New Jersey Peaker Power Plants Energy Storage Replacement Opportunities

Total Page:16

File Type:pdf, Size:1020Kb

New Jersey Peaker Power Plants Energy Storage Replacement Opportunities PSE Healthy Energy j May 2020 New Jersey Peaker Power Plants Energy Storage Replacement Opportunities Across New Jersey, 15 gas- and oil-fired peaker power plants and peaking units at larger plants help meet statewide peak electric demand. These facilities are primarily reliant on combus- tion turbines designed to ramp up quickly and meet peak demand. One-third of New Jersey peaker plants primarily burn oil, and two-thirds are over 40 years old; these facilities in particular have high rates of greenhouse gas and criteria pollutant emissions for every unit of electricity generated. Moreover, these plants are located disproportionately in low-income and minority communities, where vulnerable populations al- ready experience high levels of health and en- vironmental burdens. Many of the New Jer- sey peakers operate infrequently, suggesting they may be good targets for replacement with en- ergy storage. The state has also set aggressive © 2020Figure Mapbox © 1:OpenStreetMap Peaker plants across New Jersey clean energy and energy storage deployment tar- gets, providing an opportunity to replace ineffi- The grid in New Jersey is operated by PJM, cient, high-emitting peaker plants in vulnerable which typically defines local requirements for communities throughout the state with energy power capacity on the grid. PJM classifies lo- storage, solar, demand response and other clean cational delivery areas (LDAs), and the EMAAC alternatives. LDA, which covers New Jersey, is considered at least partially transmission-constrained. Local solar and storage deployments may be valuable New Jersey State Policy in these transmission-constrained areas. and Regulatory Environment New Jersey has enacted a suite of policy targets New Jersey Peaker Plants to support clean energy adoption and emission reductions that could facilitate replacement of Peak electricity demand is New Jersey is partially peakers with solar and storage. Key targets in- met by 14 gas turbines and one small internal clude: combustion engine. Features of some of these plants suggest that they should be prioritized for • 2030: Deployment of 2,000 MW of en- replacement with energy storage or a portfolio of ergy storage; intermediary 2021 target of cleaner energy technologies, including: 600 MW. • Aging: Ten are over 40 years old. • 2030: 50 percent of electricity from re- newable resources, including a solar carve- • Short runtimes: Six of the fourteen out and offshore wind targets. plants for which we have data run less than five hours each time they are started up, • 2050: 80 percent reduction in greenhouse which aligns well with battery operation gas emissions below 2006 levels. (see Figure2 ). New Jersey j 2 4 3 2 (MWh) 1 Average Hourly Generation 0 1am 2am 3am 4am 5am 6am 7am 8am 9am 1pm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 12am 10am 11am 12pm 10pm 11pm Figure 2: Average hourly generation from the Essex peaker plant. The plant typically meets peak afternoon loads. It ran an average of 6.1 hours each time it started up in 2016, but by 2018 its average run time had declined to 2.6 hours per start, and its capacity factor declined from 2.6 to 0.2 percent. Batteries can serve a similar role on the grid. 100 tor under 2 percent is 1,400 MW, well below 90 the state's 2030 storage target of 2,000 MW. New Jersey's total peaking capacity is 2,732 80 MW. Plants with longer runtimes might be best 70 replaced with a mixed portfolio of cleaner re- 60 sources that can meet similar grid needs, such 50 as solar, storage and demand response. 40 30 Nearby Populations 20 New Jersey peaker plants are located in a mix Low-Income Population (Percentile) Population Low-Income 10 of urban and rural areas, with populations in 0 a three-mile radius ranging from nearly no one 0 10 20 30 40 50 60 70 80 90 (for the peaking unit located at Salem nuclear Minority Population (Percentile) power plant) to 250,000 near the Kearny plant. Primary Fuel Population (3-mile radius) Populations living within three miles of these Natural gas 0 100,000 200,000 Oil 50,000 150,000 ≥ 250,0.. plants tend to be disproportionately low-income and minority populations: communities near all Figure 3: New Jersey power plants are located but two plants are above the 50th percentile in low-income and largely minority communities. statewide for low-income populations (that is, Bubbles reflect population size. Axes mark state