APPENDIX Introductory Lectures 1. "Introduction to the F-Elements

Total Page:16

File Type:pdf, Size:1020Kb

APPENDIX Introductory Lectures 1. APPENDIX Introductory Lectures 1. "Introduction to the f-Elements", R. D. Fischer. 2. "Introduction to Organometallic Chemistry", T. J. Marks. Contributed Seminars 1. "Magnetic Properties of Trivalent Organometallic Uranium CompoWlds" , Reinhardt Klenze, Clemens M. Aderhold, and Basil Kanellakopulos, Kernforschungszentrum Karlsruhe, Institut fUr Heisse Chemie and Fachbereich Physikalische Olemie der Universitat Heidelberg, Federal Republic of Germany. 2. "Electrochemical studies on Uranocene", Jared A. Butcher, Jr. , James Q. Olambers, and Richard M. Pagni, Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, USA. 3. "Organoscandium Complexes Containing Large Organic Rings" , A. Westerhof, B. J. Roesink and H. J. de Liefde Meij er, Laboratoriu m voor Anorganische Scheikunde, RijksWliversiteit, Nijenborgh 16, 9747 AG Groningen, The Netherlands. 4. "Bis(pentamethylcyclopentadienyl)Actinide Alkyls: Facile Activation of Carbon Monoxide and Formation of Oxygen-Bonded Migratory Insertion Products", Juan M. Manriquez, Paul J. Fagan, and Tobin J. Marks, Department of Chemistry, Northwestern University, Evanston, IL 60201, USA; Cynthia Secaur Day and Victor W. Day, Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA. 5. "The Consistent Interpretation of the Spectroscopic and Magnetic Properties of Octahedral 5fl Halide Compounds of Protactinium(IV), Uranium(V) and NeptWlium(VI)", K. Eichberger and F. Lux, Institut fur Radiochemie der Technischen UniversiUit Munchen, D-8046 Garching, Federal Republic of Germany. 6. "Synthesis and Spectroscopy of Indenyl Uranium(IV) Alkyls and Dialkyls" , Afif M. Seyam and Ghaida' Ala' Eddein, Department of Chemistry, University of Jordan, Amman, Jordan. 7. "New Synthetic Routes in Organoactinide Chemistry", J. C. Green, Inorganic Chemistry Laboratory, South Parks Road, Oxford, Great Britain. B. "Recent Advances in Uranium(III) Chemistry", David C. Moody, Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87545, USA. 497 498 APPENDIX 9. "Transferred Hyperfine Interaction Between the Rare-Earth Ions and Neighbouring Nuclei of Diamagnetic Ions in Simple Compounds Studied By NMR!I, Rolf Nevald, Laboratory of Electrophysics, 'll1e Technical University of Denmark, DK-2800 Denmark. 10. "An Isotope Effect in IH- NMR and Magnetic Susceptibility of Organo­ metallic Uranium Compounds", R. v. Ammon, C. M. Aderhold and B. Kanellakopulos, Kernforschungszentrum Karlsruhe, Federal Republic of Germany. ll. "Uranium (V) and Uranium (VI) AIkoxides: Preparation, Properties, and Photochemistry", Steven S. Miller, Tobin J. Marks, and Eric Weitz, Department of Chemistry, Northwestern University, Evanston, IL 60201, USA. 12. "Nonaqueous Reductive Lanthanide Chemistry" W.J. Evans, S. C. Engerer, A. C. Neville and A. L. Wayda, Department of 'Chemistry, University of Chicago, Olicago, IL 60637, USA. 13. "Studies on Uranium(V) and Uranium(VI) AIkoxides: Syntheses, 13C NMR, and Magnetic Properties1t, P. Gary Eller and P.J. Vergamini, Los Alamos Scientific Laboratory, University of Claifornia, Los Alamos, New Mexico, 87545, USA. 14. "Reexamination of the Electronic structure of U(NCS)~(N(C2H5)4)4'" Edgar Soulie and Hubert Marquet-Ellis, Division de Chimie, Service de Olimie Physique, Centre DIEtudes Nucleaires De Saclay, B. P. N° 2 - 91190 - Gif Sur Yvette, France. 15. "Anionic Tetra 1'T -Allyl Complexes of Lanthanide Elements~l, S. Poggio, M. Brunelli, U. Pedretti, G. Lugli, Snamprogetti-Diris-S. Donato Milanese, Milan, Italy. 16. "Photoionization of f Electrons With UV Radiation", Russell G. Egdell, Inorganic Olemistry Department, South Parks Road, Oxford, OX! 3QR, Great Britain. 