number of relays. As the number cent of its total bandwidth to serve network state [39, 41], of clients increases, more relays must be added to provide increasing the number of clients and relays by one order of bandwidth, further exacerbating the total load on the network. magnitude would result in the consumption of roughly five In this work, we present Walking Onions, a set of proto- percent of the network’s (ten times larger) total bandwidth cols improving scalability for anonymity networks. Walking simply to distribute network state; an increase by two or- Onions enables constant-size scaling of the information each ders of magnitudes results in the consumption of half of the user must download in every epoch, even as the number of network’s (hundred times larger) total bandwidth. Clearly, re- relays in the network grows. Furthermore, we show how relax- quiring a globally consistent network view for all participants ing the clients’ bandwidth growth from constant to logarith- is an obstacle to anonymity networks reaching the scale of mic can enable an outsized improvement to relays’ bandwidth modern-day browsers [37]. costs. Notably, Walking Onions offers the same security prop- Moreover, some use cases benefit immediately from im- erties as current designs that require a globally consistent proved scalability. For anonymity networks requiring a glob- network view. We present two protocol variants. The first re- ally consistent view, a client joining the network on initial quires minimal changes from current onion-routing systems. startup must download the complete network state, which can The second presents a more significant design change, thereby be prohibitive for mobile users or those in areas with poor reducing the latency required to establish a path through the connectivity. Further, “on-demand” clients—applications that network while providing better forward secrecy than previ- are used only occasionally—still incur bandwidth overhead, ous such constructions. We implement and evaluate Walking as the client must either continue to fetch network state when Onions in a simulated onion-routing anonymity network mod- idle, or bootstrap from scratch after becoming active. elled after Tor, and validate that Walking Onions indeed offers To safely address these scalability issues, we present Walk- significant scalability improvements for networks at or above ing Onions,1 a set of novel protocols and algorithms to reduce the size of the current Tor network. the amount of data clients must maintain in onion-routing anonymity networks from linear to constant relative to the 1 Introduction number of relays. Thus, as the number of clients increases, the load to the network to distribute relay information to clients When participants in an anonymity network hold different increases linearly with the number of new relays, as opposed views of the network’s membership and topology, an adver- 1The Walking Onion, or Allium × proliferum, is a charming edible plant sary can exploit these differences in knowledge to distin- that spreads by growing a cluster of new bulbs on a stalk, until the onion guish clients’ behaviours [12] or intercept users’ traffic [46]. becomes so top-heavy that the bulbs flop over and take root somewhere new. USENIX Association 29th USENIX Security Symposium 1003 to quadratically. Notably, unlike prior designs with similar present an alternative application of Walking Onions to HOR- scalability goals [26, 29], our protocols maintain the same NET [10] in AppendixA. security properties as designs that require clients to maintain Existing Tor Protocol. Tor is a low-latency anonymity net- up-to-date information about every relay in the network. work with 2.5 to 11 million unique users [22, 42] and roughly Our design includes a novel path-selection and circuit ex- 6,500 volunteer-run relays [40]. Tor’s protocol requires clients tension protocol, wherein clients obliviously choose random to keep up-to-date information about every relay in the net- paths through the network without prior knowledge about the work. This information is provided by directory authorities, network’s membership or topology, and yet can verify the cor- a trusted set of servers administered by core members of the rectness of their paths after they are constructed. We present Tor community. Every epoch (in Tor, one hour), relays upload two variants of our protocol. One variant does not change the information about themselves to the authorities, who then existing security model for Tor, and makes minimal changes vote on the relays’ statuses. From these votes, the authori- to a generic onion-routed design. The second protocol variant ties compute a multisigned consensus directory document improves upon state-of-the-art single-pass onion-routing pro- representing their conclusions. By checking the signatures tocols by relaxing the forward secrecy for path selection from and timestamp on the consensus document, clients and relays immediate to windowed, but preserves forward secrecy for ensure the validity and timeliness of the latest consensus. content. In