Extraction Conditions of Inulin from Jerusalem Artichoke Tubers and Its Effects on Blood Glucose and Lipid Profile in Diabetic Rats

Total Page:16

File Type:pdf, Size:1020Kb

Extraction Conditions of Inulin from Jerusalem Artichoke Tubers and Its Effects on Blood Glucose and Lipid Profile in Diabetic Rats Journal of American Science 2010;6(5) Extraction Conditions of Inulin from Jerusalem Artichoke Tubers and its Effects on Blood Glucose and Lipid Profile in Diabetic Rats 1A. M. Gaafar;2M. F. Serag El-Din;2E. A. Boudy and 3H. H. El-Gazar 1 Food Technology Research Institute, Agricultural Research Center, Giza 2Nutrition and Food Science, Faculty of Home Economics, Minufiya University 3 National Nutrition Institute, Cairo, Egypt. [email protected] Abstract: This study aimed to analyze Jerusalem artichoke tubers to identify its contents and to optimize conventional extraction of inulin, various time extract, temperature, and solvent ratio were used. 30 male albino rats divided into 5 groups (6 rats) were used to evaluated the extricated inulin as Hypoglycemic agents. It could be concluded that, the highest yield of inulin was recovered from Jerusalem artichoke tuber by using the following condition, sample to solvent ratio was 1: 5 w/v at 80°C for 90 minutes. The crude inulin extracted from Jerusalem artichoke tubers were used for production of orange juice and chocolate and estimated by aid of 10 panelists. The reduction of glucose was observed after one week of feeding till the end of experimental period, also, high level of inulin 15% led to amore reduction of blood glucose level comparing with the low level especially in the end of experimental period. The crude inulin extracted from Jerusalem artichoke tubers were used in diet for diabetic rats on different levels of inulin (10 and 15%) had significantly lower in total cholesterol, triglyceride and total lipids in comparing to positive diabetic rats fed on control diet. Meanwhile, HDL level was increased significantly after fed on 10 and 15% inulin. On the other hand, LDL and VLDL levels were decreased significantly after fed on (10 and 15%) inulin in comparing to positive group rats fed on control diet. [Journal of American Science 2010;6(5):36-43]. (ISSN: 1545-1003). Keywords: Jerusalem artichoke, Extraction Conditions, inulin, blood glucose and lipid profile 1. Introduction involving boiling water-extracting for 10. 15 min of Today, the industrialized countries are the ground tubers had been used (Laurenzo et al., facing, among others, three major challenges. Firstly, 1999). to control the cost of health care, secondly, to offer to Initially, the application of inulin in the food their aging population a real opportunity to live, not industry was restricted to the production of a drink only longer, but also better and thirdly, to provide to similar to coffee, due to its bitter taste. However, it more and more. Jobs, consumers, a choice of healthy was found that inulin could substitute sugar and fat processed or ready to eat foods (Roberfroid, 1999). with the advantage of exhibiting low caloric value Busy life styles and the increasing demand from (Applied Technology, 1993). The application of consumers for meals and snacks that are quick inulin as a fat substitute is associated with its capacity sources of good nutrition have prompted the food of producing a cream-like substance, similar to fat industry to develop foods like nutrition bars that dissolved in water, which can act as a rheological combine convenience and nutrition (Izzo and Niness, modifier (Cândido and Campos, 1995 and Silva, 2001). 1996). Inulin shows interesting technological Inulin is a storage polysaccharide consisting properties, as a low-calorie sweetener, as a fat of a chain of fructose molecules with a terminal substitute, or it can be used to modify texture glucose molecule. Silva (1996), inulin is water (Tungland and Meyer, 2002). These properties are soluble, the solubility being temperature dependent. linked to the degree of chain polymerisation. Inulin At 10°C its solubility is about 6% whereas at 90°C it are added during cheese processing to decrease its fat is about 35%. Inulin type fructans, are the best- percentage without losing its organoleptic documented oligosaccharides for their effect on characteristics, such as texture and flavour. One of intestinal bifidobacteria and are considered important the interesting functions of inulin and oligofructose in prebiotic substrates (Vos et al., 2006). Jerusalem human nutrition is related to their prebiotic effect, i.e. artichoke tubers with 14–19% inulin can be a the specific stimulation of growth and/or activity of a valuable source of inulin (Vanloo, et al., 1995). limited number of colonic bacteria beneficial to the Several methods for inulin extraction from Jerusalem host, as well as the growth inhibition of pathogens artichoke have been developed. A pretreatment step and harmful microorganisms (Roberfroid, 2007). http://www.americanscience.org 36 [email protected] Journal of American Science 2010;6(5) The combination of prebiotics and probiotics has (sample to water ratio were 1 : 1, 1 : 3, 1 : 5 and 1 : 7 given rise to the so-called ‘synbiotics’, with w/v) tuber : water. The effect of using different promising healthy properties (Buritiet al., 2007; temperature (70, 80, 90 and 100°C) as will as Pool- Zobel and Sauer, 2007). different times (60, 70, 80 and 90 minutes) were also The functional effects of inulin on humans and done to choose the best condition of extraction of experimental animals include relief of constipation inulin. lower blood glucose levels, improved absorption of calcium, reduced fasting triglycerides, LDL Preparation of juice and chocolate: Orange juice cholesterol, and inhibition of the growth of various and Chocolate were prepared according to the kinds of tumors (Kaur and Gupta 2002). Marchetti method of El-Gendy (1970). (1993) reported that, inulin is a natural polymer that not hydrolysable by the intestinal enzymes, because it Sensory evaluation: has β (2-1) link which is not be hydrolyzed. So it Juice and chocolate: could be considered a calorie free fiber, although Orange juice, chocolate, juice and chocolate some calories may occur due to the digestible supplemented by different levels of inulin (10, 15, 20 fermentation of these by products in the colon. Inulin and 25%) estimated by aid of 10 panelists. The is such carbohydrates have a high potential following hedonic scale was used Kramer and nutritional advantage as low energy dietary Twigg (1970) for juice and Kramer and Twigg supplements. It can be used as a source of (1970) for chocolate. carbohydrates for diabetic patients and more generally as dietary fiber. During 4 to 6 weeks Analytical methods: improves glucose tolerance, decreases glycemia, and The prepared samples were subjected to the chemical partially restores insulin secretion (Cani et al., 2005). analysis moisture, protein, fat and ash by the methods Moreover, an improvement of glucose/insulin ratio described by A.O.A.C. (1990). Crude fiber was has also been observed in rats receiving measured using the method described by Kirk and Oligofructose added in a high fructose diet (inulin) Sawyer (1991). Total carbohydrates were determined (Busserolles et al., 2003). In the case of low-calorie using the method described by James (1995). chocolates and derivatives, fibre compounds such as Determination of inulin was recommended by inulin and oligofructose are used as sugar substitutes Prosky and Hoebregs (1999). (Gonze and Van der Schueren, 1997). This study was carried out to investigate studying the best Biological experiments: conditions to obtain inulin from Jerusalem artichoke Animals: for production of new foods and beverages with high 30 adult male albino rats weighting between biological value and studying the health benefits of 115 to 120 g were divided to 5 groups and (each inulin as functional food on diabetic and group consisted of 6 rats), each rat housed hyperlipidemic rats. individually in wire cages with wire bottoms. 2. Material and Methods Preparation of diabetic rats: Jerusalem artichoke tubers (Helianthus Pure fine was used for induction diabetes in tuberosus) were purchased from the experimental normal healthy adult male albino rats by station, Agriculture Research Center, Cairo, Egypt. intraperitoneal injection of alloxan (150mg/kg body inulin was isolated from the tubers of Jerusalem weight) according to the method described by (Desia artichoke. Cholesterol, casein, bile acids, kits and and Bhide, 1985), fasting blood samples obtained cholin cholerid were purchased from El-Gomhoreria from retro orbital plexus (Superficial blood sample) Co. to determined serum glucose. Diabetic rates were divided into 4 groups, 6 rats in each group fed on Technological methods:- certain diets for 28 days as follows: First group was Preparation of Jerusalem artichoke tubers: fed on basal diet only and used as control negative The samples of Jerusalem artichoke tubers were group. Second group diabetic rats were fed on basal cleaned with tap water to remove dust and other diet and used as the control positive group. Third and undesirable materials. The cleaned tubers were cut fourth group diabetic rats were fed on basal diet into small pieces and used immediately. containing 10 and 15% inulin. Extraction of inulin from Jerusalem artichoke by different methods: Biological Evaluation: Jerusalem artichoke tubers were mixed with different At the end of trials, the animals were volumes of hot water according to Yamazaki (1994) sacrificed, under ether anaesthetized and blood http://www.americanscience.org 37 [email protected] Journal of American Science 2010;6(5) samples were collected in clean dry centrifuge tube of moisture, ether extract, crude protein, ash, inulin from hepatic portal vein. Serum was separated by and crude fiber after chemical analysis of extracted centrifugation at 4000 r.p.m. for 10 minutes at room inulin their were 4.57, 0.35, 0.49, 0.75, 96.87 and temperature then kept in plastic vials at-20c until 1.54, respectively. our findings are in harmony with analysis. those of Shalaby (2000) who found that, inulin isolated from Jerusalem artichoke tubers was Biochemical Analysis: characterized by high value of inulin 96.25%. Glucose was determined by enzymatic methods using kits according to Trinder (1969).
