Facial Emotion Recognition

Total Page:16

File Type:pdf, Size:1020Kb

Facial Emotion Recognition Issue 1 | 2021 Facial Emotion Recognition Facial Emotion Recognition (FER) is the technology that analyses facial expressions from both static images and videos in order to reveal information on one’s emotional state. The complexity of facial expressions, the potential use of the technology in any context, and the involvement of new technologies such as artificial intelligence raise significant privacy risks. I. What is Facial Emotion FER analysis comprises three steps: a) face de- Recognition? tection, b) facial expression detection, c) ex- pression classification to an emotional state Facial Emotion Recognition is a technology used (Figure 1). Emotion detection is based on the ana- for analysing sentiments by different sources, lysis of facial landmark positions (e.g. end of nose, such as pictures and videos. It belongs to the eyebrows). Furthermore, in videos, changes in those family of technologies often referred to as ‘affective positions are also analysed, in order to identify con- computing’, a multidisciplinary field of research on tractions in a group of facial muscles (Ko 2018). De- computer’s capabilities to recognise and interpret pending on the algorithm, facial expressions can be human emotions and affective states and it often classified to basic emotions (e.g. anger, disgust, fear, builds on Artificial Intelligence technologies. joy, sadness, and surprise) or compound emotions Facial expressions are forms of non-verbal (e.g. happily sad, happily surprised, happily disgus- communication, providing hints for human emo- ted, sadly fearful, sadly angry, sadly surprised) (Du tions. For decades, decoding such emotion expres- et al. 2014). In other cases, facial expressions could sions has been a research interest in the field of psy- be linked to physiological or mental state of mind chology (Ekman and Friesen 2003; Lang et al. 1993) (e.g. tiredness or boredom). but also to the Human Computer Interaction field The source of the images or videos serving asin- (Cowie et al. 2001; Abdat et al. 2011). Recently, the put to FER algorithms vary from surveillance cam- high diffusion of cameras and the technological ad- eras to cameras placed close to advertising screens vances in biometrics analysis, machine learning and in stores as well as on social media and streaming pattern recognition have played a prominent role in services or own personal devices. the development of the FER technology. FER can also be combined with biometric iden- Many companies, ranging from tech giants such tification. Its accuracy can be improved with tech- as NEC or Google to smaller ones, such as Affectiva nology analysing different types of sources such as or Eyeris invest in the technology, which shows its growing importance. There are also several EU re- prove automated understanding of human interactive be- havior in naturalistic contexts; iBorderCtrl have devised search and innovation program Horizon2020 a system for automated border security, which includes 1 initiatives exploring the use of the technology. FER technology; PReDicT project utilises FER in the med- ical domain, to improve the outcome of antidepressant 1EU-funded Horizon 2020 Project SEWA uses FER to im- treatments. EDPS TechDispatch on Facial Emotion Recognition 1 Education • monitor students’ attention • detect emotional reaction of users to an educat- ive program and adapt the learning path • design affective tutoring system • detect engagement in online learning Figure 1: Steps of Facial Emotion Recognition Public safety • lie detectors and smart border control voice, text, health data from sensors or blood flow • predictive screening of public spaces to patterns inferred from the image. identify emotions triggering potential terror- Potential uses of FER cover a wide range of ism threat applications, examples of which are listed here be- • analysing footage from crime scenes to indic- low in groups by their application field. ate potential motives in a crime Provision of personalised services Crime detection • analyse emotions to display personalised mes- • detect and reduce fraudulent insurance claims sages in smart environments • deploy fraud prevention strategies • provide personalised recommendations e.g. on • spot shoplifters music selection or cultural material • analyse facial expressions to predict