UL-Shoulder Girdle Movement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Considered a Bone of Both Shoulder Girdle and Shoulder Joint. the Shoulder Girdle Is Comprised of the Clavicle and the Scapula
Considered a bone of both shoulder girdle and shoulder joint. The shoulder girdle is comprised of the clavicle and the scapula. The shoulder joint consists of the scapula and the humerus. The primary function of the shoulder girdle is to position itself to accommodate movements of the shoulder joint. 1 Superior angle—top point Inferior angle—bottom point Vertebral border—side closest to vertebral column Axillary border—side closest to arm Subscapular fossa—anterior fossa Glenoid fossa, glenoid labrum, glenoid cavity --The glenoid fossa is the shallow cavity where the humeral head goes. The glenoid labrum is the cartilage that goes around the glenoid fossa. So the glenoid fossa and glenoid labrum together comprise the glenoid cavity. Supraspinous fossa—posterior, fossa above the spine Spine of the scapula—the back projection Infraspinous fossa—posterior depression/fossa below spine Coracoid process—anterior projection head Acromion process—posterior projection head above spine 2 Scapulothoracic “joint” = NOT a true joint; there are no ligaments or articular capsule. The scapula just rests on the muscle over top the rib cage, which allows for passive movements. Sternoclavicular joint=where the clavicle (collarbone) and the sternum (breastbone) articulate; movement is slight in all directions and of a gliding, rotational type Acromioclavicular joint = where the clavicle and scapula (acromion process) articulate; AKA: AC Joint; movement is a slight gliding when elevation and depression take place. Glenohumeral joint = the shoulder joint 3 4 All 3 true joints: Sternoclavicular, AC and glenohumeral (GH) all work together to move arm in all directions. The GH allows the arm to go out to the side and be abducted, then the AC and Sternoclavicular joints kick in to allow the arm to go above shoulder level by allowing the shoulderblade to move up to increase the range of motion (ROM). -
Altered Alignment of the Shoulder Girdle and Cervical Spine in Patients with Insidious Onset Neck Pain and Whiplash- Associated Disorder
Journal of Applied Biomechanics, 2011, 27, 181-191 © 2011 Human Kinetics, Inc. Altered Alignment of the Shoulder Girdle and Cervical Spine in Patients With Insidious Onset Neck Pain and Whiplash- Associated Disorder Harpa Helgadottir, Eythor Kristjansson, Sarah Mottram, Andrew Karduna, and Halldor Jonsson, Jr. Clinical theory suggests that altered alignment of the shoulder girdle has the potential to create or sustain symptomatic mechanical dysfunction in the cervical and thoracic spine. The alignment of the shoulder girdle is described by two clavicle rotations, i.e, elevation and retraction, and by three scapular rotations, i.e., upward rotation, internal rotation, and anterior tilt. Elevation and retraction have until now been assessed only in patients with neck pain. The aim of the study was to determine whether there is a pattern of altered alignment of the shoulder girdle and the cervical and thoracic spine in patients with neck pain. A three-dimensional device measured clavicle and scapular orientation, and cervical and thoracic alignment in patients with insidious onset neck pain (IONP) and whiplash-associated disorder (WAD). An asymptomatic control group was selected for baseline measurements. The symptomatic groups revealed a significantly reduced clavicle retraction and scapular upward rotation as well as decreased cranial angle. A difference was found between the symptomatic groups on the left side, whereas the WAD group revealed an increased scapular anterior tilt and the IONP group a decreased clavicle elevation. These changes may be an important mechanism for maintenance and recurrence or exacerbation of symptoms in patients with neck pain. Keywords: neck pain, whiplash, scapula, posture Clinical theory suggests that altered alignment of of Biomechanics. -
