Up Your Creek! the Electronic Newsletter of the Alameda Creek Alliance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Ver. 1.1): Hydrogeologic Controls and Geochemical Indicators Of
Prepared in cooperation with the East Bay Municipal Utility District, City of Hayward, and Alameda County Water District Hydrogeologic Controls and Geochemical Indicators of Groundwater Movement in the Niles Cone and Southern East Bay Plain Groundwater Subbasins, Alameda County, California Scientific Investigations Report 2018–5003 Version 1.1, February 2019 U.S. Department of the Interior U.S. Geological Survey Hydrogeologic Controls and Geochemical Indicators of Groundwater Movement in the Niles Cone and Southern East Bay Plain Groundwater Subbasins, Alameda County, California By Nick Teague, John Izbicki, Jim Borchers, Justin Kulongoski, and Bryant Jurgens Prepared in cooperation with the East Bay Municipal Utility District, City of Hayward, and Alameda County Water District Scientific Investigations Report 2018–5003 Version 1.1, February 2019 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DAVID BERNHARDT, Acting Secretary U.S. Geological Survey William H. Werkheiser, Deputy Director exercising the authority of the Director U.S. Geological Survey, Reston, Virginia: 2019 First release: February 2018 Revised: February 2019 (ver. 1.1) For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. -
Appendix 4.15-1 Water Supply Assessment
Appendix 4.15-1 Water Supply Assessment /lfCWD HLHHEOHCOUAIFYWHFEHO/SFH/CF DIRECTORS 43885 SOUTH GRIMMER BOULEVARD • FREMONT, CALIFORNIA 94538 MANAGEMENT (510) 668-4200 • FAX (510) 770-1793 • www.acwd.org ROBERT AZIZ AKBARI SHAVER General Manager JAMES G. GUNTHER KURT ARENDS JUDY C. HUANG Operations and Maintenance PAULSETHY LAURA J. HIDAS JOHN H. WEED Water Resources ED STEVENSON June 24, 2020 Engineering and Technology Services JONATHAN WUNDERLICH Finance VIA ELECTRONIC MAIL Carmela Campbell ([email protected]) Economic and Community Development Director City of Union City 34009 Alvarado-Niles Road Union City, CA 94587 Dear Ms. Campbell: Subject: Water Supply Assessment for Station East Project As requested by the City of Union City, Alameda County Water District (ACWD) has prepared a water supply assessment for the Station East Project (enclosed). The water supply assessment was adopted by the ACWD Board of Directors on June 11, 2020 (resolution enclosed). The water supply assessment was prepared pursuant to California Water Code Section §10910 which requires that a water supply assessment be provided to cities or counties for a project that is subject to the California Environmental Quality Act (CEQA), and which surpasses a threshold for the number of housing units and/or square feet of commercial/industrial buildings. The water supply assessment documents sources of water supply, quantifies water demands, evaluates drought impacts, and provides a comparison of water supply and demand that is the basis for an assessment of water supply sufficiency. The water supply assessment also includes provisions for Water Conservation to be implemented by the Project applicant. As noted in the assessment, these provisions will be a condition of water service to the Project. -
CALIFORNIA FISH and GAME ' CONSERVATION of WILDLIFE THROUGH EDUCATION'
REPRINT FROM CALIFORNIA FISH and GAME ' CONSERVATION OF WILDLIFE THROUGH EDUCATION' . VOLUME 50 APRIL 1964 NUMBER 2 ANNUAL ABUNDANCE OF YOUNG STRIPED BASS, ROCCUS SAXATILIS, IN THE SACRAMENTO- SAN JOAQUIN DELTA, CALIFORNIA' HAROLD K. CHADWICK Inland Fisheries Branch California Department of Fish and Game INTRODUCTION A reliable index of striped bass spawning success would serve two important management purposes. First, it would enable us to determine if recruitment is directly related to spawning success. If it is, we could predict important changes in the fishery three years in advance. Second, it would give insight into environmental factors responsible for good and poor year-classes. Besides increasing our understanding of the bass population, this knowledge might be used to improve recruit- ment by modifying water development plans in the Sacramento-San Joaquin Delta under the State Water