17."Magnetic Investigations on Highly Symmetric Octathiocyanato Complexes of Tetravalent Actinides", Arno H. stollenwerk, Reinhardt Klenze, and Basil Kanellakopulos, Kernforschungszentrum Karlsruhe, Institut fiir Heisse Chemie and Fachbereich Physikalische Olemie der Universitat Heidelberg, Federal Republic of Gemany. 18. "Some NMR Spectroscopic Results on Substituted Uran.ocenes and Thorocenes A. streitwieser, Jr., Department of Chemistry, University of California, Berkeley, california 94770, USA. APPENDIX 499 19. "Non-Aqueous Olemistry of Uranium Pentafluoride", P. Gary Eller and G. W. Halstead, Los Alamos Scientific Laboratory, University of california, Los Alamos, New Mexico 87545 USA. 20. "Preparation and structure of Novel Uranium-Organyls, (,,5_C5H5)3U(IV)XL, with Trigonal-Bipyramidal Coordination", E. Klahne,J.. Kopf and R. D. Fischer, Institut ffir Anorganische und Angewandte Olemie der Universitat Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg, 13, Federal Republic of Germany. 21. "structural Aspects of Organoactininide Complexes", Victor W. Day, Sara H. Vollmer and Cynthia S• .Day, Department of Chemistry, Univer- sity of Nebraska, Lincoln, Nebraska 68588, USA; Tobin J. Marks, Richard D. Ernst, William J. Kennelly, Juan M. Manriquez and Paul J. Fagan, Department of Olemistry, Northwestern University, Evanston, IL 60201, USA; and Josef Takats and Anita L. Arduini, Department of Chemistry, Univer­ sity of Alberta, Edmonton, Alberta, Canada. INDEX absorption spectra of uranocenes 167 actinide alkyls, steric crowding and thermal stability 242,243 catalysts 389 complexes, lability of 221,222 cyanides 239 ions, lieand field splitting in 221 tetraalkyls 242 tetrabenzyls 241 activation barrier for hydride exchange 347 for rotations 356 addition, oxidative 133 adducts with metal carbonyl compounds 90 adducts with metal nitrosyl compounds 90 adiabatic transitions 433 a-elimination 101,102 A1R3 385 alkylation reactions catalyzed by uranium complexes 390 alkyl lanthanide anions 241,242 alkyl lanthanide iodides 241 alkyls, actinide 113 bis(indenyl) 126 bis(pentamethylcyclopentadienyl) 117 carbon monoxide, insertion of 138 homoleptic 128 hydrogenolysis 136 metal 262,263 mono (pentamethylcyclopentadienyl) 127 protonolysis 136 thermal stability 132 thermolysis 131 tris(cyclopentadienyl) 113 tris(indenyl) 117 alkyl-~-chloro bridges 208 501 502 INDEX alkynyl complexes 93 allyl anion, vibrational spectrum 491 complexes 93,348 compounds, vibrational spectroscopy 491 allyls, metal 262-265 Am(C5H5)3 28 annulated cycloo~tatetraenes 156 1161annulene 162 aryl lanthanide anions 242 aryls, actinide 113 bis(pentamethylcyclopentadienyl) 117 homoleptic 128 metal 262 tris(cyclopentadienyl) 113 atomic theory 37-40 attenuation of ~Hcon 350 auto ionization processes 425 availability of (depleted) uranium 379 availability of rare earths 380 axially symmetric crystal fields 349 axial symmetry 41,43,51,57,76-79 bimetallic organometallic compounds 107 Birmingham, J.M. 83 bis(allyl)uranium(IV) dialkoxides 236 dichloride 235 bis(arene)uranium compounds 237 bis(cycloheptatrienyl)cerium(IV) dichloride 236 bis(cyclooctatetraene)actinide (IV) PE spectra 454 bis(cyclooctatetraene) complexes, vibrational spectroscopy 486 bis(cyclooctatetraene)neptunium 159 bis(cyclooctatetraene)plutonium 159 bis(cyclopentadienyl)actinide complexes, vibrational spectra 485 bis(cyclopentadienyl)actinide(IV) compounds, (C5H5)2AnX2 8 bis(cyclopentadienyl)lanthanide methyls 240 bis (cyclopentadienyl)uranium(IV)bis (borohydride) 233 bis(cyclopentadienyl)uranium bis(carbamates) 234 bis(dialkylamides) 233,234 dichloride 223 dichloride, disproportionation of 224 dihalides, complexes of 228 dihalides, u.v.