Pectoral (Shoulder) Girdle Upper Limb
Pectoral (Shoulder) Girdle • Two pectoral girdle. • Each girdle attach the upper limbs to axial skeleton. • Consist of two bones: – Clavical anteriorly. – Scapula posteriorly. Upper Limb • Consist of: – Humerus – Ulna – radius – 8- carpals – 5- metacarpals – 14 phalanges 1 Carpals • 8 carpals arranged in two transverse rows; 4 bones each Pelvic (Hip) Girdle • Two hip bones • Bony pelvis: – pubic symphysis, sacrum, hip bones • Hip bone consist of 3 bones – Ilium: Superior – Pubis: Inferior and anterior – Ischium: inferior and posterior 2 Lower Limb • Each lower limb consist of: 1. Femur 2. Patella 3. Tibia 4. fibula 5. 7 tarsals 6. 5 metatarsals 7. 14 phalanges Tarsal Bones • Calcaneus: • Cuboid bone • Navicular • cuneiform bones • Talus bone • Intertarsal joints: 3 Bone Fracture • Simple or closed fracture: – Does not break the skin • Open (compound) fracture: – Broken ends protrude through the skin Exercise and Bone Tissue • Increase mineral salts deposition and production of collagen fibers – athletes bones are thicker and stronger • Without mechanical stress – Affect mineralization and decreased number of collagen fibers 4 Muscle System Muscles • Come from the Latin word mus ( little mouse) because flexing muscles look like mice scurrying beneath the skin • Muscle characteristics – All muscles contract; essential for all body movements – All have the prefixes- myo-, mys- , or sarco- Three types of Muscle Tissue – Skeletal muscles – Smooth Muscles – Cardiac muscle 5 Function of Muscle Tissue 1. Producing body movement: – Walking, nodding -
The Appendicular Skeleton Appendicular Skeleton
THE SKELETAL SYSTEM: THE APPENDICULAR SKELETON APPENDICULAR SKELETON The primary function is movement It includes bones of the upper and lower limbs Girdles attach the limbs to the axial skeleton SKELETON OF THE UPPER LIMB Each upper limb has 32 bones Two separate regions 1. The pectoral (shoulder) girdle (2 bones) 2. The free part (30 bones) THE PECTORAL (OR SHOULDER) GIRDLE UPPER LIMB The pectoral girdle consists of two bones, the scapula and the clavicle The free part has 30 bones 1 humerus (arm) 1 ulna (forearm) 1 radius (forearm) 8 carpals (wrist) 19 metacarpal and phalanges (hand) PECTORAL GIRDLE - CLAVICLE The clavicle is “S” shaped The medial end articulates with the manubrium of the sternum forming the sternoclavicular joint The lateral end articulates with the acromion forming the acromioclavicular joint THE CLAVICLE PECTORAL GIRDLE - CLAVICLE The clavicle is convex in shape anteriorly near the sternal junction The clavicle is concave anteriorly on its lateral edge near the acromion CLINICAL CONNECTION - FRACTURED CLAVICLE A fall on an outstretched arm (F.O.O.S.H.) injury can lead to a fractured clavicle The clavicle is weakest at the junction of the two curves Forces are generated through the upper limb to the trunk during a fall Therefore, most breaks occur approximately in the middle of the clavicle PECTORAL GIRDLE - SCAPULA Also called the shoulder blade Triangular in shape Most notable features include the spine, acromion, coracoid process and the glenoid cavity FEATURES ON THE SCAPULA Spine - -
Bone Limb Upper
Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior -
Download PDF File
Folia Morphol. Vol. 70, No. 2, pp. 61–67 Copyright © 2011 Via Medica R E V I E W A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Human ligaments classification: a new proposal G.K. Paraskevas Department of Anatomy, Medical School, Aristotle University of Thessaloniki, Greece [Received 24 January 2011; Accepted 22 March 2011] A high concern exists among physicians about surgically important ligaments such as cruciate and collateral ligaments of the knee, patellar ligament, tibiofibular syndesmosis, collateral ligaments of the ankle, and coracoclavicular ligament. However, the classification of the ligaments