TRAVERTINE-MARL DEPOSITS of the VALLEY and RIDGE PROVINCE of VIRGINIA - a PRELIMINARY REPORT David A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cladding the Mid-Century Modern: Thin Stone Veneer-Faced Precast Concrete
CLADDING THE MID-CENTURY MODERN: THIN STONE VENEER-FACED PRECAST CONCRETE Sarah Sojung Yoon Submitted in partial fulfillment of the requirements for the degree Master of Science in Historic Preservation Graduate School of Architecture, Planning and Preservation Columbia University May 2016 Advisor Dr. Theodore Prudon Adjunct Professor at Columbia University Principal, Prudon & Partners Reader Sidney Freedman Director, Architectural Precast Concrete Services Precast/ Prestressed Concrete Institute (PCI) Reader Kimball J. Beasley Senior Principal, Wiss, Janney, Elstner Associates, Inc. (WJE) ABSTRACT Cladding the Mid-Century Modern: Thin Stone Veneer-Faced Precast Concrete Sarah Sojung Yoon Dr. Theodore Prudon, Advisor With significant advancements in building technology at the turn of the twentieth century, new building materials and innovative systems changed the conventions of construction and design. New materials were introduced and old materials continued to be transformed for new uses. With growing demand after WWII forcing further modernization and standardization and greater experimentation; adequate research and testing was not always pursued. Focusing on this specific composite cladding material consisting of thin stone veneer-faced precast concrete – the official name given at the time – this research aims to identify what drove the design and how did the initial design change over time. Design decisions and changes are evident from and identified by closely studying the industry and trade literature in the form of articles, handbooks/manuals, and guide specifications. For this cladding material, there are two major industries that came together: the precast concrete industry and the stone industry. Literature from both industries provide a comprehensive understanding of their exchange and collaboration. From the information in the trade literature, case studies using early forms of thin stone veneer-faced precast concrete are identified, and the performance of the material over time is discussed. -
Decreasing Hydrothermalism at Pamukkale- Hierapolis (Anatolia) Since the 7Th Century
EGU2020-20182 https://doi.org/10.5194/egusphere-egu2020-20182 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Decreasing hydrothermalism at Pamukkale- Hierapolis (Anatolia) since the 7th century Bassam Ghaleb1, Claude Hillaire-Marcel1, Mehmet Ozkul2, and Feride Kulali3 1Université du Québec à Montréal, GEOTOP, Montreal, Canada ([email protected]) 2Pamukkale University, Denizli, Turkey 3Uskudar University, Istanbul,Turkey The dating of travertine deposition and groundwater / hydrothermal seepages in relation to late Holocene climatic changes can be achieved using short-lived isotopes of the 238U decay series, as illustrated by the present study of the Pamukkale travertine system, at the northern edge of the Denizli and Baklan graben merging area (see Özkul et al., 2013; https://doi.org/10.1016/j.sedgeo.2013.05.018. The strongly lithified self-built channels and modern pools where analysed for their 238U,234U,230Th, 226Ra, 210Pb and 210Po contents, whereas 238U,234U and 226Ra were measured in modern hydrothermal waters. When corrected for detrital contamination, 230Th-ages of travertine samples range from 1215±80 years, in the oldest self-built hydrothermal channels, to the Present (modern pool carbonate deposits) thus pointing to the inception of the existing huge travertine depositional systems during the very late Holocene, probably following the major Laodikeia earthquate of the early 7th century (cf. Kumsar et al., 2016; DOI 10.1007/s10064-015-0791-0). So far, the available data suggest three major growth phases of the travertine system: an early phase (7th to 8th centuries CE), an intermediate phase (~ 14th century CE) and a modern one, less than one century old. -
Chronology, Causes and Progression of the Messinian Salinity Crisis