individual Other reaction to movies • driver fatigue detection • detection of political attitudes Customer behaviour analysis and advertising • analyse customers’ emotions while shopping II. What are the data protection focused on either goods or their arrangement issues? within the shop • advertising signage at a railway station using Due to its use of biometric data and Artificial In- a system of recognition and facial tracking for telligence technologies, FER shares some of the marketing purposes risks of using facial recognition and artificial intelli- gence. Nevertheless, this technology carries also its own specific risks. Being a biometrics technology, Healthcare where aiming at identification does not appear asa • detect autism or neurodegenerative diseases primary goal, risks related to emotion interpretation • predict psychotic disorders or depression to accuracy and its application are eminent. identify users in need of assistance • suicide prevention II.1. Necessity and proportionality • detect depression in elderly people Turning human expressions into a data source to in- • observe patients conditions during treatment fer emotions touches clearly a part of peoples’ most private data. Being a disruptive technology, FER Employment raises important issues regarding necessity and pro- portionality. • help decision-making of recruiters It has to be carefully assessed, whether deploying • identify uninterested candidates in a job inter- FER is indeed necessary for achieving the pur- view sued objectives or whether there is a less in- • monitor moods and attention of employees trusive alternative. There is risk of applying FER EDPS TechDispatch on Facial Emotion Recognition 2 without performing necessity and proportionality Choosing the right dataset that is representat- evaluation for each single each case, misled bythe ive is crucial for avoiding discrimination. If the decision to use the technology in a different context. training data is not diverse enough, the technology However proportionality depends on many factors, might be biased against underrepresented popula- such as the type of collected data, the type ofin- tion. Discrimination triggered by faulty database ferences, data retention period, or potential further or by errors in detecting the correct emotional state processing. may have serious effects, e.g. inability to use certain services. II.2. Data accuracy In another aspect of the same problem, in case of medical conditions or physical impairments Analysis of emotions based on facial expressions in which temporary or permanent paralysis of facial may not be accurate, as facial expressions can muscles occurs, data subjects’ emotions may be mis- slightly vary among individuals, may mix different understood by algorithms. This may result in a wide emotional states experienced at the same time (e.g. range of situations of misclassification, with im- fear and anger, happy and sad) or may not express pact ranging from receiving unwished services up an emotion at all. On the other hand, there are to misdiagnosis of having a psychological disorder. emotions that may not be expressed on someone’s face, thus inference based solely on facial expres- II.4. Transparency and control sion may lead to wrong impressions. Additional factors can add to the ambiguity of the facial ex- Facial images and video can be captured anywhere, pressions, such as contextual clauses (sarcasm), and thanks to the ubiquity and small size of cameras. socio-cultural context. In addition, technical aspects Surveillance cameras in public spaces or stores are (different angles of the camera, lighting conditions not the only cameras remotely capturing facial im- and masking several parts of the face) can affect the ages as one’s own mobile devices can capture ex- quality of a captured facial expression. pressions during their use. In these situations, trans- Furthermore, even in the case of accurate recog- parency issues arise concerning both the collection nition of emotions, the use of the results may lead and the further processing of personal data. to wrong inferences about a person, as FER does Where the data subjects’ facial expressions are not explain the trigger of emotions, which may be a captured in a remote manner, it may not be clear thought of a recent or past event. However, the res- to them which system or application will process ults of FER, regardless