-visible spectra of complexes 224,228,229 diphenyl 233 dithiolates 234 bis(indenyl)uranium(IV) dialkyls 235 bis(indenyl)uranium(IV) dichloride 235 INDEX 503 bis(n-allyl) complexes 445 bis(n8-cyclooctatetraene)uranium 149 bis(pentafluorophenyl)ytterbium 95,105 bis(pentamethylcyclopentadienyl) actinide dialkyls 240 actinide dihalides 230 actinide dihydrides 240 bis(phenylethynyl)ytterbium 95,105 bis(I,3,S,7-tetraphenylcyclooctatetraene)uranium 158 bis(2,3,S,6-tetrafluorophenyl)ytterbium lOS Bleaney, B. 359 Bleaney-factor 360 bond, actinide-to-carbon 113 bridged organoactinides 9 bridging benzyne 183 bromocyclooctatetraene ISS bulky alkyl groups, complexes with 97 butadiene lanthanide compounds 237 Cade t, L. D. 8 I Cahours, A. 81 carbene complex 134 carbon monoxide, migratory insertion 138 carbonyl complexes 445 catalytic act~v~ty in diolefin polymerization 388 catalytic aspects 381 Ce(CSHS)4 86 CF-treatments of uranocene 370 charge transfer absorption bands 285 chemical shift 338 CHISi(CH3)3 1 2 -compounds of Sc and Y 99 CH2C(CH3)3-compounds of Sc and Y 99 CH2Si(CH3)2C6H4-o-0CH3-compounds of Sc and Y 99 CH2Si(CH3)3-compounds of Sc and Y 99 CH2Si(CH3)3 ligand 97 (CSHS) 2MBH4 88 (CSHS)2U(BH4)2 347 I (CSHS)2Y(CH3)2AI(CH3)21 lOS (CSHS)3An .CNC 6HI I 30 (CSHS)3EuCNC6HII' variable-temperature PMR 361 (CSHS) 3Ln.CNC6HII 28 (CSHS)3LnCNC6HII 350 5M INMX (CSHS)3Np 27 (CSHS)3Np.CNC6HII 27 (CSHS)3Np.3THF 27 (CSHS)3MBH4 347 (CSHS)3PrCNC6HII 90 (CSHS)3UBH4 364 (CSHS)3UH 34S (CSHS)3UH3R 347 I (CSHS)3U(H20)21+-cation 343 (CSHS)3UNCS.CH3CN 343 (CSHS)3UOR 3S4 (CSHS)3UR-systems, NMR studies 34S (CSHS)3UX-systems 17 {(CSHS)3UXy}±n -systems 343 (CSHS)nMR-systems 96 (CSHS)nUIVXm 341 IC8H7P(t-C4H9)212U 3SS (CSH7Si(CH3)3)2U 369 (C9H7)nMR2-systems 96 coalescence temperature 3S2 complexes of the type LiLn(allyl)4 388 contact term 340 coordinately saturated 161 correlation energy 433 Coulomb interaction 40,47,69-71 coupling, vibrational 471,474 covalence model 314,323-32S,328-331 covalent bonding 64,2SI,2S4,267 cracking of petroleum 381 Crease, A.E. 34S crystal field 41-46,SI-60,64-68,72-7S,76-79,311,317,319,320, 321,323,324,326 crystal field splitting
Recommended publications
  • Edinburgh Research Explorer
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Edinburgh Research Explorer Edinburgh Research Explorer Organometallic Neptunium Chemistry Citation for published version: Arnold, P, Dutkiewicz, MS & Walter, O 2017, 'Organometallic Neptunium Chemistry', Chemical Reviews. https://doi.org/10.1021/acs.chemrev.7b00192 Digital Object Identifier (DOI): 10.1021/acs.chemrev.7b00192 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Chemical Reviews General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. May. 2020 Organometallic Neptunium Chemistry Polly L. Arnold,*a Michał S. Dutkiewicz,a,b Olaf Walter,b [a] EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FJ, UK. E-mail: [email protected]. [b] European Commission, DG Joint Research Centre, Directorate G - Nuclear Safety and Security, Advanced Nuclear Knowledge – G.I.5, Postfach 2340, D-76125, Karlsruhe, Germany. ABSTRACT Fifty years have passed since the foundation of organometallic neptunium chemistry, and yet only a handful of complexes have been reported, and even fewer fully characterised.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer Organometallic Neptunium Chemistry Citation for published version: Arnold, P, Dutkiewicz, MS & Walter, O 2017, 'Organometallic Neptunium Chemistry', Chemical Reviews. https://doi.org/10.1021/acs.chemrev.7b00192 Digital Object Identifier (DOI): 10.1021/acs.chemrev.7b00192 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Chemical Reviews General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 29. Sep. 2021 Organometallic Neptunium Chemistry Polly L. Arnold,*a Michał S. Dutkiewicz,a,b Olaf Walter,b [a] EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FJ, UK. E-mail: [email