letters to nature the cause, and the effects, of the isolation of the Mediterranean; the two basic explanations are (1) a large glacio-eustatic sea-level drop, Chronology, causes and related to expanding polar ice volume6, and (2) orogenic uplift accompanied by gravity-driven sliding of large nappe complexes in progression of the the Gibraltar arc7. Until now, correlations of stable-isotope (d18O and d13C) records from open-ocean sequences to the Messinian Messinian salinity crisis event stratigraphy of the Mediterranean have been ambiguous because of the absence of a reliable time frame for the MSC. The W. Krijgsman*, F. J. Hilgen², I. Raf®³, F. J. Sierro§ establishment of astronomical polarity timescales for the past & D. S. Wilsonk 10 Myr (refs 3, 11) provided a signi®cant advance in dating the * Paleomagnetic Laboratory ``Fort Hoofddijk'', Utrecht University, geological record and promised a solution for the MSC controver- Budapestlaan 17, 3584 CD Utrecht, The Netherlands sies. Unfortunately, the Mediterranean-based astronomical polarity ² Department of Geology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, timescale showed a gap during much of the Messinian (6.7±5.3 Myr The Netherlands ago)3, related to the presence of less-favourable sediments and the ³ Dipartimento di Scienze della Terra, UniversitaÁ ``G. D'Annunzio'', notoriously complex geological history of the Mediterranean in Campus Universitario, Via dei Vestini 31, 66013 Chieti Scalo, Italy this time interval. However, the classic Messinian sediments § Department de -
Springs of California
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIBECTOB WATER- SUPPLY PAPER 338 SPRINGS OF CALIFORNIA BY GEKALD A. WARING WASHINGTON GOVERNMENT PRINTING OFFICE 1915 CONTENTS. Page. lntroduction by W. C. Mendenhall ... .. ................................... 5 Physical features of California ...... ....... .. .. ... .. ....... .............. 7 Natural divisions ................... ... .. ........................... 7 Coast Ranges ..................................... ....•.......... _._._ 7 11 ~~:~~::!:: :~~e:_-_-_·.-.·.·: ~::::::::::::::::::::::::::::::::::: ::::: ::: 12 Sierra Nevada .................... .................................... 12 Southeastern desert ......................... ............. .. ..... ... 13 Faults ..... ....... ... ................ ·.. : ..... ................ ..... 14 Natural waters ................................ _.......................... 15 Use of terms "mineral water" and ''pure water" ............... : .·...... 15 ,,uneral analysis of water ................................ .. ... ........ 15 Source and amount of substances in water ................. ............. 17 Degree of concentration of natural waters ........................ ..· .... 21 Properties of mineral waters . ................... ...... _. _.. .. _... _....• 22 Temperature of natural waters ... : ....................... _.. _..... .... : . 24 Classification of mineral waters ............ .......... .. .. _. .. _......... _ 25 Therapeutic value of waters .................................... ... ... 26 Analyses -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
The Picking Table Volume 27, No. 1 – Spring 1986
TABLE JOURNAL of the FRANKLIN-OGDENSBURG MINERALOGICAL SOCIETY, INC. SPRING. 1986 VOLUME 27, NO.l The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. F.QM.S. Notes prise a spectacular fluorescent display. For PRESIDENT'S MESSAGE years the Gerstmann Mineral Museum has displayed the collection for the delight and With the melting of the snow, the rocks of education of amateur and professional mineralo- the Buckwheat Dump emerge from their white gists alike. The Franklin Mineral Museum mantle, and the seismic tremors rumble through is most grateful to Arthur and Harriet Mitteldorf the souls of the collector community. Whatever for this most generous donation and to Ewald Spring may mean to the average mortal, to Gerstmann for its accumulation and for his FOMS members it brings a special appeal to sponsorship of the Franklin Mineral Museum dig in the dirt, not to plant, but