Introduction to Manifolds

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Manifolds Introduction to Manifolds Roland van der Veen 2018 2 Contents 1 Introduction 5 1.1 Overview . 5 2 How to solve equations? 7 2.1 Linear algebra . 9 2.2 Derivative . 10 2.3 Intermediate and mean value theorems . 13 2.4 Implicit function theorem . 15 3 Is there a fundamental theorem of calculus in higher dimensions? 23 3.1 Elementary Riemann integration . 24 3.2 k-vectors and k-covectors . 26 3.3 (co)-vector fields and integration . 33 3.3.1 Integration . 34 3.4 More on cubes and their boundary . 37 3.5 Exterior derivative . 38 3.6 The fundamental theorem of calculus (Stokes Theorem) . 40 3.7 Fundamental theorem of calculus: Poincar´elemma . 42 4 Geometry through the dot product 45 4.1 Vector spaces with a scalar product . 45 4.2 Riemannian geometry . 47 5 What if there is no good choice of coordinates? 51 5.1 Atlasses and manifolds . 51 5.2 Examples of manifolds . 55 5.3 Analytic continuation . 56 5.4 Bump functions and partitions of unity . 58 5.5 Vector bundles . 59 5.6 The fundamental theorem of calculus on manifolds . 62 5.7 Geometry on manifolds . 63 3 4 CONTENTS Chapter 1 Introduction 1.1 Overview The goal of these notes is to explore the notions of differentiation and integration in a setting where there are no preferred coordinates. Manifolds provide such a setting. This is not calculus. We made an attempt to prove everything we say so that no black boxes have to be accepted on faith. This self-sufficiency is one of the great strengths of mathematics. Sometimes mathematics texts start by giving answers neglecting to properly state the questions they were meant to answer. We will try motivate concepts and illustrate definitions. In turn the reader is asked to at least try some of the exercises. Doing exercises (and possibly failing some) is an integral part of mathematics. At the beginning of the Dutch national masters program in mathematics there is a one day 'intensive reminder on manifolds' course that consists the following topics: 1. definition of manifolds*, 2. tangent and cotangent bundles*, 3. vector bundles*, 4. differential forms and exterior derivative*, 5. flows and Lie derivative, 6. Cartan calculus, 7. integration and Stokes theorem*. 8. Frobenius theorem Since this is an introductory course we only treat the topics marked *. To illustrate our techniques we will touch upon some concepts in Riemannian, complex and symplectic geometry. More systematically these lecture notes consist of five chapters the first of which is this intro- duction. In chapter two we start by studying non-linear systems of equations by approximating them by linear ones, leading to the implicit function theorem. Basically it says that the solution 5 6 CHAPTER 1. INTRODUCTION set looks like the graph of a function in good cases. Along the way we develop a suitably general notion of derivative. The corresponding notion of integration is developed in the next chapter. This is more involved as it requires defining new kinds of objects as the natural integrands (covector fields, differential forms). Differntiation and integration are connected by a generalization of the fundamental theorem of calculus (Stokes theorem) and the Poincare lemma. In chapter four we briefly explore how our techniques are useful in setting up various kinds of geometry. In the final chapter we will show how to lift all the theory we developed so far to the context of manifolds. Basically a manifold is just several pieces of Rn linked by coordinate transformations. Given that we set up our theory in a way that makes coordinate tranformations easy to deal with, most local aspects of the theory are no different from the way they are in Rn. Most of the material is standard and can be found in references such as Calculus on manifolds by M. Spivak or Introduction to smooth manifolds. However the proofs presented here are simplified and streamlined significantly. This especially goes for the proof of the implicit function theorem and the change of variables theorem for integrals and the Poincar´elemma. I tried to motivate the use of exterior calculus more than usual, while limiting its algebraic preliminaries. f Throughout the text I try to write functions as A 3 a 7−! a2 + a + 1 2 B, instead of f : A ! B defined by f(a) = a2 + a + 1. Acknowledgement. Much of this material is presented in a way inspired by the work of my former master student Jules Jacobs. I would