Recommended publications
  • INULIN and BETA GLUCAN Dr. K. Bhaskarachary
    F11FN – Functional Foods and Nutraceuticals F11FN14 - INULIN AND BETA GLUCAN Dr. K. Bhaskarachary Component – I (A) Role Name Affiliation Principal Investigator Dr. Sheela Ramachandran Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore. Co-Principal Investigators Dr. S.Kowsalya Avinashilingam Institute for Home Science Dr.M.Sylvia Subapriya and Higher Education for Women, Dr.G. Bagyalakshmi Coimbatore. Mrs.E.Indira Paper Coordinator Dr. S. Thilakavathy Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore. Content Writer Dr. K. Bhaskarachary Senior Research Officer Dept. Food Chemistry National Institute of Nutrition Jamai Osmania, Hyderabad – 500007. Content Reviewer Dr. K. Bhaskarachary Senior Research Officer Dept. Food Chemistry National Institute of Nutrition Jamai Osmania, Hyderabad – 500007. Language Editor Dr. K. Bhaskarachary Senior Research Officer Dept. Food Chemistry National Institute of Nutrition Jamai Osmania, Hyderabad – 500007. Component-I (B) Description of Module Items Description of Module Subject Name Foods and Nutrition Paper Name Functional Foods and Nutraceuticals Module Name Inulin and Beta Glucan Module ID F11FN14 Pre-requisites physiological benefits of Beta Glucan Objectives • To understand Inulin sources, metabolism and its role in health and food industry • To know the Betaglucan sources, metabolism and its role in various physiological processs and dietary management of non communicable F11FN – Functional Foods and Nutraceuticals F11FN14 - INULIN AND BETA GLUCAN Dr. K. Bhaskarachary diseases and its role in food and health industry Keywords Inulin, non-digestible oligosaccharides, sinistrin, Beta Glucan, prokaryotes and eukaryotes, immunostimulants INTRODUCTION This module explains the structure, metabolism and uses of inulin and beta glucan. The complex carbohydrates of inulin and its dietary fiber properties and their role in physiological process is explained.
    [Show full text]
  • Development of Probiotic Almond Beverage Using Lacticaseibacillus Rhamnosus GR-1 Fortified with Short-Chain and Long-Chain Inulin Fibre
    fermentation Article Development of Probiotic Almond Beverage Using Lacticaseibacillus rhamnosus GR-1 Fortified with Short-Chain and Long-Chain Inulin Fibre Lauren Muncey and Sharareh Hekmat * School of Food and Nutritional Sciences, Brescia University College, Western University, London, ON N6G 1H2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +519-432-8353 (ext. 28227) Abstract: Plant-based beverages are growing in popularity due to the rise of vegetarianism and other health trends. A probiotic almond beverage that combines the properties of almonds, inulin, and Lacticaseibacillus rhamnosus GR-1 may meet the demand for a non-dairy health-promoting food. The purpose of this study was to investigate the viability of L. rhamnosus GR-1 and pH in five fermented almond beverage samples, supplemented with either 2% or 5% (w/v) short-chain or long-chain inulin over 9 h of fermentation and 30 days of refrigerated storage. All almond beverage samples achieved a mean viable count of at least 107 CFU/mL during 9h of fermentation and 30 days of refrigerated storage. The probiotic almond beverage supplemented with 2% (w/v) short-chain inulin had a significantly higher mean microbial count (p = 0.048) and lower pH (p < 0.001) throughout fermentation, while the control and the long-chain inulin treatments had the lowest viable counts and acidity, respectively. This study shows that the addition of short-chain and long-chain inulin had Citation: Muncey, L.; Hekmat, S. no adverse effects on the viability of L. rhamnosus GR-1. Therefore, the probiotic almond beverage Development of Probiotic Almond has the potential to be a valid alternative to dairy-based probiotic products.