of accuracy limitations, are their data, for which purposes, and who the con- usually treated as facts and are input to processes trollers are. As a result, they would not be in the affecting a data subject’s life, instead of triggering position to freely give consent or exercise control an evaluation to discover more about their situation over the processing of their personal data, includ- in the specific context. ing sharing with third-parties. Where data subjects are not provided with accurate information, access and control over the use of FER, they are deprived II.3. Fairness of their freedom to select which aspects of their life The accuracy of the facial emotion algorithm results can be used to affect other contexts (e.g. emotions can play an important role in discriminating on in social interactions could
Recommended publications
  • Neuroticism and Facial Emotion Recognition in Healthy Adults
    First Impact Factor released in June 2010 bs_bs_banner and now listed in MEDLINE! Early Intervention in Psychiatry 2015; ••: ••–•• doi:10.1111/eip.12212 Brief Report Neuroticism and facial emotion recognition in healthy adults Sanja Andric,1 Nadja P. Maric,1,2 Goran Knezevic,3 Marina Mihaljevic,2 Tijana Mirjanic,4 Eva Velthorst5,6 and Jim van Os7,8 Abstract 1School of Medicine, University of Results: A significant negative corre- Belgrade, 2Clinic for Psychiatry, Clinical Aim: The aim of the present study lation between the degree of neuroti- 3 Centre of Serbia, Faculty of Philosophy, was to examine whether healthy cism and the percentage of correct Department of Psychology, University of individuals with higher levels of neu- answers on DFAR was found only for Belgrade, Belgrade, 4Special Hospital for roticism, a robust independent pre- happy facial expression (significant Psychiatric Disorders Kovin, Kovin, Serbia; after applying Bonferroni correction). 5Department of Psychiatry, Academic dictor of psychopathology, exhibit Medical Centre University of Amsterdam, altered facial emotion recognition Amsterdam, 6Departments of Psychiatry performance. Conclusions: Altered sensitivity to the and Preventive Medicine, Icahn School of emotional context represents a useful Medicine, New York, USA; 7South Methods: Facial emotion recognition and easy way to obtain cognitive phe- Limburg Mental Health Research and accuracy was investigated in 104 notype that correlates strongly with Teaching Network, EURON, Maastricht healthy adults using the Degraded
    [Show full text]
  • How Deep Neural Networks Can Improve Emotion Recognition on Video Data
    HOW DEEP NEURAL NETWORKS CAN IMPROVE EMOTION RECOGNITION ON VIDEO DATA Pooya Khorrami1, Tom Le Paine1, Kevin Brady2, Charlie Dagli2, Thomas S. Huang1 1 Beckman Institute, University of Illinois at Urbana-Champaign 2 MIT Lincoln Laboratory 1 fpkhorra2, paine1, [email protected] 2 fkbrady, [email protected] ABSTRACT An alternative way to model the space of possible emo- There have been many impressive results obtained us- tions is to use a dimensional approach [11] where a person’s ing deep learning for emotion recognition tasks in the last emotions can be described using a low-dimensional signal few years. In this work, we present a system that per- (typically 2 or 3 dimensions). The most common dimensions forms emotion recognition on video data using both con- are (i) arousal and (ii) valence. Arousal measures how en- volutional neural networks (CNNs) and recurrent neural net- gaged or apathetic a subject appears while valence measures works (RNNs). We present our findings on videos from how positive or negative a subject appears. the Audio/Visual+Emotion Challenge (AV+EC2015). In our Dimensional approaches have two advantages over cat- experiments, we analyze the effects of several hyperparam- egorical approaches. The first being that dimensional ap- eters on overall performance while also achieving superior proaches can describe a larger set of emotions. Specifically, performance to the baseline and other competing methods. the arousal and valence scores define a two dimensional plane while the six basic emotions are represented as points in said Index Terms— Emotion Recognition, Convolutional plane. The second advantage is dimensional approaches can Neural Networks, Recurrent Neural Networks, Deep Learn- output time-continuous labels which allows for more realistic ing, Video Processing modeling of emotion over time.