Resources Development System. Fyke net samples provided the earliest information on young bass distribution (Hatton, 1940). They were not promising for estimating abundance, and subsequent sampling of eggs and larvae with plankton nets also had important limitations (Calhoun and Woodhull, 1948; Cal- houn, Woodhull, and Johnson, 1950). An exploratory survey with tow nets in the early summer of 1947 (Calhoun and Woodhull, 1948) found bass about an inch long dis- tributed throughout the lower Sacramento-San Joaquin River system except in the Sacramento River above Isleton. This suggested the best index of spawning success would be the abundance of bass about an inch long, measured by tow netting. In 1948 and 1949 extensive tow net surveys were made to measure the relative abundance of young bass in the Delta between Rio Vista and Pittsburg (Erkkila et al., 1950). -
Public Sediment / Unlock Alameda Creek
PUBLIC SEDIMENT / UNLOCK ALAMEDA CREEK WWW.RESILIENTBAYAREA.ORG ◄ BAYLANDS = LIVING INFRA STR CTY\, E' j(II( ........ • 400 +-' -L C Based on preliminary 0 analysis by SFfl. A more , detailed analysis is beinq E TIDAL MARSH conducted as part of -l/) the Healthy Watersheds l/) ro Resilient Aaylands E project (hwrb.sfei.org) +-' C QJ E "'O MUDFLAT QJ V1 SAC-SJ DELTA 0 1 Sediment supply was estimated by 'Sediment demand was estimated multiplying the current average using a mudflat soil bulK density of annual c;ediment load valuec; from 1.5 q c;ediment/rm c;oil (Brew and McKee et al. (in prep) by the number Williams :?010), a tidal marsh soil of years between 201 r and2100. bulK density ot 0.4 g sed1m ent / cm 3 c;oil (Callaway et al. :?010), and baywide mudflat and marsh area circa 2009 (BAARI vl). BAYLANDS TODAY BAYLANDS 2100 WITH 3' SLR LOW SEDIMENT SUPPLY BAYLANDS 2100 WITH 7' SLR LOW SEDIMENT SUPPLY WE MUST LOOK UPSTREAM TRIBUTARIES FEED THE BAY SONOMA CREEK NAPA RIVER PETALUMA CREEK WALNUT CREEK ALAMEDA CREEK COYOTE CREEK GUADALUPE CREEK ALAMEDA CREEK SEDIMENTSHED ALAMEDA CREEK ALAMEDA CREEK WATERSHED - 660 SQMI OAKLAND ALAMEDA CREEK WATERSHED SAN FRANCISCO SAN JOSE THE CREEK BUILT AN ALLUVIAL FAN AND FED THE BAY ALAMEDA CREEK SOUTH BAY NILES CONE ALLUVIAL FAN HIGH SEDIMENT FEEDS MARSHES TIDAL WETLANDS IT HAS BEEN LOCKED IN PLACE OVER TIME LIVERMORE PLEASANTON SUNOL UNION CITY NILES SAN MATEO BRIDGE EDEN LANDING FREMONT NEWARK LOW SEDIMENT CARGILL SALT PONDS DUMBARTON BRIDGE SEDIMENT FLOWS ARE HIGHLY MODIFIED SEDIMENT IS STUCK IN CHANNEL IMPOUNDED BY DAMS UPSTREAM REDUCED SUPPLY TO THE BAY AND VULNERABILITIES ARE EXACERBATED BY CLIMATE CHANGE EROSION SUBSIDENCE SEA LEVEL RISE THE FLOOD CONTROL CHANNEL SAN MATEO BRIDGE UNION CITY NILES RUBBER DAMS BART WEIR EDEN LANDING PONDS HEAD OF TIDE FREMONT 880 NEWARK TIDAL EXTENT FLUVIAL EXTENT DUMBARTON BRIDGE. -
1 EVIDENCE THAT ACWD HAS OPERATED the NILES CONE SUB-BASIN 2-09.01 WITHIN ITS SUSTAINABLE YIELD the Alameda County Water Distri
DRAFT EVIDENCE THAT ACWD HAS OPERATED THE NILES CONE SUB-BASIN 2-09.01 WITHIN ITS SUSTAINABLE YIELD The Alameda County Water District (ACWD) manages the Niles Cone Sub-basin 2-09.01 (Niles Cone) in the Cities of Fremont, Newark, Union City, and southern Hayward (map in Figure 1A and east-west cross-section in Figure 1B). Groundwater comprises approximately 40% of the supply to ACWD’s distribution system. ACWD operates production wells and artificial recharge facilities (also commonly referred to as managed-aquifer-recharge) in the Niles Cone. By integrating recharge and pumping operations, and implementing other vital programs, ACWD has operated the Niles Cone within its sustainable yield over the last five decades, including the most recent 10-year period from 2005 to 2015. To support this analysis, the following is provided: A description of the Niles Cone Groundwater Basin and its sustainable yield. A summary of ACWD programs that ensure that total pumping does not exceed the sustainable yield. Data on basin conditions over the last 10 years. Introduction – Sources of Information ACWD would like to emphasize that this document is based on existing and publically available information, including the Survey Report on Groundwater Conditions (published annually), the Groundwater Monitoring Report (published annually), Bulletins published by the California Department of Water Resources, reports of hydrogeologic investigations conducted by ACWD and financially supported by DWR, ACWD integrated planning and operations reports, and other studies. The Niles Cone Groundwater Basin and its Sustainable Yield The long-term average sustainable pumping yield of the Niles Cone, like any other groundwater basin, is determined by the amount of recharge to productive aquifers less natural (non-pumping) sinks from the aquifers. -