turn, this design reduces client latency by building Once a client has obtained the latest consensus, the client se- upon a technique from Sphinx [11] to create circuits with only lects a list of relays (typically three) to use for a multi-layered a single round trip between the client and all relays on the encrypted communication tunnel, called a circuit, to route path. This improvement reduces the latency of circuit creation traffic through the network. Tor clients do not select relays from quadratic to linear with respect to path length. uniformly at random; instead, for load balancing, they choose We focus on the applicability of Walking Onions to each relay with probability related its measured bandwidth Tor [14], but note that Walking Onions can be used by other and intended position on the path. anonymity networks with similar threat models and scalability Tor uses a telescoping technique [14] in which circuits concerns, such as HORNET [10]. are built one hop at a time. The client uses each partially Contributions. We present a novel set of efficient path- completed circuit to perform a handshake with the next relay selection and circuit-extension protocols for anonymity net- in the circuit, until the circuit is complete. Building circuits via works using onion routing. Our work builds upon a prior telescoping allows forward secrecy against key compromise, Tor proposal [24] written by a co-author of this paper. Our as the client negotiates a shared session key with each hop, contributions include: but also increases latency, as constructing an n-hop circuit - Two novel protocols that require clients of an anonymity needs n round trips. network to maintain only a constant-sized amount of net- Path-based Attacks Against Anonymity Networks. work information, while remaining secure against route Tor’s consensus mechanism defends against certain well- capture and epistemic attacks (described in Section2). known attacks based on how anonymity network information - Primitives to efficiently and verifiably transmit relay infor- is distributed and used for path selection. Such attacks include mation, and a comparison of authentication mechanisms. epistemic attacks, in which an adversary deduces information - Techniques and protocols to enable clients to constrain about a client from information leaked by the client’s choice relay selection to a subset of relays fulfilling some attribute, of relays [12], and route capture attacks, in which a client’s while not performing this filtering locally. chosen path is replaced or influenced by a malicious interme- - Implementation and evaluation of these protocols’ band- diary [46]. These attacks can pass undetected if clients’ views width and CPU consumption in a simulated anonymity of the network are not consistent and authenticated. network modeled after Tor. Designs for Managing Network Information. In a sur- Organization. We present background material in Sec- vey by Shirazi et al. [36], anonymity networks fall into two tion2. We give an overview of Walking Onions in Section3, categories based on how paths are built. Paths can be either and describe how it distributes network information in Sec- source-routed, in which the client holds complete control over tion4.
Recommended publications
  • Pairing-Based Onion Routing with Improved Forward Secrecy ∗
    Pairing-Based Onion Routing with Improved Forward Secrecy ∗ Aniket Kate Greg M. Zaverucha Ian Goldberg David R. Cheriton School of Computer Science University of Waterloo Waterloo, ON, Canada N2L 3G1 {akate,gzaveruc,iang}@cs.uwaterloo.ca Abstract This paper presents new protocols for onion routing anonymity networks. We define a provably secure privacy-preserving key agreement scheme in an identity-based infrastructure setting, and use it to forge new onion routing circuit constructions. These constructions, based on a user’s selection, offer immediate or eventual forward secrecy at each node in a circuit and require significantly less computation and communication than the telescoping mechanism used by Tor. Further, the use of the identity-based infrastructure also leads to a reduction in the required amount of authenticated directory information. Therefore, our constructions provide practical ways to allow onion routing anonymity networks to scale gracefully. Keywords: onion routing, Tor, pairing-based cryptography, anonymous key agreement, forward secrecy 1 Introduction Over the years, a large number of anonymity networks have been proposed and some have been implemented. Common to many of them is onion routing [RSG98], a technique whereby a message is wrapped in multiple layers of encryption, forming an onion. As the message is delivered via a number of intermediate onion routers (ORs), or nodes, each node decrypts one of the layers, and forwards the message to the next node. This idea goes back to Chaum [Cha81] and has been used to build both low- and high-latency communication networks. A common realization of an onion routing system is to arrange a collection of nodes that will relay traffic for users of the system.
