Copper Hyper-Stoichiometry: the Key for the Optimization Of

Total Page:16

File Type:pdf, Size:1020Kb

Copper Hyper-Stoichiometry: the Key for the Optimization Of Copper Hyper-Stoichiometry: The Key for the Optimization of Thermoelectric Properties in Stannoidite Cu8+xFe3–xSn2S12 Ventrapati Pavan Kumar, Tristan Barbier, Vincent Caignaert, Bernard Raveau, Ramzy Daou, Bernard Malaman, Gérard Le Caër, Pierric Lemoine, Emmanuel Guilmeau To cite this version: Ventrapati Pavan Kumar, Tristan Barbier, Vincent Caignaert, Bernard Raveau, Ramzy Daou, et al.. Copper Hyper-Stoichiometry: The Key for the Optimization of Thermoelectric Properties in Stannoidite Cu8+xFe3–xSn2S12. Journal of Physical Chemistry C, American Chemical Society, 2017, 121 (30), pp.16454-16461. 10.1021/acs.jpcc.7b02068. hal-01580457 HAL Id: hal-01580457 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01580457 Submitted on 14 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 36 The Journal of Physical Chemistry 1 2 3 4 5 6 7 8 Copper Hyper-stoichiometry, the Key for the 9 10 11 12 Optimization of Thermoelectric Properties in 13 14 15 16 Stannoidite Cu 8+ xFe 3-xSn 2S12 17 18 19 20 21 † † † † 22 Ventrapati Pavan Kumar, Tristan Barbier, Vincent Caignaert, Bernard Raveau, Ramzy 23 24 † ‡ # § ,† 25 Daou, Bernard Malaman, Gérard Le Caër, Pierric Lemoine, and Emmanuel Guilmeau * 26 27 28 † 29 Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN, 6 bd du Marechal Juin, 14050 Caen 30 31 32 Cedex 4, France 33 34 35 ‡ 36 Institut Jean Lamour, UMR 7198, CNRS, Université de Lorraine, Faculté des Sciences et 37 38 Technologie, B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex, France 39 40 41 # 42 Institut de Physique de Rennes, UMR UR1-CNRS 6251, Université de Rennes I, Campus de 43 44 Beaulieu, Bâtiment 11A, F-35042 Rennes Cedex, France 45 46 47 § 48 Institut des Sciences Chimiques de Rennes (ISCR) - UMR CNRS 6226, Université de Rennes 49 50 I, Campus de Beaulieu, Bâtiment 10A, 35042 Rennes Cedex, France 51 52 53 54 KEYWORDS. thermoelectric, sulfide, stannoidite, mechanical alloying, SPS 55 56 57 58 59 60 ACS Paragon Plus Environment 1 The Journal of Physical Chemistry Page 2 of 36 1 2 3 ABSTRACT 4 5 6 A univalent copper hyper-stoichiometric stannoidite Cu 8+ xFe 3-xSn 2S12 with 0 ≤ x ≤ 0.5 has been 7 8 synthesized using mechanical alloying followed by spark plasma sintering. The X-ray diffraction 9 10 57 119 11 analysis combined with Fe and Sn Mössbauer investigations has allowed the charge 12 13 distribution of the cationic species on the various sites to be established and suggests the 14 15 possibility of a small tin deficiency. The transport properties show a remarkable crossover from a 16 17 18 semiconducting to a metal-like behaviour as the copper content increases from x = 0 to x = 0.5, 19 20 whereas correlatively the Seebeck coefficient decreases moderately, with S values ranging from 21 22 310 to 100 µV/K. The thermal conductivity decreases as the temperature increases showing low 23 24 25 values at high temperature, far below those reported in related stannite materials. The 26 27 investigation of the thermoelectric properties shows that the ZT figure of merit is dramatically 28 29 enhanced by the copper hyper-stoichiometry by a factor of 5 going from 0.07 for x = 0 to 0.35 30 31 32 for x = 0.5 at 630 K. This thermoelectric behaviour is interpreted on the basis of a model 33 34 involving the Cu-S framework as the conducting electronic network where the Fe 2+ /Fe 3+ species 35 36 37 play the role of hole reservoir. 