    [Show full text]
  • Impact of Gums on the Growth of Probiotics BERNICE D
    Impact of gums on the growth of probiotics BERNICE D. KARLTON-SENAYE*, SALAM. A. IBRAHIM *Corresponding Author North Carolina Agricultural and Technical State University, Bernice D. Food Microbiology and Biotechnology laboratory, Karlton-Senaye Greensboro, NC 27411-1011, USA KEYWORDS: gums; polysaccharides; probiotics; prebiotics ABSTRACT: Gums are polysaccharides used as stabilizers in food that could also enhance growth and viability of probiotics. Thus, the aim of this review was to provide general information about common gums used in different food applications and to introduce a new application of gums as possible functional ingredients to promote the viability of probiotics in food products. INTRODUCTION Molecular structure, chemical composition and functionality of gums Gums are complex polysaccharides extracted from sources Gums are chemically closely related with carbohydrates, such as endosperm of plant seeds, plant exudates, sea but are comprised of cellulose, starches, sugars, oxidation weeds, bacteria, and animal sources (1, 2). Gums are products of these materials, acids, salts of carbon, hydrogen, polymers with hydrophilic ability due to the presence of and oxygen (12). Gums also contain calcium, magnesium, a hydroxyl bond. The composition and structure of gums potassium and sometimes nitrogen (12). Gums can be enable gums to imbibe large amount of water forming a gel, obtained commercially by tapping from certain trees which makes gums useful in the food industry. Gums are used and shrubs, by extracting from marine plants, by milling as stabilizers improving viscosity and texture by preventing or extracting from some seeds, by thermal treatment of Probiotics “wheying off” (3). Gums have also found usefulness in other starches from kernels or root crops, by chemical processing industries, namely pharmaceutical, cosmetic, paint, ink, of cellulose from tree trunks and the cotton plant, as well paper, color, and adhesive industries (4).
    [Show full text]
  • Dietary Fibre Testing
    dietary fibres WHAT ARE ANALYSES The Eurofins Carbohydrates Competence Centre routinely performs DIETARY FIBRES? a complete set of tests for total dietary-fibre determination as well as for individual components. If a test is not included in the list below, the Eurofins Carbohydrates Competence Centre also performs specially designed tests for clients. ROUTINE TESTS It is generally recognised that dietary fibre is an essential • Classical total dietary fibre (based on AOAC 985.29) dietary requirement for human beings. In principle, dietary fibre • Classical total, soluble & insoluble dietary fibre (based on is a term that refers to a group of food constituents that pass AOAC 991.43) undigested through the stomach and the small intestine and • Total, high molecular weight (incl. res. starch), low molecular reach the large intestine virtually unchanged. It is made up of weight dietary fibre (based on AOAC 2009.01) indigestible parts of plants and is mainly composed of different • Total, soluble & insoluble (incl. res. starch) high molecular types of non-starch polysaccharides (NSP) and lignin. weight, low molecular weight dietary fibre (based on AOAC 2011.25) It is well documented that dietary fibre is related to health • Total fibre for samples containing supplemented res. benefits such as weight control, satiety, prevention of maltodextrin (based on AOAC 2001.03) constipation, stabilization of blood-glucose levels, reduction • β-glucan (cereals) (based on AOAC 995.16) of cholesterol levels, prevention of certain types of colonic • β -glucan (yeasts & moulds) (only for ingredients or products cancer and prebiotic activity. Nowadays, the demand for with >40% β-glucan content) healthier and less chemically modified food ingredients and • Galactooligosaccharides (based on AOAC 2001.02) foods is becoming more and more important for the consumer.