    [Show full text]
  • Into the Reverie: Exploration of the Dream Market
    Into the Reverie: Exploration of the Dream Market Theo Carr1, Jun Zhuang2, Dwight Sablan3, Emma LaRue4, Yubao Wu5, Mohammad Al Hasan2, and George Mohler2 1Department of Mathematics, Northeastern University, Boston, MA 2Department of Computer & Information Science, Indiana University - Purdue University, Indianapolis, IN 3Department of Mathematics and Computer Science, University of Guam, Guam 4Department of Mathematics and Statistics, University of Arkansas at Little Rock, AK 5Department of Computer Science, Georgia State University, Atlanta, GA [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract—Since the emergence of the Silk Road market in Onymous" in 2014, a worldwide action taken by law enforce- the early 2010s, dark web ‘cryptomarkets’ have proliferated and ment and judicial agencies aimed to put a kibosh on these offered people an online platform to buy and sell illicit drugs, illicit behaviors [5]. Law enforcement interventions such as relying on cryptocurrencies such as Bitcoin for anonymous trans- actions. However, recent studies have highlighted the potential for Onymous, along with exit scams and hacks, have successfully de-anonymization of bitcoin transactions, bringing into question shut down numerous cryptomarkets, including AlphaBay, Silk the level of anonymity afforded by cryptomarkets. We examine a Road, Dream, and more recently, Wall Street [6]. Despite these set of over 100,000 product reviews from several cryptomarkets interruptions, new markets have continued to proliferate. The collected in 2018 and 2019 and conduct a comprehensive analysis authors of [7] note that there appears to be a consistent daily of the markets, including an examination of the distribution of drug sales and revenue among vendors, and a comparison demand of about $500,000 for illicit products on the dark web, of incidences of opioid sales to overdose deaths in a US city.
    [Show full text]
  • Consensgx: Scaling Anonymous Communications Networks With
    Proceedings on Privacy Enhancing Technologies ; 2019 (3):331–349 Sajin Sasy* and Ian Goldberg* ConsenSGX: Scaling Anonymous Communications Networks with Trusted Execution Environments Abstract: Anonymous communications networks enable 1 Introduction individuals to maintain their privacy online. The most popular such network is Tor, with about two million Privacy is an integral right of every individual in daily users; however, Tor is reaching limits of its scala- society [72]. With almost every day-to-day interaction bility. One of the main scalability bottlenecks of Tor and shifting towards using the internet as a medium, it similar network designs originates from the requirement becomes essential to ensure that we can maintain the of distributing a global view of the servers in the network privacy of our actions online. Furthermore, in light to all network clients. This requirement is in place to of nation-state surveillance and censorship, it is all avoid epistemic attacks, in which adversaries who know the more important that we enable individuals and which parts of the network certain clients do and do not organizations to communicate online without revealing know about can rule in or out those clients from being their identities. There are a number of tools aiming to responsible for particular network traffic. provide such private communication, the most popular In this work, we introduce a novel solution to this of which is the Tor network [21]. scalability problem by leveraging oblivious RAM con- Tor is used by millions of people every day to structions and trusted execution environments in order protect their privacy online [70].
    [Show full text]
  • Doswell, Stephen (2016) Measurement and Management of the Impact of Mobility on Low-Latency Anonymity Networks
    Citation: Doswell, Stephen (2016) Measurement and management of the impact of mobility on low-latency anonymity networks. Doctoral thesis, Northumbria University. This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/30242/ Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University’s research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html MEASUREMENT AND MANAGEMENT OF THE IMPACT OF MOBILITY ON LOW-LATENCY ANONYMITY NETWORKS S.DOSWELL Ph.D 2016 Measurement and management of the impact of mobility on low-latency anonymity networks Stephen Doswell A thesis submitted in partial fulfilment of the requirements of the University of Northumbria at Newcastle for the degree of Doctor of Philosophy Research undertaken in the Department of Computer Science and Digital Technologies, Faculty of Engineering and Environment October 2016 Declaration I declare that the work contained in this thesis has not been submitted for any other award and that it is all my own work.