The Voyage Home U.S. Windsurfing Nationals Bay Bridge Closure
AYAY ROSSINGSROSSINGS “The VoiceBB of the Waterfront” CC August 2007 Vol.8, No.8 The Voyage Home Long-Haul Freighter Journey Bay Bridge Closure Behind the Labor Day Project U.S. Windsurfi ng Nationals Competition at Crissy Field Complete Ferry Schedules for all SF Lines Upscale. Downtown. Voted Best Restaurant 4 Years Running For $300,000 less. Lunch & Dinner Daily Banquets Corporate Events www.scomas.com (415)771-4383 Fisherman’s Wharf on Pier 47 Foot of Jones on Jefferson Street Zinfandel, Syrah and more. Rich, ripe, fruit-forward Zins, Syrahs–and more– Eight Orchids in downtown that get top scores from critics and Wine Spectator. Oakland’s Chinatown is Visit us to taste your way through the best of California. redefining urban style and city convenience. At a price you won’t find anywhere in San Francisco. Discover unparalleled luxury in these exceptional condominium homes. Affordably priced from the high $300,000s. The Sales Center and furnished model at 425 7th Street are open Monday 1 to 6 and Tuesday-Sunday 11 to 6. WINERY & TASTING ROOM 2900 Main Street, Alameda, CA 94501 Complimentary Wine Tasting Accessible by San Francisco Bay ferry, we’re just feet from the Alameda Terminal! Open Daily 11–6 510-835-8808 8orchidsmovie.com 510-865-7007 Exclusively represented by The Reiser Group www.RosenblumCellars.com 2 August 2007 BAYCROSSINGS www.baycrossings.com columns feature 15 SAILING ADVENTURES 12 THE VOYAGE HOME 12 Making Your Sailboat Bay Bridge Sand Takes Look Good Long Trip from Canada guides by Scott Alumbaugh by Tom Paiva 07 WATERFRONT -
Groundwater Resources and Groundwater Quality
Chapter 7: Groundwater Resources and Groundwater Quality Chapter 7 1 Groundwater Resources and 2 Groundwater Quality 3 7.1 Introduction 4 This chapter describes groundwater resources and groundwater quality in the 5 Study Area, and potential changes that could occur as a result of implementing the 6 alternatives evaluated in this Environmental Impact Statement (EIS). 7 Implementation of the alternatives could affect groundwater resources through 8 potential changes in operation of the Central Valley Project (CVP) and State 9 Water Project (SWP) and ecosystem restoration. 10 7.2 Regulatory Environment and Compliance 11 Requirements 12 Potential actions that could be implemented under the alternatives evaluated in 13 this EIS could affect groundwater resources in the areas along the rivers impacted 14 by changes in the operations of CVP or SWP reservoirs and in the vicinity of and 15 lands served by CVP and SWP water supplies. Groundwater basins that may be 16 affected by implementation of the alternatives are in the Trinity River Region, 17 Central Valley Region, San Francisco Bay Area Region, Central Coast Region, 18 and Southern California Region. 19 Actions located on public agency lands or implemented, funded, or approved by 20 Federal and state agencies would need to be compliant with appropriate Federal 21 and state agency policies and regulations, as summarized in Chapter 4, Approach 22 to Environmental Analyses. 23 Several of the state policies and regulations described in Chapter 4 have resulted 24 in specific institutional and operational conditions in California groundwater 25 basins, including the basin adjudication process, California Statewide 26 Groundwater Elevation Monitoring Program (CASGEM), California Sustainable 27 Groundwater Management Act (SGMA), and local groundwater management 28 ordinances, as summarized below. -
Abundance and Distribution of Shorebirds in the San Francisco Bay Area