also like to thank Kevin van Helden for his helpful comments, exercises and excellent teaching assistance over the years. Chapter 2 How to solve equations? Postponing the formal definition until chapter 5, manifolds often arise as solution sets to equations. In this preliminary chapter we explore under what conditions a system of n real equations in k + n variables can be solved. Naively one may hope that each equation can be used to determine a variable so that in the end k variables are left undetermined and all others are functions of those. For example consider the two systems of two equations on the left and on the right (k = 1; n = 2): x + y + z = 0 sin(x + y) − log(1 − z) = 0 (2.1) 1 −x + y + z = 0 ey − = 0 (2.2) 1 + x − z The system on the left is linear and easy to solve, we get x = 0 and y = −z. The system on the Figure 2.1: Solutions to the two systems. The yellow surface is the solution to the first equation, blue the second. The positive x; y; z axes are drawn in red, green, blue respectively. 7 8 CHAPTER 2. HOW TO SOLVE EQUATIONS? Figure 2.2: Some random level sets. right is hard to solve explicitly but looks very similar near (0; 0; 0) since sin(x + y) =∼ x + y and log(1 − z) =∼ −z near zero. We will be able to show that just like in the linear situation a curve of solutions passes through the origin. The key point is that the derivative of the complicated looking functions at the origin is precisely the linear function shown on the left. We will look at equations involving only differentiable functions. This means that locally they can be approximated well by linear functions. The goal of the chapter is to prove the implicit function theorem. Basically it says that the linear approximation decides whether or not a system of equations is solvable locally. This is illustrated in the figures above. Later in the course solutions to equations will be an important source of examples of manifolds. Even the solution set to single equation in three unknowns can take many forms. See for example figure 2.2 where we generated random polynomial equations and plotted the solution set. Exercises Exercise 1. (Three holes) Give a single equation in three unknowns such that the solution set is a bounded subset of R3, looks smooth and two-dimensional everywhere and has a hole. Harder: Can you increase the number of holes to three? 2.1. LINEAR ALGEBRA 9 2.1 Linear algebra The basis for our investigation of equations is the linear case. Linear equations can neatly be summarized in terms of a single matrix equation Av = b. Here v is a vector in Rk+n, and b 2 Rn and A is an n×(k +n) matrix. In case b = 0 we call the equation homogeneous and the solution set is some linear subspace S = fv 2 Rk+njAv = 0g, the kernel of the map defined by A. In general, given a single solution p 2 Rk+n such that Ap = b the entire solution set fv 2 Rk+njAv = bg is the affine linear subspace S + p = fs + pjs 2 Sg. In discussing the qualitative properties of linear equations it is more convenient to think in terms of linear maps. Most of this material should be familiar from linear algebra courses but we give a few pointers here to establish notation and emphasize the important points. With some irony, the first rule of linear algebra is YOU DO NOT PICK A BASIS, the second rule of linear algebra is YOU DO NOT PICK A BASIS. In this section W; V will always be real vector spaces of finite dimensions m and n. Of course W is isomorphic to Rm and choosing such an isomorphism b : Rm ! W means choosing a basis. m Usually we write ei for the standard basis of R and abbreviate b(ei) = bi. We may then write P i vectors w 2 W as w = i w bi. However we do not want to pin ourselves down on a specific basis since that makes it harder to switch between various interpretations of W as a space of directions, complex numbers or linear transformations, holomorphic functions and so on. A relevant example is the set of all linear maps from V to W is denoted L(V; W ), it is a vector space in its own right. If we would set V = Rn and W = Rm then ' 2 L(V; W ) could be described i P i by a matrix 'j defined by 'ej = i 'jei. However the matrix might look easier with respect to another basis so we prefer to keep the V; W abstract and describe ' using bases c : Rn ! V and m −1 i b : R ! W . With respect to these bases the matrix of ' 2 L(V; W ) is defined to be (b ◦ ' ◦ c)j. P i So 'cj = i 'jbi. An important special case of the previous is the dual space V ∗ = L(V; R).