    [Show full text]
  • Emotion Recognition Depends on Subjective Emotional Experience and Not on Facial
    Emotion recognition depends on subjective emotional experience and not on facial expressivity: evidence from traumatic brain injury Travis Wearne1, Katherine Osborne-Crowley1, Hannah Rosenberg1, Marie Dethier2 & Skye McDonald1 1 School of Psychology, University of New South Wales, Sydney, NSW, Australia 2 Department of Psychology: Cognition and Behavior, University of Liege, Liege, Belgium Correspondence: Dr Travis A Wearne, School of Psychology, University of New South Wales, NSW, Australia, 2052 Email: [email protected] Number: (+612) 9385 3310 Abstract Background: Recognising how others feel is paramount to social situations and commonly disrupted following traumatic brain injury (TBI). This study tested whether problems identifying emotion in others following TBI is related to problems expressing or feeling emotion in oneself, as theoretical models place emotion perception in the context of accurate encoding and/or shared emotional experiences. Methods: Individuals with TBI (n = 27; 20 males) and controls (n = 28; 16 males) were tested on an emotion recognition task, and asked to adopt facial expressions and relay emotional memories according to the presentation of stimuli (word & photos). After each trial, participants were asked to self-report their feelings of happiness, anger and sadness. Judges that were blind to the presentation of stimuli assessed emotional facial expressivity. Results: Emotional experience was a unique predictor of affect recognition across all emotions while facial expressivity did not contribute to any of the regression models. Furthermore, difficulties in recognising emotion for individuals with TBI were no longer evident after cognitive ability and experience of emotion were entered into the analyses. Conclusions: Emotion perceptual difficulties following TBI may stem from an inability to experience affective states and may tie in with alexythymia in clinical conditions.
    [Show full text]
  • Deep-Learning-Based Models for Pain Recognition: a Systematic Review
    applied sciences Article Deep-Learning-Based Models for Pain Recognition: A Systematic Review Rasha M. Al-Eidan * , Hend Al-Khalifa and AbdulMalik Al-Salman College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (H.A.-K.); [email protected] (A.A.-S.) * Correspondence: [email protected] Received: 31 July 2020; Accepted: 27 August 2020; Published: 29 August 2020 Abstract: Traditional standards employed for pain assessment have many limitations. One such limitation is reliability linked to inter-observer variability. Therefore, there have been many approaches to automate the task of pain recognition. Recently, deep-learning methods have appeared to solve many challenges such as feature selection and cases with a small number of data sets. This study provides a systematic review of pain-recognition systems that are based on deep-learning models for the last two years. Furthermore, it presents the major deep-learning methods used in the review papers. Finally, it provides a discussion of the challenges and open issues. Keywords: pain assessment; pain recognition; deep learning; neural network; review; dataset 1. Introduction Deep learning is an important branch of machine learning used to solve many applications. It is a powerful way of achieving supervised learning. The history of deep learning has undergone different naming conventions and developments [1]. It was first referred to as cybernetics in the 1940s–1960s. Then, in the 1980s–1990s, it became known as connectionism. Finally, the phrase deep learning began to be utilized in 2006. There are also some names that are based on human knowledge.
    [Show full text]
  • A Review of Alexithymia and Emotion Perception in Music, Odor, Taste, and Touch
    MINI REVIEW published: 30 July 2021 doi: 10.3389/fpsyg.2021.707599 Beyond Face and Voice: A Review of Alexithymia and Emotion Perception in Music, Odor, Taste, and Touch Thomas Suslow* and Anette Kersting Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany Alexithymia is a clinically relevant personality trait characterized by deficits in recognizing and verbalizing one’s emotions. It has been shown that alexithymia is related to an impaired perception of external emotional stimuli, but previous research focused on emotion perception from faces and voices. Since sensory modalities represent rather distinct input channels it is important to know whether alexithymia also affects emotion perception in other modalities and expressive domains. The objective of our review was to summarize and systematically assess the literature on the impact of alexithymia on the perception of emotional (or hedonic) stimuli in music, odor, taste, and touch. Eleven relevant studies were identified. On the basis of the reviewed research, it can be preliminary concluded that alexithymia might be associated with deficits Edited by: in the perception of primarily negative but also positive emotions in music and a Mathias Weymar, University of Potsdam, Germany reduced perception of aversive taste. The data available on olfaction and touch are Reviewed by: inconsistent or ambiguous and do not allow to draw conclusions. Future investigations Khatereh Borhani, would benefit from a multimethod assessment of alexithymia and control of negative Shahid Beheshti University, Iran Kristen Paula Morie, affect. Multimodal research seems necessary to advance our understanding of emotion Yale University, United States perception deficits in alexithymia and clarify the contribution of modality-specific and Jan Terock, supramodal processing impairments.