38 39 40 41 1. INTRODUCTION 42 43 44 The demand in energy consumption has been escalating this last decade, leading to renewed 45 46 interest on thermoelectric (TE) technology.1 Beyond the promising results obtained for telluride 47 48 based materials which exhibit high performances, 2–4 the need to conciliate efficiency with 49 50 51 environmental and cost constraints has triggered research recently toward copper-based sulfides 52 53 which have, for most of them, the advantage to contain eco-friendly and abundant elements. The 54 55 2 56 figure of merit ZT values ( ZT = S T/ ρκ, where S is the Seebeck coefficient, T is the absolute 57 58 59 60 ACS Paragon Plus Environment 2 Page 3 of 36 The Journal of Physical Chemistry 1 2 3 4 temperature, ρ is the electrical resistivity and κ is the thermal conductivity) observed for the 5 5–7 6 simple phases Cu 2-xS, ranging from 0.5 to 1.7 are very attractive. However, the electro- 7 8 migration of copper that appears in the Cu-S system weakens the stability and durability of these 9 10 11 TE materials. The introduction of other metallic (M) elements besides copper has allowed this 12 13 problem to be mostly overcome, opening the route to the exploration of complex copper based 14 15 sulfides. Actually, from the viewpoint of thermoelectricity, two classes of copper based sulfides 16 17 18 can be distinguished exhibiting an n-type and p-type conductivity, respectively. The n-type class 19 20 is obtained for lower copper content materials, i.e. Cu/M ratio ≤ 1, as shown for chalcopyrite 21 22 8 9 23 CuFeS 2-type sulfides such as CuFe 1-xIn xS2 and Cu 1-xZn xFeS 2 and for the cubic isocubanite 24 10 25 CuFe 2S3 , suggesting that the Fe 3 d states play a major role in the formation of the electronic 26 27 band structure of these n-type thermoelectrics. The p-type class of copper based sulfides covers a 28 29 30 broad range of compositions, from Cu/M ratio equal or close to 1 as exemplified by the stannites 31 11,12 32 Cu 2ZnXS4 (X=Sn, Ge) and copper-rich sulfides, with Cu/M ratios ranging from 2 to 5 as 33 34 shown by Cu SnS ,13 the derivatives of the tetrahedrite Cu Sb S ,14–16 of the colusite 35 2 3 12 4 13 36 17–19 20–22 37 Cu 26 V2Sn 6S32 , and of the bornite Cu 5FeS 4. 38 39 From these studies, the p-type copper rich sulfides appear as most promising for thermoelectric 40 41 applications. However, the improvement of the thermoelectric performances of these materials 42 43 44 remains a challenge, due to the interdependent and contrary effects of their electrical and thermal 45 46 transport parameters S, ρ and κ. The nature of the chemical bonds, especially Cu-S bonds and of 47 48 49 the distribution of charges in these complex structures is still a matter of debate, which is of 50 51 capital importance for the optimization of their TE properties. In this respect, the stannoidite 52 53 Cu (Fe,Zn) Sn S mineral appears to be an attractive material in relation with (i) its 54 8 3 2 12 55 23 56 orthorhombic structure (Figure 1) closely related to that of stannite, (ii) the possibility to 57 58 59 60 ACS Paragon Plus Environment 3 The Journal of Physical Chemistry Page 4 of 36 1 2 3 prepare the synthetic isostructural Cu Fe Sn S sulfide,24 and (iii) the distribution of the cationic 4 8 3 2 12 5 + 2+ 3+ 4+ 2- 6 charges according to the formula (Cu )8(Fe )(Fe )2(Sn )2(S )12 determined by Mössbauer 7 8 spectroscopy.25 Curiously, the thermoelectric properties of this sulfide have not been investigated 9 10 11 to date, in spite of its potential