protected]. [b] European Commission, DG Joint Research Centre, Directorate G - Nuclear Safety and Security, Advanced Nuclear Knowledge – G.I.5, Postfach 2340, D-76125, Karlsruhe, Germany. ABSTRACT Fifty years have passed since the foundation of organometallic neptunium chemistry, and yet only a handful of complexes have been reported, and even fewer fully characterised. Yet increasingly, combined synthetic/spectroscopic/computational studies are demonstrating how covalently binding, soft, carbocyclic organometallic ligands provide an excellent platform for advancing the fundamental understanding of the differences in orbital contributions and covalency in f-block metal – ligand bonding.
    [Show full text]
  • Research Quarterly
    RESEARCH 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr QUARTERFirst QuarterL 2015Y Actinide Research Quarterly About the cover ARCH RESE Y The crystalline structure of plutonium in its elemental form, and in molecules and First Quarter 2015 103 102 101 QUARTERL 100 Lr compounds with other elements, is the basis for understanding the intriguing 99 No 98 Md 97 Fm 96 Es 95 Cf 94 Bk 93 Cm 92 Am 91 Pu 90 U Np 89 Th Pa chemistry, physics, and engineering of plutonium molecules and compounds. Ac Colored balls stacked according to the given crystalline symmetry of the five solid allotropes of plutonium are shown, left to right: α (monoclinic), β (body- centered monoclinic), γ (face-centered orthorhombic), δ (face-centered cubic), and ε (body-centered cubic). The graph is the original diffraction pattern for elemental plutonium. The background image is a PuCoGa5 single crystal with an underlying tetragonal symmetry that exhibits the unique electronic property of superconductivity associated with this symmetry. Glenn T. Seaborg Institute for Transactinium Science/Los Alamos National Laboratory The Seaborg Institute welcomes Brian L. Scott as guest editor for this special Actinide Research Quarterly issue showcasing the rich science and history of the crystallography of actinides. A staff scientist at Los Alamos National Laboratory, Brian has extensive experience in structure determination using single-crystal and powder x-ray diffraction techniques. He has explored molecular and solid-state structures in a variety of materials ranging from bioinorganic molecules to plutonium-based superconductors.
    [Show full text]
  • Synthesis, Structure, and Bonding of Linear Sandwich Complexes Of
    Lanthanidocenes: Synthesis, Structure, and Bonding of Linear Sandwich Complexes of Lanthanides Mathieu Xemard, Sebastien Zimmer, Marie Cordier, Violaine Goudy, Louis Ricard, Carine Clavaguera, Grégory Nocton To cite this version: Mathieu Xemard, Sebastien Zimmer, Marie Cordier, Violaine Goudy, Louis Ricard, et al.. Lan- thanidocenes: Synthesis, Structure, and Bonding of Linear Sandwich Complexes of Lanthanides. Journal of the American Chemical Society, American Chemical Society, 2018, 140 (43), pp.14433- 14439. hal-01999492 HAL Id: hal-01999492 https://hal.archives-ouvertes.fr/hal-01999492 Submitted on 11 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lanthanidocenes: Synthesis, Structure and Bonding of Linear Sand- wich Complexes of Lanthanides Mathieu Xémard,† Sébastien Zimmer, † Marie Cordier,† Violaine Goudy,† Louis Ricard, † Carine Clava- guéra,‡ and Grégory Nocton†* † LCM, CNRS, Ecole polytechnique, Université Paris-Saclay, Route de Saclay, 91128 Palaiseau cedex, France. ‡ - - -Saclay, 15 avenue Jean Perrin, 91405 Orsay Cedex, France. ABSTRACT: The article presents the synthesis, structure, and bonding of a series of neutral and linear sandwich compounds with the cyclononatetraenyl (Cnt) ligand and divalent lanthanides. These compounds account for the emergence of the lanthanidocene series in reference to the ferrocene and uranocene.