    [Show full text]
  • Occurrence of Sucrose and Inulin-Hydrolyzing Enzymes In
    U. S. DEPARTMENT OF COMMERCE N ATIONAL BUREAU OF STANDARDS RESEARCH PAPER RP1526 Part of Journal of Research of the :National Bureau of Standards, Volume 30, March 1943 OCCURRENCE OF SUCROSE AND INULIN.HYDROL YZING ENZYMES IN COMMERCIAL ENZYME PREPARATIONS By William Ward Pigman ABSTRACT The relative enzyme content of enzyme preparations which hydrolyze sucrose and inulin was determined for 14 enzyme preparations representing the principal commercial types available. Those of fungal origin seem invariably to contain invertases in about 0.5 to 1.0 percent of the quantities in commercial purified yeast invertase preparations. Enzyme preparations from plant sources (wheat, almond, and malt), from animal tissues (pancreases), and from Bacillus mesenteri­ cus had negligible contents of invertase. Enzyme preparations from Aspergillus niger and yeast exhibited considerable ability to hydrolyze inulin, those from Aspergillus oryzae and A. jtavus exhibited some slight activity, and preparations from other sources were essentially inactive. For several representative enzyme preparations, the rate of hydrolysis of inulin and sucrose was studied and found to approximate a first-order reaction. The activity of the inulase in several A. niger enzyme preparations was found to be greatest in the range pH 3 to 4. Invertase preparations from A. niger were most active at pH 3 to 4 and those from A. oryzae at pH 5.0 to 5.5. The results are considered from the viewpoint of the Weidenhagen theory, and it is shown that the original theory is incompatible with the present results in that either the invertases and inulases are different enzymes or they represent a class of enzymes (fructofuranosidases) in which the individual members vary according to the source.
    [Show full text]
  • 2018 Food Ingredient List ***(Packaged Food Will Show Ingredient List on Package)
    2018 FOOD INGREDIENT LIST ***(PACKAGED FOOD WILL SHOW INGREDIENT LIST ON PACKAGE) Alder Smoked Salmon Chowder (served for lunch) Water, potatoes, chowder mix, smoked salmon, canola oil, flour modified corn starch, pesto sauce, alder seasoning, salt dehydrated onions, lemon juice, dehydrated red bell peppers, dehydrated celery, parmesan cheese base, romano cheese base, granulated garlic, chowder spice, black pepper. CONTAINS FISH, WHEAT, GLUTEN, MILK, SOY, COCONUT, TREE NUT Vegetable Chili (served for lunch) Gluten Free Water, diced tomatoes in juice (tomatoes, tomato juice, citric acid, calcium chloride), pinto beans, onions, light red kidney beans, vegetable soup base (carrot, celery, onion, tomato paste, corn oil, yeast extract, potato flour, salt, onion powder, garlic powder, flavoring), contains less than 2% of the following: tomato paste (tomatoes, citric aced), red bell peppers, carrots, green bell peppers, chopped garlic (garlic, water), salt, modified corn starch, spices, chili pepper, cilantro, pepper sauce (vinegar, red pepper, salt). ALLERGENS: NONE Julienne Vegetable Blend Salad (served for lunch) Gluten Free Broccoli, cauliflower, carrots, beets, brussels sprouts, kale, radicchio. Welch’s Mixed Fruit Snack (served for lunch) Gluten Free Fruit puree (grape, peach, orange, strawberry and raspberry), water, corn syrup, sugar, inulin (from chicory root), modified corn starch, gelatin, concord grape juice from concentrate, citric acid, lactic acid, ascorbic acid (vitamin C), natural and artificial flavors, alpha tocopherol acetate (vitamin E) vitamin A Palmitate, sodium citrate, coconut oil, carnauba wax, annatto (color), turmeric (color), Red 40, Blue 1. Multigrain Bread Roll (served for lunch) Water, whole wheat flour, enriched flour (wheat flour, malted barley flour, niacin, ferrous sulfate, thiamin mononitrate, riboflavin, folic acid), multigrain blend (rye flour, rye flakes, steel cut oats, millet, flaxseeds, cracked wheat, wheat gluten, sunflower seeds, sesame seeds, rye meal, barley flakes).