to be used as a well characterized model material for 12 13 understanding the TE phenomena in these materials. We report herein on the synthesis by 14 15 mechanical alloying followed by spark plasma sintering (SPS) and on the TE properties of the 16 17 18 copper hyper-stoichiometric stannoidite Cu 8+ xFe 3-xSn 2S12 (x ≤ 0.5) series. A drastic change in the 19 20 TE properties is observed with the copper content, characterized by a crossover from a 21 22 semiconducting poor TE ( ZT = 0.07) state for the stoichiometric phase ( x = 0) to a metallic- 23 630 K 24 25 like attractive TE ( ZT 630 K = 0.35) state for the Cu-hyper-stoichiometric sulfide (x = 0.5). The 26 27 modification of these performances is explained in the frame of the iono-covalent model of the 28 29 chemical bonds. 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Figure 1. View of the crystal structure of stannoidite Cu 8Fe 3Sn 2S12 . 51 52 53 54 55 56 2. EXPERIMENTAL SECTION 57 58 59 60 ACS Paragon Plus Environment 4 Page 5 of 36 The Journal of Physical Chemistry 1 2 3 Polycrystalline samples of Cu Fe Sn S (0 ≤ x ≤ 0.5) were synthesized by mechanical 4 8+ x 3-x 2 12 5 26 6 alloying followed by Spark Plasma Sintering. All sample preparation and handling of powders 7 8 were performed in Argon filled glove box with oxygen content of < 1 ppm. Stoichiometric 9 10 11 amounts of Cu (99.9 %, Alfa Aesar), Fe (99.9 %, Alfa Aesar), Sn (99.9 %, Alfa Aesar) and S 12 13 (99.99 %, Alfa Aesar) were loaded in a 25 ml tungsten carbide jar under argon atmosphere.
Recommended publications
  • MINERALOGY of EPITHERMAL GOLD SULFIDE TELLURIDE ORES of the KAIRAGACH GOLD DEPOSIT, (Uzbekistan)
    #07_kovalenker_en_0802:#07_kovalenker_en_0802.qxd 21.05.2009 20:11 Page 45 New data on minerals. M.: 2003. Volume 38 45 UDC 553.43/451.498+553.662(575) MINERALOGY OF EPITHERMAL GOLDSULFIDETELLURIDE ORES OF THE KAIRAGACH GOLD DEPOSIT, (Uzbekistan) Vladimir A. Kovalenker Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), RAS, Moscow, [email protected] Olga Yu. Plotinskaya Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), RAS, Moscow, [email protected] Rustam I. Koneev Ulugbek National University of Uzbekistan, Tashkent, Republic of Uzbekistan The Kairagach ore deposit is situated on the northern slope of the Kurama Ridge (East Uzbekistan), 3.5 km northeast of the wellknown Kochbulak goldtelluride ore deposit. According to specific mineralogical fea- tures of the ores and hydrothermal alterations, it was assigned to the highsulfidation (or acidsulfate) type of epithermal mineralization. However, in contrast to typical gold deposits of this type with a pronounced AuCu specialization, the ores of the Kairagach deposit are characterized by the AuSnBiSeTe geochemical profile. This paper briefly summarizes original and published data on the Kairagach deposit, including its geological features and ore characteristics, sequence of the mineral formation, and the main mineral assemblages. Occurrence conditions and chemical peculiarities of the essential minerals of the goldsulfideselenidetelluride mineralization are considered. Data on the abundance and compositional vari- ations of native elements (gold, tellurium, and tin), fahlores, Bi and Sb sulfosalts, Cu and Fe sulfostannates, and various selenides and tellurides are presented. It is shown that the unique diversity of the ore mineralization is determined by the variety of state and occur- rence forms (native, isomorphous, sulfide, selenide, and telluride) of their contained chemical elements.