    [Show full text]
  • Threat Modeling and Circumvention of Internet Censorship by David Fifield
    Threat modeling and circumvention of Internet censorship By David Fifield A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor J.D. Tygar, Chair Professor Deirdre Mulligan Professor Vern Paxson Fall 2017 1 Abstract Threat modeling and circumvention of Internet censorship by David Fifield Doctor of Philosophy in Computer Science University of California, Berkeley Professor J.D. Tygar, Chair Research on Internet censorship is hampered by poor models of censor behavior. Censor models guide the development of circumvention systems, so it is important to get them right. A censor model should be understood not just as a set of capabilities|such as the ability to monitor network traffic—but as a set of priorities constrained by resource limitations. My research addresses the twin themes of modeling and circumvention. With a grounding in empirical research, I build up an abstract model of the circumvention problem and examine how to adapt it to concrete censorship challenges. I describe the results of experiments on censors that probe their strengths and weaknesses; specifically, on the subject of active probing to discover proxy servers, and on delays in their reaction to changes in circumvention. I present two circumvention designs: domain fronting, which derives its resistance to blocking from the censor's reluctance to block other useful services; and Snowflake, based on quickly changing peer-to-peer proxy servers. I hope to change the perception that the circumvention problem is a cat-and-mouse game that affords only incremental and temporary advancements.
    [Show full text]
  • Changing of the Guards: a Framework for Understanding and Improving Entry Guard Selection in Tor
    Changing of the Guards: A Framework for Understanding and Improving Entry Guard Selection in Tor Tariq Elahi†, Kevin Bauer†, Mashael AlSabah†, Roger Dingledine‡, Ian Goldberg† †University of Waterloo ‡The Tor Project, Inc. †{mtelahi,k4bauer,malsabah,iang}@cs.uwaterloo.ca ‡[email protected] ABSTRACT parties with anonymity from their communication partners as well Tor is the most popular low-latency anonymity overlay network as from passive third parties observing the network. This is done for the Internet, protecting the privacy of hundreds of thousands by distributing trust over a series of Tor routers, which the network of people every day. To ensure a high level of security against cer- clients select to build paths to their Internet destinations. tain attacks, Tor currently utilizes special nodes called entry guards If the adversary can anticipate or compel clients to choose com- as each client’s long-term entry point into the anonymity network. promised routers then clients can lose their anonymity. Indeed, While the use of entry guards provides clear and well-studied secu- the client router selection protocol is a key ingredient in main- rity benefits, it is unclear how well the current entry guard design taining the anonymity properties that Tor provides and needs to achieves its security goals in practice. be secure against adversarial manipulation and leak no information We design and implement Changing of the Guards (COGS), a about clients’ selected routers. simulation-based research framework to study Tor’s entry guard de- When the Tor network was first launched in 2003, clients se- sign. Using COGS, we empirically demonstrate that natural, short- lected routers uniformly at random—an ideal scheme that provides term entry guard churn and explicit time-based entry guard rotation the highest amount of path entropy and thus the least amount of contribute to clients using more entry guards than they should, and information to the adversary.
    [Show full text]
  • A Framework for Identifying Host-Based Artifacts in Dark Web Investigations
    Dakota State University Beadle Scholar Masters Theses & Doctoral Dissertations Fall 11-2020 A Framework for Identifying Host-based Artifacts in Dark Web Investigations Arica Kulm Dakota State University Follow this and additional works at: https://scholar.dsu.edu/theses Part of the Databases and Information Systems Commons, Information Security Commons, and the Systems Architecture Commons Recommended Citation Kulm, Arica, "A Framework for Identifying Host-based Artifacts in Dark Web Investigations" (2020). Masters Theses & Doctoral Dissertations. 357. https://scholar.dsu.edu/theses/357 This Dissertation is brought to you for free and open access by Beadle Scholar. It has been accepted for inclusion in Masters Theses & Doctoral Dissertations by an authorized administrator of Beadle Scholar. For more information, please contact [email protected]. A FRAMEWORK FOR IDENTIFYING HOST-BASED ARTIFACTS IN DARK WEB INVESTIGATIONS A dissertation submitted to Dakota State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cyber Defense November 2020 By Arica Kulm Dissertation Committee: Dr. Ashley Podhradsky Dr. Kevin Streff Dr. Omar El-Gayar Cynthia Hetherington Trevor Jones ii DISSERTATION APPROVAL FORM This dissertation is approved as a credible and independent investigation by a candidate for the Doctor of Philosophy in Cyber Defense degree and is acceptable for meeting the dissertation requirements for this degree. Acceptance of this dissertation does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department or university. Student Name: Arica Kulm Dissertation Title: A Framework for Identifying Host-based Artifacts in Dark Web Investigations Dissertation Chair: Date: 11/12/20 Committee member: Date: 11/12/2020 Committee member: Date: Committee member: Date: Committee member: Date: iii ACKNOWLEDGMENT First, I would like to thank Dr.