    [Show full text]
  • Importance of Inducible Enzymes in the Utilization of Inulin and Starch
    Substrate-driven gene expression in Roseburia inulinivorans: Importance of inducible enzymes in the utilization of inulin and starch Karen P. Scotta,1, Jenny C. Martina, Christophe Chassarda, Marlene Clergeta, Joanna Potrykusa, Gill Campbella, Claus-Dieter Mayerb, Pauline Younga, Garry Rucklidgea, Alan G. Ramsaya, and Harry J. Flinta aRowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, United Kingdom; and bBiomathematics and Statistics Scotland, Rowett Institute of Nutrition and Health, University of Aberdeen, Bucksburn, Aberdeen AB21 9SB, United Kingdom Edited by Todd R. Klaenhammer, North Carolina State University, Raleigh, NC, and approved June 24, 2010 (received for review February 8, 2010) Roseburia inulinivorans is a recently identified motile representative by inulin and FOS (4). This may be caused by bacterial cross- of the Firmicutes that contributes to butyrate formation from a va- feeding (5, 8), the direct stimulation of butyrate-producing bac- riety of dietary polysaccharide substrates in the human large intes- teria by the prebiotics (3, 4) or the butyrogenic effect of reduced tine. Microarray analysis was used here to investigate substrate- pH (9). Rossi et al. (4) established that only 8 of 55 bifido- driven gene-expression changes in R. inulinivorans A2-194. A cluster bacterial strains tested were able to grow on inulin in pure cul- of fructo-oligosaccharide/inulin utilization genes induced during ture, although virtually all of the 55 strains used FOS for growth. growth on inulin included one encoding a β-fructofuranosidase They concluded that the elevated butyrate production observed protein that was prominent in the proteome of inulin-grown cells.
    [Show full text]
  • Inulin and Oligofructose New Scientific Developments
    Nutrient Update Inulin and Oligofructose New Scientific Developments Glenn R. Gibson, PhD Nathalie Delzenne, PhD identified that must be met before an ingredient could This article explores the potential role of inulin-type fructans be defined as a prebiotic,3 namely, that it should in the human diet, focusing on scientific developments 1. be nondigestible, that is, after ingestion, it should presented at the 5th Orafti Research Conference held at resist the acidity of the stomach and the effects of the Harvard Medical School in 2006, with special emphasis digestive enzymes in the small intestine, thus on the effects of inulin and oligofructose on the modulation entering the colon intact; 2. be fermented by bacteria in the colon; and of the gut microbiota and their effects on human health. 3. selectively stimulate the growth and/or metabolic Nutr Today. 2008;43(2):54–59 activity of beneficial bacteria indigenous to the colon. Bifidobacteria and lactobacilli are the usual target genera, usually classified as dietary fibers. or more than a decade, there has been a rapid increase Major food sources are onions, garlic, leeks, bananas, artichoke, and asparagus. The daily per in the use of functional foods and ingredients in capita intake of inulin and oligofructose in the the Western diet, such as prebiotics, probiotics, F 1 United States is estimated to range from 1 to 4 g, long-chain n-3 fats, and polyphenols. Functional food whereas in Europe, intakes range from 3 to 11 g, ingredients are those that possess physiological food depending on the geographic, demographic, and values over and above their normal nutritional properties.
    [Show full text]
  • Effects of Inulin and Lactulose on the Intestinal Morphology of Calves
    Animal (2010), 4:5, pp 739–744 & The Animal Consortium 2010 animal doi:10.1017/S1751731109991728 Effects of inulin and lactulose on the intestinal morphology of calves - S. Masanetz1 , N. Wimmer1, C. Plitzner2a, E. Limbeck1, W. Preißinger3 and M. W. Pfaffl1 1Chair of Physiology, Research Center for Nutrition and Food Sciences (ZIEL), Technical University of Munich, D-85354 Freising, Germany; 2University of Natural Resources and Applied Life Sciences, Division of Animal Food and Nutrition, A-1180 Vienna, Austria; 3Bavarian State Research Centre for Agriculture (LfL), D-85586 Poing-Grub, Germany (Received 10 February 2009; Accepted 12 December 2009; First published online 13 January 2010) For some time now prebiotics have been proposed to improve health by stimulation of beneficial bacteria in the intestine of humans and animals. The current study is aiming to show effects of feeding of either 2% inulin or 2% lactulose in milk replacer on performance and intestinal morphology of male Holstein–Friesian calves. After 20 weeks of feeding inulin led to significantly higher daily weight gains than lactulose while control animals ranged between the experimental feedings. Ingestion of milk replacer was reduced in lactulose treated animals. Additionally differences of villus height in jejunum ( P 5 0.07) and ileum ( P 5 0.03) could be found with an increase for lactulose treated animals and a decrease for inulin treated animals. In ileum the density of proliferative epithelial cells tended to be lower in inulin treated and higher in lactulose treated animals ( P 5 0.08). Both inulin and lactulose tended to decrease the quantity of goblet cells in the tips of ileal villi ( P 5 0.07).