per- they have more low-income households than half centiles for low-income (double federal poverty limit) and minority populations living within three miles of of New Jersey census tracts), and communities each facility. near nine plants are above the 50th percentile for minority populations (see Figure3 ). Many communities also have a high cumulative expo- • Infrequently used: 11 operate at a ca- sure to environmental health burdens from nu- pacity factor of 2 percent or less|that is, merous sources. We developed a cumulative vul- they generate 2 percent of the electricity nerability index that integrates data on health that they would if they were running con- burdens (asthma, heart attacks, premature birth stantly at full power year-round. The five rates); environmental burdens (ozone, particu- oil-fired peakers all operate at a capacity late matter, toxics, traffic proximity, lead paint, factor of 0.6 percent or less. and hazardous facilities); and demographic indi- cators (low-income, minority, linguistically iso- The net capacity of facilities with a capacity fac- New Jersey j 3 225 200 175 150 125 100 75 50 Cumulative Vulnerability Index Vulnerability Cumulative 25 0 Essex Kearny Station Sayreville Mickleton Cumberland Forked River Forked West Station Carll's Corner Sherman Avenue Ocean Peaking Power Peaking Ocean Burlington Generating Salem (gas turbine unit) Linden (gas turbine unit) turbine Linden (gas Gilbert (gas turbine unit) Seaside Heights Power Plant Power Heights Seaside EJ Indicator Category Health indicator Environmental burden indicator Demographic indicator Figure 4: The cumulative vulnerability index reflects a set of environmental, human health and de- mographic indicators for populations living within three miles of each plant. The score is based on a comparison of indicators to statewide values: if a plant ranked at the median percentile for all indicators, it would score 150, which is indicated by the red dashed line. (Note: Salem has limited data available.) lated, and non-high school educated popula- Summary tions). The cumulative vulnerability index for populations living within three miles of each fa- New Jersey peak demand is met by an aging cility is shown in Figure4 . fleet of peaker power plants located dispropor- tionately in the state's low-income and minority communities. The state's oil-burning plants, in Emissions and the Environment particular, are used infrequently but have high pollutant emission rates when they are operated, One-third of New Jersey peaker plants and units suggesting they might be good candidates for burn primarily oil and the remainder primarily replacement. The state's energy storage targets use natural gas, although many burn both. The provide an opportunity to target the more ineffi- oil-burning facilities in particular, as well as a cient and polluting facilities, particularly in dis- couple older natural gas turbines, have high ni- advantaged communities, for replacement with trogen oxide (NOx) emission rates|pollution cleaner alternatives. In the attached table, we per unit of electricity generated. NOx is a pre- provide operational, environmental and demo- cursor to ozone and particulate matter forma- graphic data for New Jersey peakers and nearby tion. The state is considered out of attainment populations. Indicators such as nearby popu- of federal ozone standards; operation of these lation, emission rates, heat rate (fuel used per plants on hot summer days to meet air condi- megawatt-hour), operation on poor air quality tioning demands can exacerbate these poor air days, capacity factor, and typical run hours can quality conditions. Notably, between 2016 and also inform whether a given plant might be a 2018, the Ocean Peaking Power plant generated good target for replacement with storage, so- 10 percent of its electricity on days exceeding lar+storage, demand response, or other clean local air quality standards. alternatives. These data should be accompa- nied by engagement with affected communities to determine replacement priorities and strate- gies. New Jersey peaker plant operational and demographic data. For methods see: www.psehealthyenergy.org. Plant description Operation and emissions Demographics (3-mile radius) % Heat CO % non- % low- Run 2 NO MWh Capacity rate7 rate8 x white income Name (EIA ID) Status City Fuel1 MW2 Load Age4 hours/ rate9 high Pop. CVI13 factor5 MMBtu/ tons/ (percen- (percen- zone3 start6 lbs/MWh ozone MWh MWh tile)11 tile)12 days10 48% 28% Burlington Operating Burlington Natural 242 PSEG 53 2.0% 3.8 9.8 0.6 1.0 7.9% 75,794 214 Generating gas (60) (65) Station (2399) 69% 51% Carll's Corner Operating Upper Natural 84 AECO 47 1.8% 5.8 24.3 1.5 17.8 3.9% 25,279 202 (2379) Deerfield gas (74) (87) 39% 42% Cumberland Operating Millville Natural 231 AECO 30 8.2% 7.8 9.0 0.5 0.3 1.0% 4,102 183 (5083) gas (53) (80) 73% 42% Essex (2401) Operating Newark Natural 94 PSEG 49 1.2% 5.1 10.0 0.6 0.8 3.2% 221,376 237 gas (76) (80) 6% 19% Forked River Operating Forked Natural 77 JCPL 31 1.4% 6.2 13.8 0.8 2.2 7.9% 23,741 105 (7138) River gas (8) (51) 1Primary fuel; many plants burn both oil and natural gas. 2Installed nameplate capacity (plant size). 3Load zones within PJM, indicating utility service area.