    [Show full text]
  • Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances
    1 Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances Soujanya Poria1, Navonil Majumder2, Rada Mihalcea3, Eduard Hovy4 1 School of Computer Science and Engineering, NTU, Singapore 2 CIC, Instituto Politécnico Nacional, Mexico 3 Computer Science & Engineering, University of Michigan, USA 4 Language Technologies Institute, Carnegie Mellon University, USA [email protected], [email protected], [email protected], [email protected] Abstract—Emotion is intrinsic to humans and consequently conversational data. ERC can be used to analyze conversations emotion understanding is a key part of human-like artificial that take place on social media. It can also aid in analyzing intelligence (AI). Emotion recognition in conversation (ERC) is conversations in real times, which can be instrumental in legal becoming increasingly popular as a new research frontier in natu- ral language processing (NLP) due to its ability to mine opinions trials, interviews, e-health services and more. from the plethora of publicly available conversational data in Unlike vanilla emotion recognition of sentences/utterances, platforms such as Facebook, Youtube, Reddit, Twitter, and others. ERC ideally requires context modeling of the individual Moreover, it has potential applications in health-care systems (as utterances. This context can be attributed to the preceding a tool for psychological analysis), education (understanding stu- utterances, and relies on the temporal sequence of utterances. dent frustration) and more. Additionally, ERC is also extremely important for generating emotion-aware dialogues that require Compared to the recently published works on ERC [10, an understanding of the user’s emotions. Catering to these needs 11, 12], both lexicon-based [13, 8, 14] and modern deep calls for effective and scalable conversational emotion-recognition learning-based [4, 5] vanilla emotion recognition approaches algorithms.
    [Show full text]
  • Recognition of Emotional Face Expressions and Amygdala Pathology*
    Recognition of Emotional Face Expressions and Amygdala Pathology* Chiara Cristinzio 1,2, David Sander 2, 3, Patrik Vuilleumier 1,2 1 Laboratory for Behavioural Neurology and Imaging of Cognition, Department of Neuroscience and Clinic of Neurology, University of Geneva 2 Swiss Center for Affective Sciences, University of Geneva 3 Department of Psychology, University of Geneva Abstract Reconnaissance d'expressions faciales émo- tionnelles et pathologie de l'amygdale The amygdala is often damaged in patients with temporal lobe epilepsy, either because of the primary L'amygdale de patients atteints d'une épilepsie du epileptogenic disease (e.g. sclerosis or encephalitis) or lobe temporal est souvent affectée, soit en raison de because of secondary effects of surgical interventions leur maladie épileptogénique primaire (p.ex. sclérose (e.g. lobectomy). In humans, the amygdala has been as- ou encéphalite), soit en raison des effets secondaires sociated with a range of important emotional and d'interventions chirurgicales (p.ex. lobectomie). L'amyg- social functions, in particular with deficits in emotion dale a été associée à une gamme de fonctions émo- recognition from faces. Here we review data from tionnelles et sociales importantes dans l'organisme hu- recent neuropsychological research illustrating the main, en particulier à certains déficits dans la faculté de amygdala role in processing facial expressions. We décrypter des émotions sur le visage. Nous passons ici describe behavioural findings subsequent to focal en revue les résultats des récents travaux de la neuro- lesions and possible factors that may influence the na- psychologie illustrant le rôle de l'amygdale dans le trai- ture and severity of deficits in patients.