is insufficient in the literature, due to their origin from connective tissue. A new classification is proposed, based on various parameters such as the macroscopic and microscopic features, the function and the nature of their attachment areas. (Folia Morphol 2011; 70, 2: 61–67) Key words: ligaments, classification, Nomina Anatomica INTRODUCTION connective tissue surrounding neurovascular bundles There was always some confusion concerning the or ducts as “true ligaments” [4]. classification of ligaments of the human body, presu- The “false ligaments”, could be subdivided in the mably due to their origin from the connective tissue following categories: that is considered a low quality tissue compared to oth- a) Splachnic ligaments, which are further subdivid- ers. Moreover, orthopaedists are focused only on surgi- ed into “peritoneal” (e.g. phrenocolic ligament), cally important ligaments. For these reasons there is an “pericardiac” (e.g. sternopericardial ligaments), absence of a well-designated classification system that “pleural” (e.g. suprapleural membrane), and subdivides the ligaments into subgroups according to “pure splachnic ligaments” (e.g. -
Enostosis of Clavicle Causing Severe Dyspnea by Compressing the Trachea Externally: Case Report
Case Report DOI: 10.14235/bas.galenos.2018.2211 Bezmialem Science 2019;7(2):167-9 Enostosis of Clavicle Causing Severe Dyspnea by Compressing the Trachea Externally: Case Report Osman Cemil AKDEMİR1, Abdülaziz KÖK1, Sedat ZİYADE1, Nuh Mehmet ELMADAĞ2, Erkan ÇAKIR3, Mehmet BİLGİN4, Ömer SOYSAL1, Nur BÜYÜKPINARBAŞLI5 1Bezmialem Vakıf University Faculty of Medicine, Deparment of Thoracic Surgery, İstanbul, Turkey 2Bezmialem Vakıf University Faculty of Medicine, Department of Orthopedics, İstanbul, Turkey 3Bezmialem Vakıf University Faculty of Medicine, Deparment of Child Chest Diseases, İstanbul, Turkey 4Bezmialem Vakıf University Faculty of Medicine, Deparment of Radiological, İstanbul, Turkey 5Bezmialem Vakıf University Faculty of Medicine, Deparment of Pathology, İstanbul, Turkey ABSTRACT Clavicle is the bone that forms anterior border of shoulder arch. It lies on anterosuperior of thorax with first rib. Clavicle is very near to major vascular structures, brachial plexus, esophagus and trachea at thoracic inlet. Because of this, clavicular lesions fractures and sternoclavicular dislocations -especially posterior dislocations- may cause symptoms due to compressing symptoms due to these structures. In this article we present a case with enostosis of clavicle causing respiratory failure by compressing on trachea. Keywords: Clavicle, enostosis, repiratory failure Introduction she was hospitalized in intensive care unit because of occurrence Clavicle is the bone that forms anterior border of shoulder arch. of respiratory failure after a caughing crisis. Flexible bronchoscopy It lies on anterosuperior of thorax with first rib (1). At the upper revealed a pulsatile externally compressing lesion on anterior wall thoracic inlet, around sternoclavicular joints area, both of clavicle of trachea (Figure 1). are anotamically near with subclavian arteries and veins, both brachial plexuses esophagus and trachea, both carotid arteries and jugulary veins. -
Chapter 5 the Shoulder Joint
The Shoulder Joint • Shoulder joint is attached to axial skeleton via the clavicle at SC joint • Scapula movement usually occurs with movement of humerus Chapter 5 – Humeral flexion & abduction require scapula The Shoulder Joint elevation, rotation upward, & abduction – Humeral adduction & extension results in scapula depression, rotation downward, & adduction Manual of Structural Kinesiology – Scapula abduction occurs with humeral internal R.T. Floyd, EdD, ATC, CSCS rotation & horizontal adduction – Scapula adduction occurs with humeral external rotation & horizontal abduction © McGraw-Hill Higher Education. All rights reserved. 5-1 © McGraw-Hill Higher Education. All rights reserved. 