Recommended publications
  • Employing Renewables to Effectively Cut Load in Electric Grids
    GreenPeaks: Employing renewables to effectively cut load in electric grids Raphael Luciano de Pontes1, Aditya Mishra2, Anand Seetharam3, Mridula Shekhar2, Arti Ramesh3 1Dept. of Computer Science, Federal University of Minas Gerais, Brazil 2Dept. of Computer Science & Software Engineering, Seattle University, USA 3Dept. of Computer Science, SUNY Binghamton, USA [email protected], [email protected], [email protected] [email protected], [email protected] Abstract—Reducing the carbon footprint of energy generation net metering is one of the most popular approaches that allows is an important part of ongoing sustainability efforts. To cut customers to integrate their onsite renewable deployments carbon footprints, electric utilities are incentivizing renewable with the electric grid. It allows customers to generate onsite energy integration through net metering and introducing time- of-use pricing plans to cut demand peaks, as peaks significantly electricity (e.g., using solar panels); generated energy is used contribute to both generation costs and carbon emissions. Net to satisfy customers demand, and any surplus generation is metering is one of the most popular means of integrating sold back to the grid. In its current form, net metering has distributed renewable generation in the grid. However, the two crippling limitations: 1) it doesnt adequately cut peaks, current net metering approach doesn’t effectively cut demand as energy harvest peaks and demand peaks are out of sync; peaks because renewable harvest peak and demand peaks are out of sync. Furthermore, as several states impose net metering for instance, solar power harvest peaks earlier in the day, but subscriber limits of less than 1% of the peak, net metering isn’t household peak demands typically occur around dinner times; even close to realizing the full potential of renewable integration 2) many states impose subscriber limit to less than 1% of the in the grid.
    [Show full text]
  • Demand-Response Management of a District Cooling Plant of a Mixed Use City Development
    Demand-Response Management of a District Cooling Plant of a Mixed Use City Development Segu Madar Mohamed Rifai Master of Science Thesis KTH - Royal Institute of Technology School of Industrial Engineering and Management Department of Energy Technology SE-100 44 STOCKHOLM Thesis Registration No.: EGI- 2012-011MSC Title: Demand-Response Management of a District Cooling Plant of a Mixed Use City Development. SEGU MADAR MOHAMED RIFAI Student Number: 731222 A-315 Approved Examiner Supervisor at KTH Date: 05/06/2012 Prof. Björn Palm Dr. Samer Sawalha Local Supervisor Dr. Hari Gunasingam Commissioner Contact person i | P a g e Abstract Demand for cooling has been increasing around the world for the last couple of decades due to various reasons, and it will continue to increase in the future particularly in developing countries. Traditionally, cooling demand is met by decentralised electrically driven appliances which affect energy, economy and environment as well. District Cooling Plant (DCP) is an innovative alternative means of providing comfort cooling. DCP is becoming an essential infrastructure in modern city development owning to many benefits compared to decentralized cooling technology. Demand Response Management (DRM) is largely applied for Demand Side management of electrical grid. Demand of electrical energy is closely connected with the demand of alternative form of energy such as heating, cooling and mechanical energy. Therefore, application of DR concept should be applied beyond the electrical grid; in particular, it could be applied to any interconnected district energy systems. District Cooling Plant is one of a potential candidate and Demand Response management solutions can be applied to DCP for sustainable operation.