    [Show full text]
  • R^8Oo«I/^M Cer-W-- 9AM?
    r^8oo«i/^M ceR-W-- 9AM? SPECTROSCOPIE ET CHIMIE DE L'URANIUM IV 6. FOLCHER, P. RIGNY NOTE-CE/3 \ T- 00214b r •juirîf /<|8c •v SPECTROSCOPIE ET CHIMIE DE L*URANIUM IV G. FOLCHER, P. RIGNY PLAN INTRODUCTION 1.- SPECTRCSCOPIE ELECTRONIQUE ET MAGNETIQUE G. FOLCHER, H. MARQUET-ELLIS, P. RIGNY, E. SOULIE, G. GOODMAN "Etude spectroscopique d'un complexe d'uranium IV à haute symétrie U(NCS)8 [N(C2H5)4]Jj. J. Inorg. Nucl. Chem. 38, 747, 1976. E. SOULIE, G. GOODMAN, "Niveaux d'énergie électronique et susceptibilité magnétique des ions de configuration f en champ cristallin cubique". Theoret. Chim. Acta 41, 17, 1976. E. SOULIE, "Champ de coordinats, anisotropic de susceptibilité magnétique et déplacement chimique dans le tétrakis-(acetylacetonato) uranium IV", Inst. Phys. Conf. Ser. 3_7, 166, 1978. H. MARQUET-ELLIS,"Magnétochimie'.' Rapport interne, 1973. 2. CHIMIE EN SOLUTION AQUEUSE G. FOLCHER, J. LAMBARD, C. KIENER, P. RIGNY, "Etudes spec..c;sco?iques des complexes de sphère interne de l'uranium IV en solutions aqueuses". J. Chim. Phys. 75, 37, 1978. C. KIENER, G. FOLCHER, P. RIGNY, J. VIRLET, "Etude des complexes aqueux d'uranium IV en milieu acide par résonance magnétique nucléaire". Can. J. Chem. 54, 303, 1976. C. NEVEU, G. FOLCHER, A .M. LAURENT, "Etudes de complexes uranium IV-acides aminés par électrochimie, spectroscopie d'absorption et résonance magnétique nucléaire". J. Inorg. Nucl. Chem. 38, 1223, 1976. 3.- CHELATES D'URANIUM IV A. NAVAZA, C. de RANGO, P. CHARPIN, "The crystal structure of tetrakis (111 trifluoro - 4 phenyl butane 2,4 dionato) uranium", à paraître dans Acta cryst.
    [Show full text]
  • The Rtole of F-Orbitals in Chemical Bonding James Mccusker
    The rtole of f-orbitals in Chemical Bonding James McCusker Literature Seminar September lS, 1988 Many chemists have for years harbored the notion that f-orbitals (i.e., orbitals with i=3) do not become involved in chemical bonding since they possess limited radial extension and/or are energetically "buried" i:1 the atom compared with the d-orbitalsf While these arguments are generally true for the 4f orbitals of the lanthanides, the same cannot be said for all of the elements making up the Sf actinide group. In fact, whereas the reactivity of the lanthanides are all very similar, the actinides are best divided into two groups: the "light" acti­ nides, which include the elements Th through Pu; and the "heavy" actinides, which encompass the remaining elements. While the heavy actinides are "lanthanide-like" in many respects, the light actinides more closely resemble the transition metals, and hence comprise a 11 Sf transition series" rather than a "Sf lanthanide" group. A major problem associated with studying the actinides is the necessity for a relativisticAtreatment of tUese_systems, since spin-orbit and other effects become very large (Hs-o = 103 - 10 era 1). Theoretical work in this area has been diffi­ cult, and band theoretical calculations of actinide solids and intermetallic compounds are currently on the forefront of solid-state research.2•3 A simplified picture of the band structure of an actinide solid is given below. 4 V{R)= 0 Determining whether the f-electrons a~e localized (state 2 in the above) or itin­ erant (i.e., delocalized, state 3) di~ectly addresses the question of f-f over:ap in the solid.