    [Show full text]
  • Functional and Therapeutic Potential of Inulin: a Comprehensive Review
    Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 Functional and therapeutic potential of inulin: A comprehensive review Waqas Ahmed & Summer Rashid To cite this article: Waqas Ahmed & Summer Rashid (2017): Functional and therapeutic potential of inulin: A comprehensive review, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2017.1355775 To link to this article: https://doi.org/10.1080/10408398.2017.1355775 Accepted author version posted online: 11 Aug 2017. Published online: 11 Oct 2017. Submit your article to this journal Article views: 193 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [Texas A&M University Libraries] Date: 09 January 2018, At: 10:35 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2017.1355775 Functional and therapeutic potential of inulin: A comprehensive review Waqas Ahmeda and Summer Rashidb aDepartment of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan; bNational Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan ABSTRACT KEYWORDS Inulin as a heterogeneous blend of fructose polymers is diversely found in nature primarily as storage Inulin; chicory; Jerusalem carbohydrates in plants. Besides, inulin is believed to induce certain techno-functional and associated artichoke; fat replacer; properties in food systems. Inulin owing to its foam forming ability has been successfully used as fat hypercholesterolemia; replacer in quite a wide range of products as dairy and baked products.
    [Show full text]
  • The Effects of Hydrocolloids-Protein Mixture As a Fat Replacer on Physicochemical Characteristics of Sugar-Free Muffin Cake
    foods Article The Effects of Hydrocolloids-Protein Mixture as a Fat Replacer on Physicochemical Characteristics of Sugar-Free Muffin Cake: Modeling and Optimization Elahe Azmoon 1, Farzad Saberi 1,2,* , Fatemeh Kouhsari 2,3 , Mehdi Akbari 2,3,* , Marek Kieliszek 4,* and Amir Vakilinezam 2 1 Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran; [email protected] 2 Department of Research and Development, Zarkam Company, Zar Industrial and Research Group, Hashtgerd 33611-18549, Iran; [email protected] (F.K.); [email protected] (A.V.) 3 Department of Food Science, Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran 4 Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland * Correspondence: [email protected] (F.S.); [email protected] (M.A.); [email protected] (M.K.) Abstract: The purpose of this study was to evaluate the hydrocolloids–protein mixture as a fat replacer in sugar-free low-fat muffin cakes. In this study, a hydrocolloids mixture including konjac and guar gums and soy protein isolate (SPI) was applied to the cake. The combination of gums and SPI was named as mixture of stabilizers (MOS), and the treatments were designed using Design- Citation: Azmoon, E.; Saberi, F.; Expert software and the response surface methodology (RSM) in order to optimize and reduce the Kouhsari, F.; Akbari, M.; Kieliszek, oil content of muffin cakes by replacing it with MOS.
    [Show full text]
  • Investigating the Effects of Inulin As a Carbohydrate Based Fat Replacer on Rheological and Sensory Properties of UHT Cream
    Investigating the Effects of Inulin as a Carbohydrate Based Fat Replacer on Rheological and Sensory Properties of UHT Cream Maryam Yousefi, Simin Asadollahi, Elahesadat Hosseini International Journal of Advanced Biological and Biomedical Research Journal DOI: 10.18869/IJABBR ISSN: 2322-4827 CODEN (USA): IJABIS http://ijabbr.com Copyright © 2018 by authors and the Sami Publishing Corporation(SPC). This work is licensed under the Creative Commons Attribution International License (CC BY4.0). https://creativecommons.org/licenses/by/4.0/ Available online at http://ijabbr.com International Journal of Advanced Biological and Biomedical Research 6(2) (2018) 87–94 Original Article Open Access Investigating the Effects of Inulin as a Carbohydrate Based Fat Replacer on Rheological and Sensory Properties of UHT Cream Maryam Yousefi1, Simin Asadollahi1,*, Elahesadat Hosseini2 1Department of Food Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran. 2Department of Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran. Abstract The problems associated with the consumption of high-fat foods have increased the requirement to use new formulations based on fat replacer. Inulin has textural properties and it’s a prebiotic source. Due to the cream’s wide usage in dairy industry, it is tried to make cream with textural and organoleptic characteristics that contains the least amount of calories. Meanwhile, Table cream (30%) was used as basis for production and the treatments were added to the different containers which contain skim milk and the temperature was raised to about 70 °C to completely dissolve the mixture. Then, skim milk containing hydrocolloids (T1 = 0, T2 = 0.5%, T3 = 1%, T4 = 1/5%, T5 = 2 and T6 = 2/5% w/w) were added to the cream tanks until the fat percentage was reached to 10%.
    [Show full text]