5-2 The Shoulder Joint Bones • Wide range of motion of the shoulder joint in • Scapula, clavicle, & humerus serve as many different planes requires a significant attachments for shoulder joint muscles amount of laxity – Scapular landmarks • Common to have instability problems • supraspinatus fossa – Rotator cuff impingement • infraspinatus fossa – Subluxations & dislocations • subscapular fossa • spine of the scapula • The price of mobility is reduced stability • glenoid cavity • The more mobile a joint is, the less stable it • coracoid process is & the more stable it is, the less mobile • acromion process • inferior angle © McGraw-Hill Higher Education. All rights reserved. 5-3 © McGraw-Hill Higher Education. All rights reserved. From Seeley RR, Stephens TD, Tate P: Anatomy and physiology , ed 7, 5-4 New York, 2006, McGraw-Hill Bones Bones • Scapula, clavicle, & humerus serve as • Key bony landmarks attachments for shoulder joint muscles – Acromion process – Humeral landmarks – Glenoid fossa • Head – Lateral border • Greater tubercle – Inferior angle • Lesser tubercle – Medial border • Intertubercular groove • Deltoid tuberosity – Superior angle – Spine of the scapula © McGraw-Hill Higher Education. -
STABILISATION of POSTERIOR STERNOCLAVICULAR Clinical Anatomy.2002.15.139-142 Repaired in Childhood Have Been Reported As Associated 5
East African Orthopaedic Journal Original article East African Orthopaedic Journal be marvelous. This case displayed associated congenital 4. Boon JM: Potgieter D: Van Jaarsveld Z et al. Congential anomalies. The congenital cleft lip and palate that were Undescended Scapula (Sprengel Deformity): A case study. STABILISATION OF POSTERIOR STERNOCLAVICULAR Clinical Anatomy.2002.15.139-142 repaired in childhood have been reported as associated 5. Dilli A, Ayaz, U. Y., Damar, C., et al. Sprengel Deformity: JOINT DISLOCATION USING PALMARIS LONGUS TENDON before(4).The utilized modalities of investigating this Magnetic Resonance Imaging Findings in two Pediatric AUTOGRAFT: A CASE REPORT case were plain X-rays and a 3D CT scan. The information Cases. Journal of Clinical Imaging Sci. 2011. 1. 1. 17-20 6. Cavendish, M. E. Congenital Elevation of the Scapula. J. obtained from these was deemed adequate for the V.M. Mutiso*, MBChB(UON), MMed(Surg) (UON), Fellow (arthroscopy and arthroplasty) (UK), Fellow AO-International (Ger), Bone joint Surg. Br. 1972. 54B. 3.395-408 V. M. Mutiso*, Department of Orthopaedic Surgery, College of Health Sciences, University of Nairobi, (P.O. Box FCS (ecsa), Department of Orthopaedic Surgery, College of Health Sciences, University of Nairobi, P.O. Box 19681 - 00202, treatment planning of this case. No new information 7. Green, W. T. The surgical correction of congenital elevation Nairobi,19681 – Kenya 00202, and Nairobi, J. Chigumbura, Kenya and MBChB J. Chigumbura (UK), GPST1 (UK), GPST1 - University – University Hospital Hospital of North of Stanffordshire, North Stafford UK shire, UK would have been availed by conducting an MRI of the scapula (Sprengel’s deformity). -
Prezentace Aplikace Powerpoint
Bones, ligament, joints of the upper and lower limb Pelvis Sternoclavicular joint Articular disc Anterior sternoclavicular ligament Posterior sternoclavicular ligament Costoclavicular ligament Interclavicular ligament Acromioclavicular joint Acromioclavicular ligament (Articular disc) Coracoclavicular ligament Trapezoid ligament Conoid ligament Glenohumeral joint; Shoulder joint Glenoid labrum Glenohumeral ligaments Coracohumeral ligament Transverse humeral ligament Rotatory cuff Coraco-acromial ligament Superior transverse scapular ligament Elbow joint Humero-ulnar joint Humeroradial joint Proximal radio- ulnar joint Ulnar collateral ligament Radial collateral ligament Anular ligament of radius Radio-ulnar syndesmosis Interosseous membrane of forearm Oblique cord Distal radio-ulnar joint Articular disc Sacciform recess Joints of hand Wrist joint Ulnar collateral ligament