to explore as the recipient. Transfer of the collection again the crystalline mysteries of Nature. will be effected as soon as suitable space is available to house it. Let us not lose sight of the fact that we are a community, however widespread, dedicated JLB to a great common interest and purpose: the expansion and preservation of knowledge about the world's most remarkable mineral location. ABOUT THE COVER SKETCH Like all great enterprises, this demands the efforts and participation of many. To the Located Sphalerite Occurrences—Franklin Mine extent that we share our knowledge, our time, and our interest with each other and the world, It is suggested that you refer to this hand Franklin lives. -
MINERALS and MINERAL VARIETIES from METAMORPHOSED Mn DEPOSITS of BISTRITA MOUNTAINS, ROMANIA
Acta Mineralogica-Petrographica, Abstract Series 1, Szeged, 2003 MINERALS AND MINERAL VARIETIES FROM METAMORPHOSED Mn DEPOSITS OF BISTRITA MOUNTAINS, ROMANIA HÎRTOPANU, P.1 & SCOTT, P.2 1 Geological Institute of Romania, Caransebeş 1, RO-78344 Bucharest, Romania. E-mail: [email protected] 2 Camborne School of Mines, Redruth, Cornwall, United Kingdom. The Bistrita Mountains belong to the Crystalline Meso- mation of some amphiboles and some pyroxenes into other zoic Zone of the East Carpathians, which consists of super- phases, there are drastical transformations of pyroxenes into posed Variscan and Alpine Nappes, overthrusted eastwards pyroxenoids (johannsenite into rhodonite), pyroxenoids into over the Flysch Zone. The manganese ore is contained by pyroxenoids (pyroxmangite into rhodonite), pyroxmangite Tulghes Group (Tg2 level) of the Variscan Putna Nappe, into manganogrunerite, garnets into garnets (spessartine- situated over the Pietrosu Bistritei Nappe and supporting the calderite into spessartine, spessartine into anisotropic spes- thrusting of the Rebra Nappe. All these Variscan nappes sartine-andradite-grossular), calderite into pyroxmangite- constitute the Alpine Sub-Bucovinian Nappe localised be- magnetite, etc. are the best evidences of continuous variation tween Alpine Infrabucovinian Nappe in the East and the of formation conditions. Alpine Bucovinian Nappe in the West. The Mn ore have a predominant carbonate rather than The mineralogy of Mn metamorphosed deposits from silicate mineralogical composition, which means a great CO2 Bistrita Mts. includes 328 minerals and mineral varieties. fluid control in the carbonation and dehydration processes They may count among the mineralogically the most com- along the many stages of the whole history of the ore and the plex deposits of the world. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Stratigraphy of the Taylor Formation {Upper Cretaceous), East-Central Texas
Na Montmorillonite-Kaolinite Facies SPRING 1964 Bulletin No. 6 Stratigraphy of the Taylor [Upper Cretaceous), East-Central Texas ARTHUR 0. BEALL JR. thinking is more important than elaborate FRANK CARNEY, PH.D. OF GEOLOGY BAYLOR UNIVERSITY Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of training geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued pro fessional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring objective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. THE BAYLOR UNIVERSITY PRESS TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 6 Stratigraphy of the Taylor Formation {Upper Cretaceous), East-Central Texas ARTHUR O. JR. BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring, 1964 Baylor Geological Studies EDITORIAL STAFF L. F. Brown, Jr., Ph.D., Editor stratigraphy, paleontology O. T. Hayward, Ph.D., Adviser stratigraphy-sedimentation, structure, groundwater R. L. Bronaugh, M.A., Business Manager archeology, geomorphology, vertebrate paleontology James W. Dixon, Jr., Ph.D. stratigraphy, paleontology, structure Walter T. Huang, Ph.D. mineralogy, petrology, metallic minerals lean M. Spencer, M.S., Associate Editor Moice A. -
Download the Scanned
