WEENTECH Proceedings in Energy 5 (2019) 01-19 Page | 1 4th International Conference on Energy, Environment and Economics, ICEEE2019, 20-22 August 2019, Edinburgh Conference Centre, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom Solar thermal dehydrating plant for agricultural products installed in Zacatecas, México O. García-Valladares*, I. Pilatowsky-Figueroa, N. Ortiz-Rodríguez, C. Menchaca-Valdez Instituto de Energías Renovables, Universidad Nacional Autónoma de México, privada Xochicalco s/n, centro, CP 62580, Temixco, Morelos, México. *Corresponding author’s mail:
[email protected] Abstract This paper presents a hybrid thermo-solar plant for the dehydration of foods, built in Zacatecas, Mexico. The plant is integrated by a semi- continuous drying chamber with a capacity of up to 2 700 kg of fresh product. The thermal energy required for the drying process is provided by two solar powered thermal systems: an air heating system with 48 collectors (111.1 m2) and a water heating system with 40 solar water heaters (92.4 m2), a thermal insulated storage tank, and a fin and tube heat exchanger. The plant also has a fossil energy backup system (LPG) to heat air. The monitoring system measures and records 55 process variables (temperature, relative humidity, water pressure, solar irradiance, air velocity, volumetric and mass flow rates). Experimental results obtained with the solar air heaters and water collectors are reported. The average efficiency of the solar air heaters field was ≈45% with a maximum increase of the air temperature of 40.8 °C and for the water solar collectors field the average efficiency was ≈50% and the water in the storage tank reaches 89.6 °C in two days of operation.