    [Show full text]
  • 1393R OMARINIITE, Cu8fe2znge2s12, THE
    Title Omariniite, Cu8Fe2ZnGe2S12, the germanium analogue of stannoidite, a new mineral species from Capillitas, Argentina Authors Bindi, L; Putz, H; Paar, WH; Stanley, Christopher Description This is a pre-proof version Date Submitted 2017-09-29 1 1393R 2 3 OMARINIITE, Cu8Fe2ZnGe2S12, THE GERMANIUM-ANALOGUE OF 4 STANNOIDITE, A NEW MINERAL SPECIES FROM CAPILLITAS, 5 ARGENTINA 6 7 1,* 2 3 4 8 LUCA BINDI , HUBERT PUTZ , WERNER H. PAAR , CHRISTOPHER J. STANLEY 9 10 1Dipartimento di Science de la Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I-50121 Firenze, 11 Italy and CNR – Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G. La Pira 4, I-50121 Firenze, 12 Italy 13 2Friedl ZT GmbH Rohstoff- und Umwelt Consulting, Karl-Lötsch-Strasse 10, A-4840 Vöcklabruck, Austria 14 3Pezoltgasse 46, A-5020 Salzburg, Austria 15 4Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom 16 *Corresponding Author: [email protected] 17 18 19 20 21 22 ABSTRACT 23 Omariniite, ideally Cu8Fe2ZnGe2S12, represents the Ge-analogue of stannoidite and was 24 found in bornite-chalcocite-rich ores near the La Rosario vein of the Capillitas epithermal 25 deposit, Catamarca Province, Argentina. The mineral is closely associated with three other 26 Ge-bearing minerals (putzite, catamarcaite, rarely zincobriartite) and bornite, chalcocite, 27 digenite, covellite, sphalerite, tennantite, luzonite, wittichenite, thalcusite and traces of 28 mawsonite. The width of the seams rarely exceeds 60 µm, their length can attain several 29 100 µm’s. The mineral is opaque, orange-brown in polished section, has a metallic luster 30 and a brownish-black streak.
    [Show full text]
  • Indium Crystal Chemistry : from Thin-Film Materials * Id
    • • • INDIUM CRYSTAL CHEMISTRY : FROM THIN-FILM MATERIALS IN Poster TO NATURAL BULK CHALCOGENIDES * ID 229 * Laboratório Nacional de Energia e Geologia Ma Ondina FIGUEIREDO & Teresa PEREIRA da SILVA LNEG, Geol. Data C., Apt. 7586, 2721-866 Alfragide, & CENIMAT / I3N, Mat. Crystal Chemistry of Indium Sci. Dpt., Fac. Sci. Techn., New Univ. Lisbon, 2829-516 Caparica, Portugal Indium (Z=49) has the electronic structure [Kr] 4d10 5s2 5p1 and frequently assumes the trivalent state, suggesting the inertness of 5s2 electron-pair. Like gallium and unlike tin, indium seldom forms specific minerals, exhibiting a Introduction Table 1 − MORPHOTROPIC DOMAINS of distinctly chalcophile behavior in the Earth’s crust and occurring rather Indium is nowadays widely used in many CHALCOGENIDE MINERALS (Sulphides & Sulphosalts) dispersed within polymetallic sulfide ores (Table 1). technologic fields - electronics, solders, low [chemical range for stable diadochic substitutions in minerals The sulphide roquesite (CuInS2) was the first In-mineral to be described [5], melting-temperature alloys, etc. Discovered in deduced from stable synthetic compounds] followed [6] by indite (Fe In2 S4) and dzhalindite, a tri-hydroxide with In (OH)6 1863 and isolated four years later as a metal, octahedra. The recovery of indium stands mostly on the processing of zinc indium became one of the most relevant scarce Periodic classification of the Elements blende - a cubic mineral typifying tetrahedral sulphides (fig.2) where cations fill metals used in the production of new “high-tech half of the available tetrahedral sites in a cubic closest packing (ccp) of sulfur devices” based on innovative nanotechnologies. anions (S=). The crystal-chemical formula is written Znt[St]c, where t stands Suggestive examples of indium incorporation - S for tetrahedral coordination and c quotes the anion packing [7].