Recommended publications
  • 33 .1 Implicit Differentiation 33.1.1Implicit Function
    Module 11 : Partial derivatives, Chain rules, Implicit differentiation, Gradient, Directional derivatives Lecture 33 : Implicit differentiation [Section 33.1] Objectives In this section you will learn the following : The concept of implicit differentiation of functions. 33 .1 Implicit differentiation \ As we had observed in section , many a times a function of an independent variable is not given explicitly, but implicitly by a relation. In section we had also mentioned about the implicit function theorem. We state it precisely now, without proof. 33.1.1Implicit Function Theorem (IFT): Let and be such that the following holds: (i) Both the partial derivatives and exist and are continuous in . (ii) and . Then there exists some and a function such that is differentiable, its derivative is continuous with and 33.1.2Remark: We have a corresponding version of the IFT for solving in terms of . Here, the hypothesis would be . 33.1.3Example: Let we want to know, when does the implicit expression defines explicitly as a function of . We note that and are both continuous. Since for the points and the implicit function theorem is not applicable. For , and , the equation defines the explicit function and for , the equation defines the explicit function Figure 1. y is a function of x. A result similar to that of theorem holds for function of three variables, as stated next. Theorem : 33.1.4 Let and be such that (i) exist and are continuous at . (ii) and . Then the equation determines a unique function in the neighborhood of such that for , and , Practice Exercises : Show that the following functions satisfy conditions of the implicit function theorem in the neighborhood of (1) the indicated point.
    [Show full text]
  • Integrated Calculus/Pre-Calculus
    Furman University Department of Mathematics Greenville, SC, 29613 Integrated Calculus/Pre-Calculus Abstract Mark R. Woodard Contents JJ II J I Home Page Go Back Close Quit Abstract This work presents the traditional material of calculus I with some of the material from a traditional precalculus course interwoven throughout the discussion. Pre- calculus topics are discussed at or soon before the time they are needed, in order to facilitate the learning of the calculus material. Miniature animated demonstra- tions and interactive quizzes will be available to help the reader deepen his or her understanding of the material under discussion. Integrated This project is funded in part by the Mellon Foundation through the Mellon Furman- Calculus/Pre-Calculus Wofford Program. Many of the illustrations were designed by Furman undergraduate Mark R. Woodard student Brian Wagner using the PSTricks package. Thanks go to my wife Suzan, and my two daughters, Hannah and Darby for patience while this project was being produced. Title Page Contents JJ II J I Go Back Close Quit Page 2 of 191 Contents 1 Functions and their Properties 11 1.1 Functions & Cartesian Coordinates .................. 13 1.1.1 Functions and Functional Notation ............ 13 1.2 Cartesian Coordinates and the Graphical Representa- tion of Functions .................................. 20 1.3 Circles, Distances, Completing the Square ............ 22 1.3.1 Distance Formula and Circles ................. 22 Integrated 1.3.2 Completing the Square ...................... 23 Calculus/Pre-Calculus 1.4 Lines ............................................ 24 Mark R. Woodard 1.4.1 General Equation and Slope-Intercept Form .... 24 1.4.2 More On Slope ............................. 24 1.4.3 Parallel and Perpendicular Lines .............
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Implicit Differentiation
    opes. A Neurips 2020 Tut orial by Marc Deisenro A Swamps of integrationnumerical b Monte Carlo Heights C Fo r w w m a r o al r N izi ng Flo d -ba h ckw ime ar Of T d D B ea c h Hills There E Unrolling Backprop Bay f Expectations and Sl and fExpectations B ack Again: A Tale o Tale A Again: ack and th and opes. A Neurips 2020 Tut orial by Marc Deisenro A Swamps of integrationnumerical b Monte Carlo Heights C Fo r w Implicit of Vale w m a r o al r N izi ng Flo d -ba h G ckw ime ar Of T d D B Differentiation ea c h Hills There E Unrolling Backprop Bay f Expectations and Sl and fExpectations B ack Again: A Tale o Tale A Again: ack and th and Implicit differentiation Cheng Soon Ong Marc Peter Deisenroth December 2020 oon n S O g g ’s n Tu e t hC o d r n C i a a h l t M a o t a M r r n c e D e s i Motivation I In machine learning, we use gradients to train predictors I For functions f(x) we can directly obtain its gradient rf(x) I How to represent a constraint? G(x; y) = 0 E.g. conservation of mass 1 dy = 3x2 + 4x + 1 dx Observe that we can write the equation as x3 + 2x2 + x + 4 − y = 0 which is of the form G(x; y) = 0.