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Electron Transfer in Organouranium and Transuranium Systems Permalink https://escholarship.org/uc/item/6q799871 Journal Inorganic chemistry, 29(1) Authors Eisenberg, D.C. Streitweiser, A. Kot, W.K. Publication Date 2017-12-06 eScholarship.org Powered by the California Digital Library University of California LBL-26933 ('. ~ Preprint Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Materials & Chemical Sciences Division JULa 19Jg Submitted to Inorganic Chemistry • ~ roo, ' A L.~RARY AND D...,CU,\1ENTS SECTION Electron Transfer in Some Organouranium and Transuranium Systems D.C. Eisenberg, A. Streitwieser, and W.K. Kot March 1988 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
    [Show full text]
  • R = Methyl, N- Butyl
    AN ABSTRACT OF THE THESIS OF Jeffrey Templeton Miller for the degree of Doctor of Philosophy in Chemistry presented on IA et)e07, /9816 Title:I.SYNTHESIS OF SUBSTITUTED CYCLOOCTATETR.AENIDE DIANIONS.LI. CYCLOHEPTADIENYL COMPLEXES OF THE d- AND f- TRANSITION ELEMENTS. III.REACTIONS OF CYCLOHEXANONE WITH METAL VAPORS Abstract approved: Redacted for Privacy Dr. Carroll W. De Kock I.Lithium alkyl and aryl monosubstituted cyclooctatetraenide dianions (LiCH-R; R = methyl, n- butyl, sec- butyl, tert- butyl, 287 phenyl and benzyl) were synthesized by the reaction of the appropri- ate organolithium reagent with cyclooctatetraenein diethyl ether or tetrahydrofuran.The reaction occurred cleanly and with good yield of lithium monosubstituted cyclooctatetraenide dianion at ambient or lower temperature for all organolithium reagents studied except tert-butyl-lithium. (TMEDA is needed as an activator for methyl- lithium. )Substituted cyclooctatetraenide dianions were character- ized by chemical reactions, i. e., oxidation,hydrolysis and deuter- olysis, as well as, preparation of organometallicderivatives, sub- stituted uranocenes. A two step mechanismfor the reaction is pro- posed which involves the addition of theorganolithium reagent to cyclooctatetraene followed by proton removal to yield the appropriate ten-Tr electron aromatic dianion. Several other alkyl organometallic compounds failed to produce mono substituted cyclooctatetraenide dianions on reactingwith cyclo- octatetraene.Lithium hexaalkyluranate(IV) complexes reacted with cyclooctatetraene
    [Show full text]
  • Des Matrices De Confinement Pour Déchets Nucléaires Aux Verres Du Patrimoine Spécialité Chimie
    Structure et cristallisation des verres d’oxydes : Des matrices de confinement pour déchets nucléaires aux verres du patrimoine Spécialité Chimie To cite this version: Spécialité Chimie. Structure et cristallisation des verres d’oxydes : Des matrices de confinement pour déchets nucléaires aux verres du patrimoine . Sciences de l’Homme et Société. Sorbonne Université UPMC, 2018. tel-01847279 HAL Id: tel-01847279 https://hal.archives-ouvertes.fr/tel-01847279 Submitted on 27 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mémoire d’Habilitation à Diriger les Recherches Spécialité : Chimie Structure et cristallisation des verres d’oxydes : Des matrices de confinement pour déchets nucléaires aux verres du patrimoine présenté par Daniel CAURANT Chargé de Recherche CNRS Institut de Recherche de Chimie-Paris (UMR 8247) Ecole Nationale Supérieure de Chimie de Paris (Chimie-ParisTech) Soutenue le 18 juillet 2018 devant le jury composé de : Stéphanie Rossano Professeur à l’Université Paris-Est Rapporteur Nadia Pellerin Maître de Conférences à l’Université
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Synthesis, Characterization