    [Show full text]
  • Authors, Contributors, Reviewers
    432 Quadrennial Technology Review Quadrennial Technology Review 2015 Appendices List of Technology Assessments List of Supplemental Information Office of the Under Secretary for Science and Energy Executive Steering Committee and Co-Champions Authors, Contributors, and Reviewers Glossary Acronyms List of Figures List of Tables 433 434 Quadrennial Technology Review Technology Assessments Chapter 3 Chapter 6 Cyber and Physical Security Additive Manufacturing Designs, Architectures, and Concepts Advanced Materials Manufacturing Electric Energy Storage Advanced Sensors, Controls, Platforms Flexible and Distributed Energy Resources and Modeling for Manufacturing Measurements, Communications, and Control Combined Heat and Power Systems Transmission and Distribution Components Composite Materials Critical Materials Chapter 4 Direct Thermal Energy Conversion Materials, Devices, and Systems Advanced Plant Technologies Materials for Harsh Service Conditions Carbon Dioxide Capture and Storage Value-Added Options Process Heating Biopower Process Intensification Carbon Dioxide Capture Technologies Roll-to-Roll Processing Carbon Dioxide Storage Technologies Sustainable Manufacturing - Flow of Materials through Industry Carbon Dioxide Capture for Natural Gas and Industrial Applications Waste Heat Recovery Systems Crosscutting Technologies in Carbon Dioxide Wide Bandgap Semiconductors for Capture and Storage Power Electronics Fast-spectrum Reactors Geothermal Power Chapter 7 High Temperature Reactors Bioenergy Conversion Hybrid Nuclear-Renewable Energy
    [Show full text]
  • Coordinated Operations of Flexible Coal and Renewable Energy Power Plants: Challenges and Opportunities
    CoordinatedCoordinated Operations Operations of of Flexible Flexible Coal Coal andand Renewable Renewable Energy Energy Power Power Plants: Plants: ChallengesChallenges and and Opportunities Opportunities This reportThis report argues argues that coordinatedthat coordinated operations operations of renewable of renewable energy energy and fossil and fossilfuel-red fuel-red powerpower plants plants could couldhelp increase help increase reliability reliability and eciency and eciency of the of whole the whole system. system. At the At same the same time, time,given giventhe inherent the inherent variability variability of renewable of renewable energy, energy, increasing increasing the exibility the exibility of coal of coal powerpower plant operationsplant operations could couldalso allow also forallow a faster for a fasterdeployment deployment of renewable of renewable energy energy sources. sources. This isThis an important is an important concept concept because because the share the ofshare fossil of fuelsfossil in fuels total in primary total primary energy energy supply supply in in the ECEthe region ECE region is still isaround still around 80 per 80 cent. per Undercent. Under any plausible any plausible long-term long-term scenario scenario fossil fuelsfossil fuels will remainwill remain a critical a critical part of part the ofenergy the energy mix in mix the incoming the coming decades. decades. Sustainable Sustainable management management of fossilof fuelsfossil infuels electricity in electricity generation generation is key
    [Show full text]
  • The Value of IS to Ensure the Security of Energy Supply •fi the Case Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AIS Electronic Library (AISeL) Value of IS for Security of Energy Supply The Value of IS to Ensure the Security of Energy Supply – The Case of Electric Vehicle Charging Completed Research Paper Johannes Schmidt Sebastian Busse Chair of Information Management Chair of Information Management Georg-August-Universität Göttingen Georg-August-Universität Göttingen [email protected] [email protected] ABSTRACT Replacing the internal combustion engine through electrification is regarded as crucial for future mobility. However, the interactions between a higher number of electric vehicles and the impacts on power plant capacities have not been sufficiently investigated yet. Hence, this paper develops an approach to evaluate the energetic impacts on current power plant capacities that result from a higher market penetration of electric vehicles by 2030. The