    [Show full text]
  • Physiological Sensors Based Emotion Recognition While Experiencing Tactile Enhanced Multimedia
    sensors Article Physiological Sensors Based Emotion Recognition While Experiencing Tactile Enhanced Multimedia Aasim Raheel 1, Muhammad Majid 1,* , Majdi Alnowami 2 and Syed Muhammad Anwar 3 1 Department of Computer Engineering, University of Engineering and Technology, Taxila 47050, Pakistan; [email protected] 2 Department of Nuclear Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia; [email protected] 3 Department of Software Engineering, University of Engineering and Technology, Taxila 47050, Pakistan; [email protected] * Correspondence: [email protected] Received: 29 April 2020; Accepted: 14 May 2020; Published: 21 July 2020 Abstract: Emotion recognition has increased the potential of affective computing by getting an instant feedback from users and thereby, have a better understanding of their behavior. Physiological sensors have been used to recognize human emotions in response to audio and video content that engages single (auditory) and multiple (two: auditory and vision) human senses, respectively. In this study, human emotions were recognized using physiological signals observed in response to tactile enhanced multimedia content that engages three (tactile, vision, and auditory) human senses. The aim was to give users an enhanced real-world sensation while engaging with multimedia content. To this end, four videos were selected and synchronized with an electric fan and a heater, based on timestamps within the scenes, to generate tactile enhanced content with cold and hot air effect respectively. Physiological signals, i.e., electroencephalography (EEG), photoplethysmography (PPG), and galvanic skin response (GSR) were recorded using commercially available sensors, while experiencing these tactile enhanced videos. The precision of the acquired physiological signals (including EEG, PPG, and GSR) is enhanced using pre-processing with a Savitzky-Golay smoothing filter.
    [Show full text]
  • Overview of the Advancements in Automatic Emotion Recognition: Comparative Performance of Commercial Algorithms
    OVERVIEW OF THE ADVANCEMENTS IN AUTOMATIC EMOTION RECOGNITION: COMPARATIVE PERFORMANCE OF COMMERCIAL ALGORITHMS APREPRINT Mariya Malygina Mikhail Artemyev Department of Psychology Neurodata Lab National Research University Moscow, Russia Higher School of Economics; [email protected] Neurodata Lab Moscow, Russia [email protected] Andrey Belyaev Olga Perepelkina Neurodata Lab Neurodata Lab Moscow, Russia Moscow, Russia [email protected] [email protected] ∗ December 24, 2019 ABSTRACT In the recent years facial emotion recognition algorithms have evolved and in some cases top commercial algorithms detect emotions like happiness better than humans do. To evaluate the performance of these algorithms, the common practice is to compare them with human-labeled ground truth. This article covers monitoring of the advancements in automatic emotion recognition solutions, and here we suggest an additional criteria for their evaluation, that is the agreement between algorithms’ predictions. In this work, we compare the performance of four commercial algorithms: Affectiva Affdex, Microsoft Cognitive Services Face module Emotion Recognition, Amazon Rekognition Face Analysis, and Neurodata Lab Emotion Recognition on three datasets AFEW, RAVDESS, and SAVEE, that differ in terms of control over conditions of data acquisition. We assume that the consistency among algorithms’ predictions indicates the reliability of the predicted emotion. Overall results show that the algorithms with higher accuracy and f1-scores that were obtained for human-labeled ground truth (Microsoft’s, Neurodata Lab’s, and Amazon’s), showed higher agreement between their predictions. Agreement among algorithms’ predictions is a promising criteria in terms of further exploring the option to replace human data labeling with automatic annotation. Keywords Emotion Recognition · Affective computing · Facial expression 1 Introduction Various automatic facial expression recognition systems have been developed to detect human emotions.
