Modelling Peatlands As Complex Adaptive Systems
Total Page:16
File Type:pdf, Size:1020Kb
MODELLING PEATLANDS AS COMPLEX ADAPTIVE SYSTEMS Paul John Morris Thesis submitted for the degree of PhD of the University of London, 22nd July 2009. Following examination, minor corrections submitted February 2010. Department of Geography, Queen Mary, University of London, 327 Mile End Road, London E1 4NS United Kingdom. 1 Abstract A new conceptual approach to modelling peatlands, DigiBog, involves a Complex Adaptive Systems consideration of raised bogs. A new computer hydrological model is presented, tested, and its capabilities in simulating hydrological behaviour in a real bog demonstrated. The hydrological model, while effective as a stand-alone modelling tool, provides a conceptual and algorithmic structure for ecohydrological models presented later. Using DigiBog architecture to build a cellular model of peatland patterning dynamics, various rulesets were experimented with to assess their effectiveness in predicting patterns. Contrary to findings by previous authors, the ponding model did not predict patterns under steady hydrological conditions. None of the rulesets presented offered an improvement over the existing nutrient-scarcity model. Sixteen shallow peat cores from a Swedish raised bog were analysed to investigate the relationship between cumulative peat decomposition and hydraulic conductivity, a relationship previously neglected in models of peatland patterning and peat accumulation. A multivariate analysis showed depth to be a stronger control on hydraulic conductivity than cumulative decomposition, reflecting the role of compression in closing pore spaces. The data proved to be largely unsuitable for parameterising models of peatland dynamics, due mainly to problems in core selection. However, the work showed that hydraulic conductivity could be expressed quantitatively as a function of other physical variables such as depth and cumulative decomposition. DigiBog architecture was used to build a simple, vertical, ecohydrological model of long-term peat accumulation. As model complexity was increased under a self- organisation approach, model predictions of peat accumulation rates and surface wetness changed dramatically, revealing the importance of feedbacks between peatland hydrological behaviour and peat physical properties. This work may have important implications for palaeoclimatic reconstructions which assume peatland surface wetness to be a reliable climatic indicator. The expansion of the model to include horizontal space altered model behaviour in quantitative and qualitative terms. 2 Table of Contents Abstract............................................................................................................................2 Table of Contents ............................................................................................................3 Chapter 1: Introduction .................................................................................................9 1.1. Peatland Process and Structure........................................................................10 1.1.1. Background ...................................................................................................10 1.1.2. Rationale part I: peatlands as important global carbon stores....................11 1.2. Modelling Peatland Development and Structure............................................14 1.2.1. The Groundwater Mound Hypothesis ...........................................................14 1.2.2. The Bog Growth Model.................................................................................15 1.2.3. Mixed or ecohydrological models.................................................................17 1.2.4. Surface patterning models ............................................................................18 1.2.5. An existing 3-D, dynamic model of peatland ecohydrology? .......................22 1.3. Complex Adaptive Systems and Emergent Behaviour...................................23 1.3.1. What are Complex Adaptive Systems?..........................................................23 1.3.2. Complexity versus chaos: an issue of scale? ................................................24 1.3.3. Peatlands as Examples of Complex Adaptive Systems .................................26 1.3.4. Rationale part II: the need for a new conceptual and modelling approach .27 1.4. Thesis Aim and Objectives................................................................................28 1.4.1. Model structure .............................................................................................28 1.4.2. Research objectives.......................................................................................29 1.5. Methodological Strategy....................................................................................31 1.5.1. Construction of DigiBog hydrological model...............................................31 1.5.2. Construction of a model of peatland patterning ...........................................31 1.5.3. Predicting hydraulic conductivity in peat soils.............................................31 1.5.4. Modelling peat accumulation over millennial timescales.............................32 Chapter 2: Modelling Bog Hydrology.........................................................................35 2.1. Basic Hydrological Concepts.............................................................................36 2.2. Groundwater Modelling....................................................................................38 2.3. Hydrological Submodel Description.................................................................41 2.3.1. Space, time and heterogeneity in DigiBog.................................................41 2.3.2. Algorithmic structure ....................................................................................43 2.3.3. Hydrological submodel outputs ....................................................................44 2.4. Testing DigiBog_Hydro.................................................................................46 3 2.4.1. Testing background.......................................................................................46 2.4.2. Testing for conservation of mass ..................................................................46 2.4.3. Testing water-table configurations against analytical solutions..................47 2.5. Extended Demonstration of Hydrological Model............................................52 2.5.1. Experimental setup........................................................................................52 2.5.2. Demonstration Results ..................................................................................57 2.6. Simulating a Real Bog........................................................................................60 2.6.1. Site description..............................................................................................60 2.6.2. Model setup, parameterisation .....................................................................63 2.6.3. Model spin-up ...............................................................................................65 2.6.4. Model response to rainfall events .................................................................68 2.7. Discussion and Conclusions...............................................................................70 Chapter 3: Cellular Models of Peatland Patterning..................................................73 3.1. Introduction to Peatland Patterning ................................................................74 3.1.1. Background ...................................................................................................74 3.1.2. Issues of scale................................................................................................75 3.1.3. Pattern classification and measurement.......................................................76 3.1.4. Models of peatland patterning ......................................................................76 3.1.5. Chapter aim, objectives.................................................................................80 3.2. Ponding Model of Peatland Patterning............................................................81 3.2.1. Model description and assumptions..............................................................81 3.2.2. Recreating and improving the ponding model..............................................83 3.2.3. Results ...........................................................................................................85 3.3. Nutrient-Scarcity Model for Peatland Patterning ..........................................91 3.3.1. Model description and assumptions..............................................................91 3.3.2. Building a water-scarcity model ...................................................................92 3.3.3. Results ...........................................................................................................92 3.4. Ecological Memory in Peatland Patterning.....................................................95 3.4.1. What is ecological memory? .........................................................................95 3.4.2. Ecological memory in peatlands...................................................................95 3.4.3. Incorporating memory into the ponding model ............................................97 3.4.4. Results .........................................................................................................100