    [Show full text]
  • Optical Onion Routing
    Optical Onion Routing Anna Engelmann and Admela Jukan Technische Universitat¨ Carolo-Wilhelmina zu Braunschweig, Germany Email: fa.engelmann, [email protected] Abstract—As more and more data is transmitted in the depend on number and dependability of volunteer systems, configurable optical layer, – whereby all optical switches forward the privacy features in optical network need to be approached packets without electronic layers involved, we envision privacy as differently: for instance, it is a telecom operator that should the intrinsic property of future optical networks. In this paper, we be able offer a private optical communication service as a propose Optical Onion Routing (OOR) routing and forwarding value added feature. For instance, for some client networks techniques, inspired by the onion routing in the Internet layer, - an optical network can grant anonymous access to third-party the best known realization of anonymous communication today, – but designed with specific features innate to optical networks. servers in the cloud, whereby the traffic contents and the origin We propose to design the optical anonymization network system of requests can remain secret for both the attacker as well as with a new optical anonymization node architecture, including the cloud provider. In designing an anonymous optical network the optical components and their electronic counterparts to akin to Tor, however, several obstacles need to be overcome, realize layered encryption. We propose modification to the secret since the main features need to be primarily implemented in key generation using Linear Feedback Shift Register (LFSR), – photonics, i.e., without intervention of electronics, such as able to utilize different primitive irreducible polynomials, and encryption, traffic routing, and session key distribution.
    [Show full text]
  • Walking Onions: Scaling Anonymity Networks While Protecting Users
    Walking Onions: Scaling Anonymity Networks while Protecting Users Chelsea H. Komlo Nick Mathewson Ian Goldberg University of Waterloo The Tor Project University of Waterloo Abstract Anonymity networks in practice [13] have prevented these Scaling anonymity networks offers unique security chal- attacks by requiring all participants to share a globally consis- lenges, as attackers can exploit differing views of the net- tent view of the entire state of the network, and giving clients work’s topology to perform epistemic and route capture at- complete control over selecting relays for their paths. While tacks. Anonymity networks in practice, such as Tor, have this approach prevents the described attacks, requiring a glob- opted for security over scalability by requiring participants ally consistent view results in quadratic bandwidth growth as to share a globally consistent view of all relays to prevent the number of clients increases [26], because the number of these kinds of attacks. Such an approach requires each user relays must also increase to provide more capacity, and all to maintain up-to-date information about every relay, causing parties must download information about all relays. While the total amount of data each user must download every epoch today’s Tor network requires only approximately half a per- to scale linearly with the number of relays. As the number cent of its total bandwidth to serve network state [39, 41], of clients increases, more relays must be added to provide increasing the number of clients and relays by one order of bandwidth, further exacerbating the total load on the network. magnitude would result in the consumption of roughly five In this work, we present Walking Onions, a set of proto- percent of the network’s (ten times larger) total bandwidth cols improving scalability for anonymity networks.