of wrist joint Radial collateral ligament of wrist joint Carpal joints; Intercarpal joints Midcarpal joint Radiate carpal ligament Interosseus intercarpal ligaments Pisiform joint Pisohamate ligament Pisometacarpal ligament Carpal tunnel Carpometacarpal joints Dorsal carpometacarpal ligaments Palmar carpometacarpal ligaments Carpometacarpal joint of thumb Intermetacarpal joints Dorsal metacarpal ligaments Palmar metacarpal ligaments Interosseous metacarpal ligaments Interosseous metacarpal spaces Joints of hand Wrist joint Ulnar collateral ligament of wrist joint Radial collateral ligament of wrist joint Carpal joints; Intercarpal joints Midcarpal joint Radiate carpal -
Applied Anatomy of the Shoulder Girdle
Applied anatomy of the shoulder girdle CHAPTER CONTENTS intra-articular disc, which is sometimes incomplete (menis- Osteoligamentous structures . e66 coid) and is subject to early degeneration. The joint line runs obliquely, from craniolateral to caudomedial (Fig. 2). Acromioclavicular joint . e66 Extra-articular ligaments are important for the stability of Sternoclavicular joint . e66 the joint and to keep the movements of the lateral end of the Scapulothoracic gliding mechanism . e67 clavicle within a certain range. Together they form the roof of Costovertebral joints . e68 the shoulder joint (see Standring, Fig. 46.14). They are the coracoacromial ligament – between the lateral border of the Muscles and their innervation . e69 coracoid process and the acromion – and the coracoclavicular Anterior aspect of the shoulder girdle . e69 ligament. The latter consists of: Posterior aspect of the shoulder girdle . e69 • The trapezoid ligament which runs from the medial Mobility of the shoulder girdle . e70 border of the coracoid process to the trapezoid line at the inferior part of the lateral end of the clavicle. The shoulder girdle forms the connection between the spine, • The conoid ligament which is spanned between the base the thorax and the upper limb. It contains three primary artic- of the coracoid process and the conoid tubercle just ulations, all directly related to the scapula: the acromioclavicu- medial to the trapezoid line. lar joint, the sternoclavicular joint and the scapulothoracic Movements in the acromioclavicular joint are directly related gliding surface (see Putz, Fig. 289). The shoulder girdle acts as to those in the sternoclavicular joint and those of the scapula. a unit: it cannot be functionally separated from the secondary This joint is also discussed inthe online chapter Applied articulations, i.e. -
A Parallel Mechanism of the Shoulder - Application to Multi-Body Optimisation Aimad El Habachi, Sonia Duprey, Laurence Cheze, Raphaël Dumas
A parallel mechanism of the shoulder - application to multi-body optimisation Aimad El Habachi, Sonia Duprey, Laurence Cheze, Raphaël Dumas To cite this version: Aimad El Habachi, Sonia Duprey, Laurence Cheze, Raphaël Dumas. A parallel mechanism of the shoulder - application to multi-body optimisation. Multibody System Dynamics, Springer Verlag, 2015, 33 (4), pp. 439-451. 10.1007/s11044-014-9418-7. hal-01129014v2 HAL Id: hal-01129014 https://hal.archives-ouvertes.fr/hal-01129014v2 Submitted on 20 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Multibody System Dynamics April 2015, Volume 33, Issue 4, pp 439‐451 A parallel mechanism of the shoulder – application to multi-body optimisation Aimad El Habachi, Sonia Duprey, Laurence Cheze and Raphaël Dumas Corresponding author: [email protected] Université de Lyon, F‐69622, France IFSTTAR, LBMC, UMR_T9406, Bron Université Lyon 1, Villeurbanne, France 1 Abstract: This paper describes and evaluates a parallel mechanism of the shoulder girdle. This mechanism was a closed kinematic chain composed of three segments (humerus, scapula and thorax) and three kinematic constraints. The clavicle was modelled as a constant length constraint between the sternoclavicular and acromioclavicular joint centres.