WESTERN BIRDS Volume 33, Number 2, 2002 ABUNDANCE AND DISTRIBUTION OF SHOREBIRDS IN THE SAN FRANCISCO BAY AREA LYNNE E. STENZEL, CATHERINE M. HICKEY, JANET E. KJELMYR, and GARY W. PAGE, Point ReyesBird Observatory,4990 ShorelineHighway, Stinson Beach, California 94970 ABSTRACT: On 13 comprehensivecensuses of the San Francisco-SanPablo Bay estuaryand associatedwetlands we counted325,000-396,000 shorebirds (Charadrii)from mid-Augustto mid-September(fall) and in November(early winter), 225,000 from late Januaryto February(late winter); and 589,000-932,000 in late April (spring).Twenty-three of the 38 speciesoccurred on all fall, earlywinter, and springcounts. Median counts in one or moreseasons exceeded 10,000 for 10 of the 23 species,were 1,000-10,000 for 4 of the species,and were less than 1,000 for 9 of the species.On risingtides, while tidal fiats were exposed,those fiats held the majorityof individualsof 12 speciesgroups (encompassing 19 species);salt ponds usuallyheld the majorityof 5 speciesgroups (encompassing 7 species); 1 specieswas primarilyon tidal fiatsand in other wetlandtypes. Most speciesgroups tended to concentratein greaterproportion, relative to the extent of tidal fiat, either in the geographiccenter of the estuaryor in the southernregions of the bay. Shorebirds' densitiesvaried among 14 divisionsof the unvegetatedtidal fiats. Most species groups occurredconsistently in higherdensities in someareas than in others;however, most tidalfiats held relativelyhigh densitiesfor at leastone speciesgroup in at leastone season.Areas supportingthe highesttotal shorebirddensities were also the ones supportinghighest total shorebird biomass, another measure of overallshorebird use. Tidalfiats distinguished most frequenfiy by highdensities or biomasswere on the east sideof centralSan FranciscoBay andadjacent to the activesalt ponds on the eastand southshores of southSan FranciscoBay and alongthe Napa River,which flowsinto San Pablo Bay. -
Hydrostratigraphy of the Shallow Aquifer in the Niles Cone Groundwater Basin
San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2012 Hydrostratigraphy of the Shallow Aquifer in the Niles Cone Groundwater Basin Ramon W. Cioco San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Cioco, Ramon W., "Hydrostratigraphy of the Shallow Aquifer in the Niles Cone Groundwater Basin" (2012). Master's Theses. 4192. DOI: https://doi.org/10.31979/etd.b6sy-fb6j https://scholarworks.sjsu.edu/etd_theses/4192 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. HYDROSTRATIGRAPHY OF THE SHALLOW AQUIFER IN THE NILES CONE GROUNDWATER BASIN A Thesis Presented to The Faculty of the Department of Geology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Ramon W. Cioco August 2012 ©2012 Ramon W. Cioco ALL RIGHTS RESERVED HYDROSTRATIGRAPHY OF THE SHALLOW AQUIFER IN THE NILES CONE GROUNDWATER BASIN by Ramon W. Cioco APPROVED FOR THE DEPARTMENT OF GEOLOGY SAN JOSE STATE UNIVERSITY August 2012 Dr. June A. Oberdorfer Department of Geology Dr. David W. Andersen Department of Geology Mr. Douglas T. Young Alameda County Water District ABSTRACT HYDROSTRATIGRAPHY OF THE SHALLOW AQUIFER IN THE NILES CONE GROUNDWATER BASIN by Ramon W. Cioco The Shallow Aquifer in the Niles Cone Groundwater Basin, southern Alameda County, California, can act as a migration pathway for surface contaminants into the underlying Newark Aquifer, a source of water supply. -
Dredging at Lagoon Intake Structure Initial Study
DREDGING AT LAGOON INTAKE STRUCTURE INITIAL STUDY City of Foster City September 16, 2016 1 2 SEPTEMBER 2016 FOSTER CITY DREDGING AT LAGOON INTAKE STRUCTURE INITIAL STUDY TABLE OF CONTENTS PROJECT DESCRIPTION ........................................................................................................ 5 ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED ....................................................... 27 ENVIRONMENTAL CHECKLIST ............................................................................................ 29 I. Aesthetics .......................................................................................................... 30 II. Agriculture and Forest Resources ...................................................................... 