    [Show full text]
  • Notes on Calculus and Optimization
    Economics 101A Section Notes GSI: David Albouy Notes on Calculus and Optimization 1 Basic Calculus 1.1 Definition of a Derivative Let f (x) be some function of x, then the derivative of f, if it exists, is given by the following limit df (x) f (x + h) f (x) = lim − (Definition of Derivative) dx h 0 h → df although often this definition is hard to apply directly. It is common to write f 0 (x),or dx to be shorter, or dy if y = f (x) then dx for the derivative of y with respect to x. 1.2 Calculus Rules Here are some handy formulas which can be derived using the definitions, where f (x) and g (x) are functions of x and k is a constant which does not depend on x. d df (x) [kf (x)] = k (Constant Rule) dx dx d df (x) df (x) [f (x)+g (x)] = + (Sum Rule) dx dx dy d df (x) dg (x) [f (x) g (x)] = g (x)+f (x) (Product Rule) dx dx dx d f (x) df (x) g (x) dg(x) f (x) = dx − dx (Quotient Rule) dx g (x) [g (x)]2 · ¸ d f [g (x)] dg (x) f [g (x)] = (Chain Rule) dx dg dx For specific forms of f the following rules are useful in economics d xk = kxk 1 (Power Rule) dx − d ex = ex (Exponent Rule) dx d 1 ln x = (Logarithm Rule) dx x 1 Finally assuming that we can invert y = f (x) by solving for x in terms of y so that x = f − (y) then the following rule applies 1 df − (y) 1 = 1 (Inverse Rule) dy df (f − (y)) dx Example 1 Let y = f (x)=ex/2, then using the exponent rule and the chain rule, where g (x)=x/2,we df (x) d x/2 d x/2 d x x/2 1 1 x/2 get dx = dx e = d(x/2) e dx 2 = e 2 = 2 e .
    [Show full text]
  • Implicit Functions and Their Differentials in General Analysis*
    IMPLICIT FUNCTIONS AND THEIR DIFFERENTIALS IN GENERAL ANALYSIS* BY T. H. HILDEBRANDT AND LAWRENCEM. GRAVESf Introduction. Implicit function theorems occur in analysis in many different forms, and have a fundamental importance. Besides the classical theorems as given for example in Goursat's Cours d'Analyse and Bliss's Princeton Colloquium Lectures, and the classical theorems on linear integral equations, implicit function theorems in the domain of infinitely many variables have been developed by Volterra, Evans, Levy, W. L. Hart and others. Î The existence and imbedding theorems for solutions of differential equa- tions, as treated for example by Bliss, § have also received extensions to domains of infinitely many variables by Moulton, Hart, Barnett, Bliss and others. If Special properties in the case of linear differential equations in an infinitude of variables have been treated by Hart and Hildebrandt. || On the other hand, Hahn and Carathéodory** have made important generalizations of the notion of differential equation by removing conti- nuity restrictions on the derivatives and by writing the equations in the form of integral equations. *Presented to the Society March 25, 1921, and December 29, 1924; received by the editors January 28,1926. jNational Research Fellow in Mathematics. ÎSee Volterra, Fonctions de Lignes, Chapter 4; Evans, Cambridge Colloquium Lectures, pp. 52-72; Levy, Bulletin de la Société Mathématique de France, vol. 48 (1920), p. 13, Hart, these Transactions, vol. 18 (1917), pp. 125-150, where additional references may be found; also vol. 23 (1922), pp. 45-50, and Annals of Mathematics, (2), vol. 24 (1922)pp. 29 and 35. § Princeton Colloquium, and Bulletin of the American Mathematical Society, vol.