American Mineralogist, Volume 70, pages 379-387, 1985 Ma_nganesehumites and leucophoenicitesfrom Franklin and Sterling- Hill' NewJersev: 'i"? andimplications ;ifi':il1,;;lfiil11"r's' Perr J. Dullx Department of Mineral Sciences Smithsonian lnstitution, Washington, D. C. 20560 Abstract The manganesehumites, (alleghanyite, manganhumite, and sonolite),together with some Mn-bearing samplesof the Mg-humites,and the related phasesleucophoenicite and jerry- gibbsite,from the orebodiesat Franklin and SterlingHill, New Jersey,are describedtogether with analytical data. Solid solution betweenhumite and manganhumiteis at least partially continuous. Expected Mn/Mg solid solutions between alleghanyiteand chondrodite, and betweensonolite and clinohumite, are discontinuous; they are interrupted by apparently orderedphases. In all cases,the possibleorderings involve Zn as well as Mn and Mg. There are no Mn end-membersof the manganesehumites at this locality. Manganeseis apparently restricted in leucophoenicite(5.42-6.63 Mn per 7 octahedral cations) and in jerrygibbsite (7.79-8.02Mn per 9 octahedralcations). Calcium is common to both leucophoeniciteand jerrygibbsite,but among the Mn-humites,only sonoliteaccepts appreciable Ca (0.65Ca per 9 octahedralcations). There is a "threshold" level ofzinc in all studiedsamples; this "threshold" levelis a constantfor leucophoenicite1-9.3 Znper 3 Si)and alleghanyite(-O.2Zn per 2 Si). No samplesof leucophoeniciteor jerrygibbsite were found to be Zn-ftee,suggesting either that Zn is required for their stability, or that these two phasesmight not be stable as end-members.Fluorine is present in all the Mn-humites and is proportional to the Mg- content,but is absentin leucophoeniciteand jerrygibbsite. Introduction humite speciesoccur there; the Mg-humites occur in the The magnesiumhumite species(norbergite, chondrodite, host Franklin Marble for the most part, and the Mn- humite, and clinohumite) have been well-studiedand re- humites in the orebodiesthemselves. -
Kumtyubeite Ca5(Sio4)2F2—A New Calcium Mineral of the Humite Group from Northern Caucasus, Kabardino-Balkaria, Russia
American Mineralogist, Volume 94, pages 1361–1370, 2009 Kumtyubeite Ca5(SiO4)2F2—A new calcium mineral of the humite group from Northern Caucasus, Kabardino-Balkaria, Russia Ir I n a О. Ga l u s k I n a ,1,* BI l j a n a la z I c ,2 Th o m a s ar m B r u s T e r,2 ev G e n y v. Ga l u s k I n ,1 vI k T o r m. Ga z e e v,3 al e k s a n d e r e. za d o v,4 nI k o l a I n. Pe r T s e v,3 lIdIa je ż a k ,5 ro m a n Wr z a l I k ,6 a n d an a T o l y G. Gu r B a n o v 3 1Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland 2Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland 3Institute of Geology of Ore Deposits, Geochemistry, Mineralogy and Petrography (IGEM) RAS, Staromonetny 35, 119017 Moscow, Russia 4OOO NPP TEPLOCHIM, Dmitrovskoye av. 71, 127238 Moscow, Russia 5Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland 6Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland aB s T r a c T Kumtyubeite, Ca5(SiO4)2F2—the fluorine analog of reinhardbraunsite with a chondrodite-type structure—is a rock-forming mineral found in skarn carbonate-xenoliths in ignimbrites of the Upper Chegem volcanic structure, Kabardino-Balkaria, Northern Caucasus, Russia. -
Integrating SANS and Fluid-Invasion Methods to Characterize Pore
www.nature.com/scientificreports OPEN Integrating SANS and fluid- invasion methods to characterize pore structure of typical American Received: 19 July 2017 Accepted: 23 October 2017 shale oil reservoirs Published: xx xx xxxx Jianhua Zhao1, Zhijun Jin2,3, Qinhong Hu 4, Zhenkui Jin5, Troy. J. Barber 4, Yuxiang Zhang4 & Markus Bleuel6,7 An integration of small-angle neutron scattering (SANS), low-pressure N2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to 2N was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters <10 nm, which we attribute to low connectivity of organic matter-hosted and clay-associated pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation. The continual increase of shale gas and tight oil production in the United States has changed the energy land- scape, and led to a great interest in the exploration and production of shale oil and gas worldwide.