52 III. Air Quality .......................................................................................................... 54 IV. Biological Resources .......................................................................................... 74 V. Cultural Resources ........................................................................................... 111 VI. Hydrology and Water Quality............................................................................ 116 VII. Hazards ........................................................................................................... 136 VIII. Geology and Soils ............................................................................................ 146 IX. Greenhouse Gas Emissions ............................................................................. -
Deconstructing Mare Island Reconnaissance in the Ruins
Downloaded from http://online.ucpress.edu/boom/article-pdf/2/2/55/381274/boom_2012_2_2_55.pdf by guest on 29 September 2021 richard white Photographs by Jesse White Deconstructing Mare Island Reconnaissance in the ruins The detritus still he Carquinez Strait has become driveover country. Beginning around Vallejo and running roughly six miles to Suisun Bay, Grizzly Bay, and the Sacramento possesses a T River Delta, the Strait has, in the daily life of California, reduced down to the Carquinez and Benicia-Martinez bridges. Motorists are as likely to be searching for grim grandeur. their toll as looking at the land and water below. Few will exit the interstates. Why stop at Martinez, Benicia, Vallejo, Crockett, or Port Costa? They are going west to Napa or San Francisco or east to Sacramento. Like travelers’ destinations, California’s future also appears to lie elsewhere. Once, much of what moved out of Northern California came through these communities, but now the Strait seems left with only the detritus of California’s past. The detritus still possesses a grim grandeur. To the east, the Mothball Fleet— originally composed of transports and battleships that helped win World War II— cluster tightly together, toxic and rusting, in Suisun Bay. Just west of the bridges, Mare Island (really a peninsula with a slough running through it) sits across the mouth of the Napa River. The United States established a naval base and shipyard there in 1854, and the island remained central to US military efforts from the Civil Boom: A Journal of California, Vol. 2, Number 2, pps 55–69. -
Napa River Fisheries Study: the Rutherford Dust Society Restoration Reach Napa County, California
NAPA RIVER FISHERIES STUDY: THE RUTHERFORD DUST SOCIETY RESTORATION REACH NAPA COUNTY, CALIFORNIA JANUARY, 2005 PREPARED BY JONATHAN KOEHLER BIOLOGIST NAPA COUNTY RESOURCE CONSERVATION DISTRICT SUMMARY Chinook salmon (Oncorhynchus tshawytscha) have been sporadically reported in the Napa River since the 1980’s; however no data on run size, timing, or origin have been collected. In 2003 and 2004, significant numbers of fall-run Chinook salmon were documented in the Napa River and several tributaries. In 2004, the spawning period began immediately following the first storm outflow in early November, peaked in early December, and was over by the end of December. To better estimate the size and distribution of the run, we conducted redd counts and carcass surveys along a 3.6 mile stretch of the mainstem Napa River. Biweekly surveys in November and December, 2004 documented 62 redds and 102 live Chinook salmon spawning and holding. Two salmon had adipose fin clips; one fish was alive and spawning and the other was a dead carcass, from which the snout was removed for analysis. Two additional adipose fin clipped fish were found in a separate survey of Sulphur Creek, tributary to the Napa River upstream of the Rutherford reach. In total, the snouts of three adipose fin clipped carcasses were removed for coded wire tag analysis by the Department of Fish & Game; only one tag was recovered. The recovered tag showed the fish to be a 2002 spring-run Chinook salmon from the Feather River Hatchery released in Benicia in 2003. It is not clear what proportion of the entire run were of hatchery origin or wild stock; additional genetic analysis is needed.