    [Show full text]
  • Technical and Legal Overview of the Tor Anonymity Network
    Emin Çalışkan, Tomáš Minárik, Anna-Maria Osula Technical and Legal Overview of the Tor Anonymity Network Tallinn 2015 This publication is a product of the NATO Cooperative Cyber Defence Centre of Excellence (the Centre). It does not necessarily reflect the policy or the opinion of the Centre or NATO. The Centre may not be held responsible for any loss or harm arising from the use of information contained in this publication and is not responsible for the content of the external sources, including external websites referenced in this publication. Digital or hard copies of this publication may be produced for internal use within NATO and for personal or educational use when for non- profit and non-commercial purpose, provided that copies bear a full citation. www.ccdcoe.org [email protected] 1 Technical and Legal Overview of the Tor Anonymity Network 1. Introduction .................................................................................................................................... 3 2. Tor and Internet Filtering Circumvention ....................................................................................... 4 2.1. Technical Methods .................................................................................................................. 4 2.1.1. Proxy ................................................................................................................................ 4 2.1.2. Tunnelling/Virtual Private Networks ............................................................................... 5
    [Show full text]
  • A Secure Environment for Untrusted Helper Applications (Confining the Wily Hacker)
    The following paper was originally published in the Proceedings of the Sixth USENIX UNIX Security Symposium San Jose, California, July 1996. A Secure Environment for Untrusted Helper Applications (Confining the Wily Hacker) Ian Goldberg, David Wagner, Randi Thomas, and Eric Brewer Computer Science Division University of California, Berkeley For more information about USENIX Association contact: 1. Phone: 510 528-8649 2. FAX: 510 548-5738 3. Email: [email protected] 4. WWW URL: http://www.usenix.org A Secure Environment for Untruste d Help er Applications Con ningtheWilyHacker Ian Goldb erg David Wagner Randi Thomas Er ic A. Brewer fiang,daw,randit,[email protected] University of California, Berkeley cious programs to spawn pro ce ss e s andto read or Ab stract wr iteanunsusp ecting us er's le s [15,18,19,34,36]. Whatisnee ded in thi s new environment, then, i s Manypopular programs, suchasNetscap e, us e un- protection for all re source s on a us er's system f rom trusted help er applications to pro ce ss data f rom the thi s threat. network. Unfortunately,theunauthenticated net- workdatathey interpret could well have b een cre- Our aim i s tocon netheuntrusted software anddata ated byanadversary,andthehelp er applications are by monitor ingand re str ictingthe system calls it p er- 1 usually to o complex to b e bug-f ree. Thi s rai s e s s ig- forms. We builtJanus , a s ecure environment for ni cant s ecur ity concer ns. Therefore, it i s de s irable untrusted help er applications, bytaking advantage to create a s ecure environmenttocontain untrusted of the Solar i s pro ce ss tracing f acility.
    [Show full text]
  • El Gamal Mix-Nets and Implementation of a Verifier
    KTH Royal Institute of Technology School of Computer Science and Communication El Gamal Mix-Nets and Implementation of a Verifier SA104X Degree Project in Engineering Physics Erik Larsson ([email protected]) Carl Svensson ([email protected]) Supervisor: Douglas Wikstr¨om Abstract A mix-net is a cryptographic protocol based on public key cryptography which enables untraceable communication through a collection of nodes. One important application is electronic voting where it enables the construction of systems which satisfies many voting security requirements, including veri- fiability of correct execution. Verificatum is an implementation of a mix-net by Douglas Wikstr¨om. This report concerns the implementation of a verifier and evaluation of the implementation manual for the Verificatum mix-net. The purpose of the document is to enable third parties to convince themselves that the mix- net has behaved correctly without revealing any secret information. This implementation is a simple version of the verifier using the document and some test vectors generated by the mix-net. The document contains all information but there are still some possibilities for further clarification in order to make it comprehensible to a larger audience. Contents 1 Introduction 2 1.1 Verificatum . 2 1.2 Goals and Scope . 3 2 Background 3 2.1 El Gamal Cryptography . 3 2.1.1 Definition . 4 2.1.2 Security . 4 2.1.3 Properties . 5 2.2 Cryptographic Primitives . 6 2.2.1 Hash functions . 6 2.2.2 Pseudo Random Generators . 6 2.2.3 Random Oracles . 7 2.3 Mix Networks . 7 2.3.1 Overview . 7 2.3.2 El Gamal Mix-Nets .
    [Show full text]