    [Show full text]
  • February 18, 2019 LECTURE 7: DIRECTIONAL DERIVATIVES
    February 18, 2019 LECTURE 7: DIRECTIONAL DERIVATIVES. 110.211 HONORS MULTIVARIABLE CALCULUS PROFESSOR RICHARD BROWN Synopsis. Today, we move into directional derivatives, a generalization of a partial deriva- tive where we look for how a function is changing at a point in any single direction in the domain. This gives a powerful tool, both conceptually as well as technically, to discuss the role the derivative of a function plays in exposing the properties of both functions on and sets within Euclidean space. We define the gradient of a real-valued function (finally) and its interpretations and usefulness, and move toward one of the most powerful theorems of multivariable calculus, the Implicit Function Theorem. The Directional Derivative. 7.0.1. Vector form of a partial derivative. Recall the definition of a partial derivative evalu- ated at a point: Let f : X ⊂ R2 ! R, x open, and (a; b) 2 X. Then the partial derivative of f with respect to the first coordinate x, evaluated at (a; b) is @f f(a + h; b) − f(a; b) (a; b) = lim : @x h!0 h Here, we vary only the first coordinate, leaving the y coordinate value b fixed, and write a (a + h; b) = (a; b) + (h; 0). In vector notation, this is like taking the vector a = , and b adding to it a small amount h, but only in the x-direction. Indeed, this means adding to a 1 the vector h = hi, where here we use the standard convention for unit vectors in 2 0 R 3 and R , namely i = e1, j = e2, etc.
    [Show full text]
  • Uniqueness, Continuity, and Existence of Implicit Functions in Constructive Analysis
    Uniqueness, Continuity, and Existence of Implicit Functions in Constructive Analysis Hannes Diener1 and Peter Schuster2 1 Universit¨atSiegen, Fachbereich 6: Mathematik Walter-Flex-Straße 3, 57072 Siegen, Germany [email protected] 2 Dipartimento di Filosofia, Universit`adegli Studi di Firenze Via Bolognese 52, 50139 Firenze, Italy [email protected] Abstract. We extract a quantitative variant of uniqueness from the usual hypotheses of the implicit functions theorem. This leads not only to an a priori proof of continuity, but also to an alternative, fully constructive existence proof. 1 Introduction To show the differentiability of an implicit function one often relies on its continu- ity. The latter is mostly seen as a by-product of the not uncommon construction of the implicit function as the limit of a uniformly convergent sequence of con- tinuous functions. We now show that the continuity of the implicit function is prior to its existence, and thus independent of any particular construction. More specifically, we deduce the continuity from a quantitative strengthening of the uniqueness, which in turn follows from the hypotheses one needs to impose on the equation the implicit function is expected to satisfy. The same quantitative strengthening of uniqueness enables us to ultimately give an alternative existence proof for implicit functions that is fully constructive in Bishop's sense. We use ideas from [6], which loc.cit. have only been spelled out in the case of implicit functions with values in R. The existence proof given in [6] therefore can rely on reasoning by monotonicity, whereas in the general case|treated in this paper|of implicit functions with values in Rm we need to employ an extreme value argument.
    [Show full text]
  • Chapter 6 Implicit Function Theorem
    Implicit function theorem 1 Chapter 6 Implicit function theorem Chapter 5 has introduced us to the concept of manifolds of dimension m contained in Rn. In the present chapter we are going to give the exact de¯nition of such manifolds and also discuss the crucial theorem of the beginnings of this subject. The name of this theorem is the title of this chapter. We de¯nitely want to maintain the following point of view. An m-dimensional manifold M ½ Rn is an object which exists and has various geometric and calculus properties which are inherent to the manifold, and which should not depend on the particular mathematical formulation we use in describing the manifold. Since our goal is to do lots of calculus on M, we need to have formulas we can use in order to do this sort of work. In the very discussion of these methods we shall gain a clear and precise understanding of what a manifold actually is. We have already done this sort of work in the preceding chapter in the case of hypermani- folds. There we discussed the intrinsic gradient and the fact that the tangent space at a point of such a manifold has dimension n ¡ 1 etc. We also discussed the version of the implicit function theorem that we needed for the discussion of hypermanifolds. We noticed at that time that we were really always working with only the local description of M, and that we didn't particularly care whether we were able to describe M with formulas that held for the entire manifold.