    [Show full text]
  • Indium-Bearing Paragenesis from the Nueva Esperanza and Restauradora Veins, Capillitas Mine, Argentina
    Journal of Geosciences, 65 (2020), 97–109 DOI: 10.3190/jgeosci.304 Original paper Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina María Florencia MÁRQUEZ-ZAVALÍA1,2*, Anna VYMAZALOVÁ3, Miguel Ángel GALLISKI1, Yasushi WATANABE4, Hiroyasu MURAKAMI5 1 IANIGLA, CCT-Mendoza (CONICET), Avda. A. Ruiz Leal s/n, Parque San Martin, CC330, (5500) Mendoza, Argentina; [email protected] 2 Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario (5502) Mendoza, Argentina 3 Department of Rock Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic 4 Faculty of International Resource Sciences, Mining Museum of Akita University, 28-2 Osawa, Tegata, Akita, 010-8502 Japan 5 Coal Business Planning Group, Coal Business Office, Resources & Power Company, JXTG Nippon Oil & Energy Corporation, 1-2, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8162 Japan * Corresponding author The Nueva Esperanza and Restauradora are two of the twenty-three veins described at Capillitas mine, an epithermal precious- and base-metal vein deposit located in northern Argentina. Capillitas is genetically linked to other minera- lizations of the Farallón Negro Volcanic Complex, which hosts several deposits. These include two world-class (La Alumbrera and Agua Rica) and some smaller (e.g., Bajo El Durazno) porphyry deposits, and a few epithermal deposits (Farallón Negro, Alto de la Blenda, Cerro Atajo and Capillitas). The main hypogene minerals found at these two ve- ins include pyrite, sphalerite, galena, chalcopyrite, tennantite-(Zn) and tennantite-(Fe). Accessory minerals comprise hübnerite, gold, silver, stannite, stannoidite and mawsonite, and also diverse indium- and tellurium-bearing minerals.
    [Show full text]
  • Stannoidite Cu8(Fe, Zn)3Sn2s12 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
    Stannoidite Cu8(Fe, Zn)3Sn2S12 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 222. Massive, in veinlets, to 1 mm. Physical Properties: Fracture: Uneven to subconchoidal. Hardness = ∼4 VHN = 181–274 (100 g load). D(meas.) = n.d. D(calc.) = [4.68] Optical Properties: Opaque. Color: Brass-brown; in polished section, pinkish brown. Streak: Dark brown-gray. Luster: Metallic. Pleochroism: Distinct, pale salmon-brown to brown. Anisotropism: Strong; dark orange-red to yellow-gray. R1–R2: (400) 17.5–18.9, (420) 17.4–19.2, (440) 18.2–20.3, (460) 19.5–21.7, (480) 20.8–23.0, (500) 21.8–24.2, (520) 22.8–25.3, (540) 23.7–26.3, (560) 24.6–27.1, (580) 25.4–27.8, (600) 26.2–28.4, (620) 27.1–29.1, (640) 27.8–29.5, (660) 28.7–30.0, (680) 29.6–30.5, (700) 30.3–30.8 Cell Data: Space Group: I222. a = 10.767 b = 5.411 c = 16.118 Z = [2] X-ray Powder Pattern: Konjo mine, Japan. 3.11 (100), 1.906 (70), 1.621 (20b), 2.70 (16), 4.83 (10), 5.40 (5), 4.13 (4) Chemistry: (1) (2) (1) (2) Cu 37.2 38.2 Zn 1.2 0.8 Ag 0.1 Sn 16.5 18.7 Fe 12.5 11.9 S 31.2 29.9 Total 98.7 99.5 (1) Konjo mine, Japan; by electron microprobe, corresponding to (Cu7.22Ag0.01)Σ=7.23 (Fe2.76Zn0.23)Σ=2.99Sn1.71S12.00.
    [Show full text]
  • Tennantite–Tetrahedrite-Series Minerals and Related Pyrite in the Nibao Carlin-Type Gold Deposit, Guizhou, SW China
    minerals Article Tennantite–Tetrahedrite-Series Minerals and Related Pyrite in the Nibao Carlin-Type Gold Deposit, Guizhou, SW China Dongtian Wei 1,2,*, Yong Xia 2,*, Jeffrey A. Steadman 3, Zhuojun Xie 2, Xijun Liu 1, Qinping Tan 2 and Ling’an Bai 1 1 Guangxi Key Laboratory of Exploration for Hidden Metallic Ore Deposits, College of Earth Sciences, Guilin University of Technology, Guilin 541006, China; [email protected] (X.L.); [email protected] (L.B.) 2 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; [email protected] (Z.X.); [email protected] (Q.T.) 3 Centre for Ore Deposit and Earth Sciences, University of Tasmania, Private Bag 79, Tasmania 7001, Australia; [email protected] * Correspondence: [email protected] or [email protected] (D.W.); [email protected] (Y.X.) Abstract: A number of sediment-hosted, Carlin-type/-like gold deposits are distributed in the Youjiang basin of SW China. The gold ores are characterized by high As, Hg, and Sb contents but with low base metal contents (Cu+Pb+Zn < 500–1000 ppm). The Nibao deposit is unique among these gold deposits by having tennantite–tetrahedrite-series minerals in its ores. The deposit is also unique in being primarily hosted in the relatively unreactive siliceous pyroclastic rocks, unlike classic Carlin-type gold deposits that are hosted in carbonates or calcareous clastic rocks. In this study, we have identified tennantite-(Zn), tennantite-(Hg), and tetrahedrite-(Zn) from the tennantite–tetrahedrite-series mineral assemblage.