key aspect of the approach is the quantification of smart charging processes in energetic and economic perspectives. It was found that the implementation has significant energetic and thus economic benefits because of an improved integration of the additional electricity demand. The value of information systems which enable smart charging processes is shown by the calculated cost-saving potentials, resulting from a reduced expansion of the power plant system. Keywords Electric Mobility, Smart charging processes, Security of Energy Supply, Economic Appraisal INTRODUCTION Over the last decades, there has been continuous growth of the demand for individual mobility, seen particularly in increasing car sales. However, recent trends indicate a fundamental paradigm shift in the automotive industry. This trend has been initiated by a gradual substitution of electric vehicles1 (EVs) for vehicles with a combustion engine (Urbschat and Bernhart, 2009).
    [Show full text]
  • Town of Medway Review
    Understanding the Proposed Exelon Expansion A Review by the Town of Medway Presentation Overview • Site History and Present Operation • Facility & Impacts • What is a Peaking Power Plant? • Proposed Expansion Project • Required Approvals • Air Quality - Presented by Air Quality Associates • Noise - Presented by Acentech • Water - Presented by Kleinfelder Associates • Environmental • Property Values • Traffic • Financial Benefits • Next Steps • Questions and Answers Site History and Present Operation • Property is approximately 94 acres • Eversource operates 2 substations and a natural gas interconnection are located on the property (approx. 54 acres) • Existing 135 MW oil-fired facility is sited on 5 acres which has been in operation since 1970 • The 3 peaking units, fueled by oil, were installed by Boston Edison following the 1965 East Coast blackout • Previously owned and operated by Sithe West Medway Development LLC as a peaker plant Site History and Present Operation • Sithe received approval from the Massachusetts Energy Facilities Siting Board (“EFSB”) to construct a 540 MW facility, but it was never constructed • Town approved HCA and PILOT Agreements with Sithe at that time • Exelon purchased the West Medway station in 2002 • With a combined capacity of 135 MW, units operate during periods of peak demand • The existing units have operated for less than 80 hours on an annual basis over the last 5 years How did we get here? • Notified November 2014 of Exelon’s interest in expansion • Met with Town officials mid-winter • Reviewed
    [Show full text]
  • Maria Aslam Vehicle to Grid Concept As Part of Power System and Electricity Market
    MARIA ASLAM VEHICLE TO GRID CONCEPT AS PART OF POWER SYSTEM AND ELECTRICITY MARKET Masters of science thesis Examiner: Prof. Pertti Järventausta Examiner and topic approved by the Faculty Council of the Faculty of Computing and Electrical Engineering on 5th October 2016 i ABSTRACT MARIA ASLAM: Vehicle to grid concept as part of power system and electricity market Tampere University of Technology Master of Science Thesis, 55 pages January 2016 Master’s Degree Programme in Electrical Engineering Major: Smart Grids Examiner: Professor Pertti Järventausta Keywords: EV, RES, V2G, Intelligent charging The demand of electricity is increasing day by day with the increase in world’s population. Renewable energy sources (RES) are being integrated into the smart grid system. Renewable energy sources have fluctuating nature such as wind and solar power, and thus accurate forecasting of generation from these sources is nearly impossible. At the distribution end, load forecasting is also challenging as the load demand is not constant all the time. Hence to deal with the intermittent nature of RES and to fulfil the peak load demand, there is a need for a storage system that can be integrated with the smart grid environment. Electric vehicles (EVs) serve this purpose and replace the internal combustion engine vehicles in transportation. They are considered as mobile energy storage systems which do not only reduce the environmental pollution but also provide power to the grid in peak load time by storing energy in their batteries at off peak times when the demand is quite low. The aim of this thesis is to understand the concept of V2G.