    [Show full text]
  • 13. Implicit Functions Consider the Curve Y2 = X in the Plane R2 , 2 2 C = { (X, Y) ∈ R | Y = X }
    13. Implicit functions Consider the curve y2 = x in the plane R2 , 2 2 C = f (x; y) 2 R j y = x g: This is not the graph of a function, and yet it is quite close to the graph of a function. Given any point on the graph, let's say the point (2; 4), we can always find open intervals U containing 2 and V containing 4 and a smooth function f : U −! V such that C \ (U × V ) is the graphp of f. Indeed, take U = (0; 1), V = (0; 1) and f(x) = x. In fact, we can do this for any point on the graph, apart from the origin. If it is above the x-axis, the function above works. If the point we pare interested in pis below the x-axis, replace V by (0; −∞) and f(x) = x, by g(x) = − x. How can we tell that the origin is a point where we cannot define an implicit function? Well away from the origin, the tangent line is not vertical but at the origin the tangent line is vertical. In other words, if we consider 2 F : R −! R; given by F (x; y) = y2 − x, so that C is the set of points where F is zero, then DF (x; y) = (−1; 2y): The locus where we run into trouble, is where 2y = 0. Somewhat amazingly this works in general: Theorem 13.1 (Implicit Function Theorem). Let A ⊂ Rn+m be an open subset and let F : A −! Rm be a C1-function.
    [Show full text]
  • Question 1. Calculate ∫ Sin -1 X Dx. Note. This Is an Example of A
    EXAMPLE: SECTION 7.1: INTEGRATION BY PARTS (THE ANTI-PRODUCT RULE) 110.109 CALCULUS II (PHYS SCI & ENG) PROFESSOR RICHARD BROWN Z Question 1. Calculate sin−1 x dx. Note. This is an example of a integral does not have the form of a product of functions. However, by thinking of one of the functions as a constant 1, the Integration by Parts procedure allows us to instead integrate the derivative of the inverse sine function. This will be easier. One other point is that this function sin−1 x is NOT \1 over the sine function", or 1 sin−1 x =6 = sec x: sin x This is a common mistake due to ambiguous notation. Rather, it is the function-inverse of the sine function, as in y = sin−1 x is the inverse function of sin y = x. To solve this, we will first compute the derivative of sin−1 x. Then we will use this fact. Proof. To compute the derivative of the function y = cos−1 x, we will instead use the inverse of this function sin y = x and use implicit differentiation. Here then thinking of y as an implicit function of x, we have d d (sin y) = (x) dx dx dy (cos y) = 1 dx dy 1 = : dx cos y This is not quite complete, as we have only expressed the derivative of y = sin−1 x in terms of the function y. We can fix this through an understanding of how triangles relate the trigonometric functions of their angles to their side lengths and such.
    [Show full text]
  • High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles∗
    SIAM J. SCI. COMPUT. c 2015 Society for Industrial and Applied Mathematics Vol. 37, No. 2, pp. A993–A1019 HIGH-ORDER QUADRATURE METHODS FOR IMPLICITLY DEFINED SURFACES AND VOLUMES IN HYPERRECTANGLES∗ R. I. SAYE† Abstract. A high-order accurate numerical quadrature algorithm is presented for the evaluation of integrals over curved surfaces and volumes which are defined implicitly via a fixed isosurface of a given function restricted to a given hyperrectangle. By converting the implicitly defined geometry into the graph of an implicitly defined height function, the approach leads to a recursive algorithm on the number of spatial dimensions which requires only one-dimensional root finding and one-dimensional Gaussian quadrature. The computed quadrature scheme yields strictly positive quadrature weights and inherits the high-order accuracy of Gaussian quadrature: a range of different convergence tests demonstrate orders of accuracy up to 20th order. Also presented is an application of the quadrature algorithm to a high-order embedded boundary discontinuous Galerkin method for solving partial differential equations on curved domains. Key words. quadrature, integration, implicit surfaces, level set function, level set methods, high order AMS subject classifications. 65D30, 65N30 DOI. 10.1137/140966290 1. Introduction. In this paper, we develop high-order accurate numerical quadrature methods for the evaluation of integrals over curved surfaces and volumes whose geometry is defined implicitly via a fixed isosurface/level set of a smooth func- tion φ : Rd → R. In particular, assuming that the zero level set of φ defines the geome- try, let Γ = {x : φ(x)=0} denote the surface (“interface”) and let Ω = {x : φ(x) < 0} be the region on the negative side of the surface.
    [Show full text]