    UNIVERSITY OF CALIFORNIA, IRVINE Synthesis, Characterization and Reactivity of Organometallic Complexes of Uranium and Plutonium in the +2 and +3 Oxidation States DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry by Cory J. Windorff Dissertation Committee: Professor William J. Evans, Chair Professor Andrew S. Borovik Professor Jenny Y. Yang 2017 Chapter 1 © 2014 American Chemical Society Chapter 2 © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chapter 5 © 2017 American Chemical Society All other materials © 2017 Cory J. Windorff DEDICATION To my parents, wife and family. "You have to let go of your desires and just let the chemistry be what it is – only then will you achieve chemical enlightenment." –Andrew J. Gaunt ii TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES xi LIST OF COMPLEXES xiii ACKNOWLEDGMENTS xviii CURRICULUM VITAE xx ABSTRACT OF THE DISSERTATION xxvi INTRODUCTION 1 CHAPTER 1: 29Si NMR Spectra of Silicon-Containing Uranium 8 Complexes CHAPTER 2: Expanding the Chemistry of Molecular UII Complexes: 36 Synthesis, Characterization, and Reactivity of the II 1− {[C5H3(SiMe3)2]U } Anion CHAPTER 3: Trimethylsilylcyclopentadienyl (Cp') Uranium 91 Chemistry: Multiple Syntheses of Cp'4U and Cp'3UMe/Cp'3UCl Mixtures That Are More Crystalline Than Pure Cp'3UMe CHAPTER 4: Small-Scale Metal-Based Syntheses of Lanthanide 126 Iodide, Amide, and Cyclopentadienyl Complexes as Surrogates for Transuranic Reactions CHAPTER 5: Identification of the Formal +2 Oxidation State of 166 Plutonium: Synthesis and Characterization of the II 1– {[C5H3(SiMe3)]3Pu } Anion iii LIST OF FIGURES Page Figure 0.1 Probability distribution as a function of radial extension of 4f orbitals in 1 NdIII and 5f orbitals in UIII.
    [Show full text]
  • Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)
    NOMENCLATURE OF INORGANIC CHEMISTRY IUPAC Recommendations 2005 IUPAC Periodic Table of the Elements 118 1 2 21314151617 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3456 78910 11 12 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 * 57− 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba lanthanoids Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 ‡ 89− 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra actinoids Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo * 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ‡ 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry IUPAC RECOMMENDATIONS 2005 Issued by the Division of Chemical Nomenclature and Structure Representation in collaboration with the Division of Inorganic Chemistry Prepared for publication by Neil G.
    [Show full text]
  • Chemistry of the Actinide Elements - Norman M
    RADIOCHEMISTRY AND NUCLEAR CHEMISTRY – Vol. II - Chemistry of the Actinide Elements - Norman M. Edelstein, Lester R. Morss CHEMISTRY OF THE ACTINIDE ELEMENTS Norman M. Edelstein Lawrence Berkeley National Laboratory, Berkeley, California, USA Lester R. Morss U.S. Department of Energy, Washington, DC USA Keywords: actinide chemistry, actinide compounds, actinide metals, actinides in the environment, aqueous actinide behavior, biological behavior of actinides, bioremediation of actinides, comparison of 5f and 4f elements, fixation of plutonium, Oklo, removal of actinides from the body, separation of actinides, toxicity and radiotoxicity of plutonium, transuranium elements Contents 1. Introduction 2. Sources of actinide elements 2.1. Natural Sources 2.2. Artificial Production of Actinides 3. Electronic structure and oxidation states 3.1. Electronic Structure of Actinide Atoms and Ions 3.2. Oxidation States 4. The metallic state 4.1. Preparation of Actinide Metals 4.2. Crystal Structures and Properties 4.3. Electronic Structures 4.4. Superconductivity 5. Actinide compounds 5.1. Oxides (Stoichiometric and Non-Stoichiometric) 5.2. Other Inorganic Compounds 5.3. Crystal Structures and Ionic Radii 5.4. Coordination Complexes and Coordination Compounds 5.5. Organoactinide Compounds 6. Actinide chemistryUNESCO in solution – EOLSS 6.1. Stable and Unstable Ions in Aqueous Solution 6.2. Reduction Potentials 6.3. Hydrolysis and Polymerization 6.4. Ion ExchangeSAMPLE Chromatography CHAPTERS 6.5. Other Separations Technologies 7. Environmental actinide chemistry 7.1. Actinide Elements of Natural Origin 7.2. Artificial Actinides 7.3. Actinides in the Hydrosphere 7.4. Actinide Sorption and Mobility 8. Hazards 9. Biological behavior of actinides 9.1. General Considerations ©Encyclopedia of Life Support Systems (EOLSS) RADIOCHEMISTRY AND NUCLEAR CHEMISTRY – Vol.
    [Show full text]