    [Show full text]
  • SMART GRIDS and RENEWABLES: a Guide for Effective Deployment TABLE of CONTENTS
    IRENA International Renewable Energy Agency SMART GRIDS AND RENEWABLES A Guide for Effective Deployment Working Paper Working November 2013 Copyright © IRENA 2013 Unless otherwise indicated, material in this publication may be used freely, shared or reprinted, so long as IRENA is acknowledged as the source. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future, and serves as the principal platform for international cooperation, a centre of excel- lence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy in the pursuit of sustainable development, energy access, energy security and low-carbon eco- nomic growth and prosperity. www.irena.org Acknowledgements The work for the preparation of this paper was led by Paul Komor and Anderson Hoke, University of Colorado, Boulder, Colo- rado, USA. The paper benefitted from very valuable comments from Rainer Bacher (Bacher Energie, Switzerland), Melissa Chan (Navigant Consulting, USA), Kazuyuki Takada (New Energy and Industrial Technology Development Organization, Japan), Matt Wakefield (EPRI, USA). Authors: Ruud Kempener (IRENA), Paul Komor and Anderson Hoke (University of Colorado) For further information or to provide feedback, please contact: Ruud Kempener, IRENA Innovation and Technology Centre. E-mail: [email protected] or [email protected]. Disclaimer The designations employed and the presentation of materials herein do not imply the e xpression of any opinion whatsoever on the part of the International Renewable Energy Agency concerning the legal status of any country, territory, city or area, or concerning their authorities or the delimitation of their frontiers or boundaries.
    [Show full text]
  • Rapid Assessment Gap Analysis Bangladesh Published: 2012 Disclaimer: Government Validation Pending Sustainable Energy for All: Rapid Assessment and Gap Analysis
    Rapid Assessment Gap Analysis Bangladesh Published: 2012 Disclaimer: Government validation pending Sustainable Energy for All: Rapid Assessment and Gap Analysis Bangladesh DRAFT Prepared with support from Energy Sector Management Assistance Program, The World Bank June 2012 Sustainable Energy for All Rapid Assessment and Gap Analysis – Bangladesh TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................................... 4 1.0 OBJECTIVES OF THE STUDY .................................................................................................. 6 2.0 COUNTRY OVERVIEW .............................................................................................................. 6 2.1 ENERGY SITUATION ....................................................................................................... 7 2.2 ENERGY SUPPLY ............................................................................................................ 8 2.3 ENERGY DEMAND ........................................................................................................ 10 2.4 ENERGY AND ECONOMIC DEVELOPMENT .................................................................... 11 2.5 ENERGY STRATEGY AND RENEWABLE TARGETS ......................................................... 12 3.0 ENERGY ACCESS ...................................................................................................................... 13 3.1 OVERVIEW AND ASSESSMENT .....................................................................................