    [Show full text]
  • Copper Hyper-Stoichiometry: the Key for the Optimization of Thermoelectric Properties in Stannoidite
    Copper Hyper-Stoichiometry: The Key for the Optimization of Thermoelectric Properties in Stannoidite Cu 8+x Fe 3−xSn 2S12 V. Pavan Kumar, T. Barbier, V. Caignaert, B. Raveau, R. Daou, B. Malaman , G. Le Caër, P. Lemoine and E. Guilmeau [email protected] Journées Nationales de Thermoélectricité 2017, December 6-8 1 Introduction PbTe based – promising but toxic and expensive constituents Alternative – Copper based sulfides P-type n-type Cu/M≥1 Cu/M≤1 CuFe 1-xMxS2 (M = In, Zn) ( ZT = 0.22 ) Stannites (Cu ZnSnS ) ( ZT = 0.36 ) 2 4 CuFe 2S3 (ZT = 0.14 ) Tetrahedrites (Cu 12 Sb 4S13 ) ( ZT > 1.0 ) Bornite (Cu 5FeS 4)( ZT > 0.6 ) Cu-S conducting network is the key Colusite (Cu 26 T2X6S32 ; T= V, Nb, Ta & X= Sn, Ge) ( ZT > 0.9 ) Germanite (Cu 22 Fe 8Ge 4S32 ) ( ZT ~ 0.2 ) 2 Stannoidite Cu 8Fe 3Sn 2S12 Available as a natural mineral Superstructure of Stannite Edge-sharing CuS 4, SnS 4 and FeS 4 ordered tetrahedra Metallic atoms are distributed on seven different crystallographic sites. Stacking along the a axis of pure tetrahedral univalent copper layers alternating with mixed tetrahedral layers containing copper, tin and iron. The logical rationale for studying this material is supported by: -Derivative structure of stannite (ZT=0.36 @ 700 K)[1] -Larger number of atomic positions (point defects) -Pristine compound never synthesized in laboratory 3 [1] Liu, M. L.; Huang, F. Q.; Chen, L. D.; Chen, I. W.. Appl. Phys. Lett. 2009, 94 , 202103. Synthesis Process High energy ball-milling process: WC jar (20mL) and balls (7 x 10 mm) 600 rpm : 12 hours Stannite structure Broad peaks – not well crystallized 4 Stannoidite Cu 8Fe 3Sn 2S12 SPS conditions: WC dies - 150 Mpa under Vacuum After SPS 600°C 18’ 15’ 40’ RT RT Space group: I 222 Unit Cell: Orthorhombic a = 10.758 Å b = 5.397 Å c = 16.135 Å Superstructure diffraction peaks of the stannoidite Broad superstructure reflections indicate presence of atomic disorder or crystallographic defects.