    [Show full text]
  • Recognition of Emotional Facial Expressions and Alexithymia in Patients with Chronic Facial Pain
    Central Annals of Psychiatry and Mental Health Research Article *Corresponding author Harry von Piekartz , Department of Movement and Rehabilitation science, University of Applied Science Recognition of Emotional Facial Osnabrück, Caprivistrasse 30a |49076 Osnabrück -Germany, Tel +49541969-3526, Email: Expressions and Alexithymia Submitted: 17 November 2018 Accepted: 07 December 2018 in Patients with Chronic Facial Published: 08 December 2018 Copyright © 2018 Von Piekartz et al. Pain ISSN: 2374-0124 OPEN ACCESS Harry Von Piekartz1* ,Gesche Mohr1, Kerstin Limbrecht- Keywords 2 3 4 Ecklundt , Harald Traue , and Hendrik Kessler • Alexithymia 1Department of Movement and Rehabilitation, University of Applied Science Osnabrück, • Face pain • Emotion recognition Germany • Emotion expression 2Psychologische PsychotherapeutinUniversität HamburgPsychotherapeutische, Germany 3University Clinic for Psychosomatic Medicine and Psychotherapy, Germany 4Department of Psychosomatic Medicine and Psychotherapy, LWL-University Clinic Bochum, Germany Abstract Objectives: Alexithymia, conceived as difficulties to identify emotions, is said to be related with several pain syndromes. This study examined the recognition of facially expressed emotions and its relation to alexithymia in subjects with chronic facial pain. Methods: A total of 62 subjects were recruited, with n=20 patients with chronic facial pain and n=42 healthy controls. All subjects were tested for the recognition of facially expressed emotions (Facially Expressed Emotion Labelling Test (FEEL test).
    [Show full text]
  • Automated Pain Detection from Facial Expressions Using FACS: a Review
    1 Automated Pain Detection from Facial Expressions using FACS: A Review Zhanli Chen, Student Member, IEEE, Rashid Ansari, Fellow, IEEE, and Diana J. Wilkie, Fellow, AAN, Abstract—Facial pain expression is an important modality for assessing pain, especially when the patient’s verbal ability to communicate is impaired. The facial muscle-based action units (AUs), which are defined by the Facial Action Coding System (FACS), have been widely studied and are highly reliable as a method for detecting facial expressions (FE) including valid detection of pain. Unfortunately, FACS coding by humans is a very time-consuming task that makes its clinical use prohibitive. Significant progress on automated facial expression recognition (AFER) have led to its numerous successful applications in FACS-based affective computing problems. However, only a handful of studies have been reported on automated pain detection (APD), and its application in clinical settings is still far from a reality. In this paper, we review the progress in research that has contributed to automated pain detection, with focus on 1) the framework-level similarity between spontaneous AFER and APD problems; 2) the evolution of system design including the recent development of deep learning methods; 3) the strategies and considerations in developing a FACS-based pain detection framework from existing research; and 4) introduction of the most relevant databases that are available for AFER and APD studies. We attempt to present key considerations in extending a general AFER framework to an APD framework in clinical settings. In addition, the performance metrics are also highlighted in evaluating an AFER or an APD system.
    [Show full text]
  • Emotion Detection Through Facial Feature Recognition James Pao [email protected]
    Emotion Detection Through Facial Feature Recognition James Pao [email protected] Abstract—Humans share a universal and fundamental set of expressions that reflect the experiencing of fundamental emotions which are exhibited through consistent facial emotions. These fundamental emotions are anger, contempt, expressions. An algorithm that performs detection, extraction, disgust, fear, happiness, sadness, and surprise [1][2]. Unless a and evaluation of these facial expressions will allow for automatic person actively suppresses their expressions, examining a recognition of human emotion in images and videos. Presented person’s face can be one method of effectively discerning their here is a hybrid feature extraction and facial expression recognition method that utilizes Viola-Jones cascade object genuine mood and reactions. detectors and Harris corner key-points to extract faces and facial The universality of these expressions means that features from images and uses principal component analysis, facial emotion recognition is a task that can also be linear discriminant analysis, histogram-of-oriented-gradients accomplished by computers. Furthermore, like many other (HOG) feature extraction, and support vector machines (SVM) to important tasks, computers can provide advantages over train a multi-class predictor for classifying the seven humans in analysis and problem-solving. Computers that can fundamental human facial expressions. The hybrid approach recognize facial expressions can find application where allows for quick initial classification via projection of a testing efficiency and automation can be useful, including in image onto a calculated eigenvector, of a basis that has been entertainment, social media, content analysis, criminal justice, specifically calculated to emphasize the separation of a specific emotion from others.
    [Show full text]