    [Show full text]
  • A Step Towards Computational Sustainability
    Marquette University e-Publications@Marquette Computer Science Faculty Research and Publications Computer Science, Department of 4-7-2020 A Qualitative Study on the United States Internet of Energy: A Step Towards Computational Sustainability Nazmus Sakib Eklas Hossain Sheikh Iqbal Ahamed Follow this and additional works at: https://epublications.marquette.edu/comp_fac Marquette University e-Publications@Marquette Computer Sciences Faculty Research and Publications/College of Arts and Sciences This paper is NOT THE PUBLISHED VERSION. Access the published version via the link in the citation below. IEEE Access, Vol. 8 (April 07, 2020): 69003-69037. DOI. This article is © The Institute of Electrical and Electronics Engineers and permission has been granted for this version to appear in e- Publications@Marquette. The Institute of Electrical and Electronics Engineers does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from The Institute of Electrical and Electronics Engineers. A Qualitative Study on the United States Internet of Energy: A Step Towards Computational Sustainability Nazmus Sakib Ubicomp Lab, Marquette University, Milwaukee, WI Eklas Hossain Oregon Institute of Technology, Klamath Falls, OR Sheikh Iqbal Ahamed Ubicomp Lab, Marquette University, Milwaukee, WI Abstract: The burgeoning growth of Big Data not only matures and improves the data management efficiency and useful information extraction techniques, but also motivates the computational science researchers to come up with a new method or solution that can be repurposed for problems across the domain. Computational Sustainability joins this movement for a transferrable computational technique for sustainable development and a better future. Internet-of-energy (IoE) - leveraging IoT to smart grids associated with advanced analytics - is one of the prominent efforts in this regard.
    [Show full text]
  • I Assessing Vehicle Electricity Demand Impacts On
    Assessing Vehicle Electricity Demand Impacts on California Electricity Supply by RYAN WILLIAM McCARTHY B.S. (University of California, San Diego) 2002 M.S. (University of California, Davis) 2005 DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Civil and Environmental Engineering in the OFFICE OF GRADUATE STUDIES of the UNIVERSITY OF CALIFORNIA DAVIS Approved: Joan M. Ogden Christopher Yang Daniel Sperling Committee in Charge 2009 i ABSTRACT Achieving policy targets for reducing greenhouse gas (GHG) emissions from transportation will likely require significant adoption of battery-electric, plug-in hybrid, or hydrogen fuel cell vehicles. These vehicles use electricity either directly as fuel, or indirectly for hydrogen production or storage. As they gain share, currently disparate electricity and transportation fuels supply systems will begin to “converge.” Several studies consider impacts of electric vehicle recharging on electricity supply or comparative GHG emissions among alternative vehicle platforms. But few consider interactions between growing populations of electric-drive vehicles and the evolution of electricity supply, especially within particular regional and policy contexts. This dissertation addresses this gap. It develops two modeling tools (EDGE-CA and LEDGE-CA) to illuminate tradeoffs and potential interactions between light-duty vehicles and electricity supply in California. Near-term findings suggest natural gas-fired power plants will supply “marginal” electricity for vehicle recharging and hydrogen production. Based on likely vehicle recharging profiles, GHG emissions rates from these plants are more than 40% higher than the average from all generation supplying electricity demand in California and 65% higher than the estimated marginal electricity emissions rate in California’s Low Carbon Fuel Standard.
    [Show full text]
  • The Unbearable Lightness of Wind
    International Association for Energy Economics | 7 The Unbearable Lightness of Wind By Ross McCracken* There are few renewable energy policies that do not depend heavily on wind power and wind is certainly at the heart of the most ambitious, the EU’s binding target of sourcing 20% of final energy consumption from renewable resources by 2020. As the EU’s target for transport is half that for energy consumption as a whole, it follows that the power sector will be required to source a proportion of energy from renewables that is much higher than 20%. According to the European Wind Energy Association, the figure is 35%. Within that, wind will be the largest contributor, accounting for just over one-third of ‘green’ electric- ity, suggesting that between 11.6-14.3% of the EU’s power will be supplied by wind by 2020, according to the EWEA. This would mean the installation of 180 GW of wind power by 2020, up from 56.535 GW installed in the EU-27 at end-2007, producing about 477 TWh of power. The transport element of the EU plan is also dependent on future scientific advances, for example, that second generation biofuels become commercially available. This uncertainty will put more pressure to achieve in areas that are already within technological reach. But if these targets seem ambitious, it is also evident that wind capacity is being installed at much higher rates than previously forecast by bodies such as the International Energy Agency. According to Stefan Gsänger, secretary-general of the World Wind Energy Association, worldwide wind capacity had risen to about 120,000 GW by end-2008, an increase of 30% on 2007.
    [Show full text]