    [Show full text]
  • A Mineralogical Field Guide for a Western Tasmania Minerals and Museums Tour
    MINERAL RESOURCES TASMANIA Tasmania DEPARTMENTof INFRASTRUCTURE, ENERGY and RESOURCES Tasmanian Geological Survey Record 2001/08 A mineralogical field guide for a Western Tasmania minerals and museums tour by R. S. Bottrill This guide was originally produced for a seven day excursion held as part of the International Minerals and Museums Conference Number 4 in December 2000. The excursion was centred on the remote and scenically spectacular mineral-rich region of northwestern Tasmania, and left from Devonport. The tour began with a trip to the Cradle Mountain National Park, then took in visits to various mines and mineral localities (including the Dundas, Mt Bischoff, Kara and Lord Brassey mines), the West Coast Pioneers Memorial Museum at Zeehan and a cruise on the Gordon River. A surface tour of the copper deposit at Mt Lyell followed before the tour moved towards Hobart. The last day was spent looking at mineral sites in and around Hobart. Although some of the sites are not accessible to the general public, this report should provide a guide for anyone wishing to include mineral sites in a tour of Tasmania. CONTENTS Tasmania— general information Natural history and climate ………………………………………………… 2 Personal requirements ……………………………………………………… 2 General geology…………………………………………………………… 2 Mining history …………………………………………………………… 4 Fossicking areas — general information ………………………………………… 4 Mineral locations Moina quarry …………………………………………………………… 6 Middlesex Plains ………………………………………………………… 6 Lord Brassey mine ………………………………………………………… 6 Mt Bischoff ………………………………………………………………
    [Show full text]
  • Stannoidite-Bearing Tin Ore: Mineralogy, Texture And
    Canadion Mineralogist Vol. 25, pp,229-236 (1987) STANNOIDITE-BEARINGTIN ORE: MINERALOGY,TEXTURE AND PHYSICOCHEMICALENVIRONMENT OF FORMATION MASAAKI SHMIZU Department of Petrologt and Mineral Deposits, University Mt6eum, University of Tokyo, Tokyo II3, Japan NAOTATSU SHIKAZONO GeologicalInstitute, Facahyof Science,University of Tokyo, Tokyo 113,Jopan (Ramdohr ABSTRACT had been called hexastannite 194, 19ffi) and yellow stannite [-tvy 1967).The chemical for- mula Cur(Fe,Zn)2SnSg had been originally Stannoidite-bearingtin ores fron Japanesevein-type as- tin (Kato depositshave been studied. The stannoidite commonly co- signed 1969)1 however, the formula existswitl chalcopyrite, bornite and sphalerite; the atomic Cur@e,Zn)rSn2st2 was later proposed (Springer Fe/Zn ratio of the sphalerite is low, in the range 0.@2 - 1972,Boorman&Abbott 1967,Petruk 193). Mdss- 0.015. Basedon iron content of sphalerite and the mineral bauer, chemicalanalysis and crystal-structurestudies assemblage,the probable range in sulfur fugacity and tem- confirm the chemical formula as Cu{Fel*@d+, perature for the stannoidite-bearing tin ore is estimatedto za2+)Snt+So (Yamanaka& Kato 1976,fudoh & be lf - - 1fr16atm. and 2@ 300.C. This estima.tedranee Takeuchi 1976).Some analytical data on stannoidite is different from that for the srannite-bearingtin or" oi- have been obtained (e.g., Petruk 1973, Kissin & mated by Shinizu & Shikazono (1985). Tungsten-free tin ore deposits seemto have formed at a higher fugacity of Owens 1979), but details of the natural ocsurrence sulfur or lowo temperaturethan tungsten-beaxingdeposits of the nrineral and its physicochemicalenvironment of rin. of formation have not been clarified. In this paper, the compositional relations of coex- Keywords: stannoidite, sphalerite, tennantit€, tetrahedrite, isting stannoidite, sphalerite and tennantite- stannite, Japan, vein-typetin deposits,Fe-Zn partition- tetrahedrite-seriesminerals are reported.
    [Show full text]
  • Thn AMERICEN Mineralogist
    THn AMERICEN MINERALoGIST JOIIRNAL OF THE MINERAI-OGICAL SOCIETY OT AMERICA Vol. 56 NOVEMBER_DECEMBER Nos. 11 and 12 HEMUSITE-A COMPLEX COPPER-TIN-MOLYBDENUM SULFIDE FROM THE CHELOPECH ORE DEPOSIT. BULGARIA G. I. TBnzrnv,Institute oJ Mini,ng and Geology, Darwnil sa, S o-fi a, Bulgaria ABsrRAcr Hemusite, a new mineral with the formula Cu6SnMoSs, was found in the copper ore deposit of Chelopech, Bulgaria, in association with enargite, luzonite, colusite, stannoidite, renierite, tennantite, chalcopyrite, py'rite, and other minerals. It occurs as rounded iso- metric grains and aggregates usually about 0.05 mm in diameter. Hemusite has a gray color, metallic luster, and moderate hardness (about 4, Mohs). In reflected light it is violet-gray to ash-gray, isotropic, with low reflectivity (469 nm 23.4, 518 nm 24.9, 589 nm24.2,668 nm23.4!p). Microprobe analyses indicate small amounts of Fe, V, As, and Se in the mineral. The X-ray pattem is indexed on a cubic lattice, @:10.82 A. lfhe strongest lines are 3.Ir(t0)(2.22),1.919(5)(044), 1.858(3)(035),1.632(3)(226). Single crystal studies could not be made. The name is from the ancient name of the Balkan Mts., in the Sorithern slope of which the Chelopech ore deposit occurs. INrnopucrroN During microscopic studies of the copper ores from the Chelopech deposit in Bulgaria in 1963,small grains of a mineral with unusual optical properties were observed.Further detailed investigationb of the chemical composition and properties of the mineral confirmed the original assump- tion that it is an independentspecies.
    [Show full text]
  • Physicochemical Environment of Formation of Tin Sulfide-Bearing Deposits in Japan
    Far Eastern Studies Vol.7 May 2008 Center for Far Eastern Studies, University of Toyama 1 Physicochemical Environment of Formation of Tin Sulfide-Bearing Deposits in Japan Masaaki Shimizu዆, Marina Shimizu዆ and Kenro Tsunoda዆዆ Abstract Microscopic observations reveal that stannite formed at an earlier stage than stannoidite on the scale of polished sections, and this suggests that sulfur fugacity, f(S2), increased or that temperature decreased (or both) with the evolution of Sn mineralization. Concerning the f(S2) versus temperature range for the stannite-type deposits, at a given temperature, f(S2) increased from skarn deposits through Sn-W 2+ vein deposits to polymetallic vein deposits. Fe /Zn ratios of coexisting stannoidite, sphalerite and tennantite-tetrahedrite from W-bearing polymetallic vein deposits were higher than those from W-free polymetallic vein deposits. This could imply that the W-bearing deposits formed under lower f(S2) or higher temperature conditions (or both) than the W-free deposits. The log f(S2) vs. temperature field of roquesite-bearing Sn ores from the Omodani and Akenobe deposits was -6 -8 superimposed to be approximately 10 atm. at 310 @ to 10 atm. at 285 ᚴ, in the same manner as that of the stannoidite-bearing ores. Keywords ΋ stannite, stannoidite, roquesite, skarn deposits, polymetallic vein deposits, Sn-W vein deposits, epithermal deposits, stannite-type, stannoidite-type, temperature, sulfur fugacity. 1. Introduction Economic geology has a wide spectrum; targets for thorough investigation include not only ore deposits themselves but also all of the ore-forming processes, such as sources and channel ways of ore fluids, their reactions with host rocks, sources of the dissolved constituents, transportation by the fluids, and precipitation from fluids.
    [Show full text]
  • Gi{ORTER COMIAUNICATIONS a STANNITE-KESTERITE
    Canailian M in eralo gis t Vol. 11, pp.531-534(1972) gI{ORTERCOMIAUNICATIONS A STANNITE-KESTERITEEXSOTUTION FROM BRITISHCOTUMBIA D. C. HARRIS ar.ro D. R. OWENS * Mineral Sci'encesDiuision, Mines Branch, Department, of Energy, Mines and Resources' Ottaua During a mineralogical invetigation of a tin-rich lead-zinc-silver ore submitted to the Mineral Proctssing Division of the Mine Branch for beneficiation tests by Stannex Minerals Limited, an example of a stannite (CurFeSnSo)-kesterite (CurZnSnSr) intergrowth was ob'serued. Samples of the ore originated from a pros'pect located 19 miles northeast of Revel- stokg British Columbia, in the vicinity of the Snowflake mine from which Gunning (1931) reported aztncian stannite. The ore consists chiefly oJ sphalerite, pyrite and galena with lesser, but appreciable, amounts of stannite-kesterite; the remainder of the min- erals - cassiterite, pyrrhotitg rutilg scheelite, argentiferous tetrahedrite, chalcopyrite, covellite, cerussite, a tellurium-bearing canfieldite, and two other silver-tin-bearing minerals - occur in very small, to trace, amounts. In hand specimen, the stannite-kesterite oc:cursas black, coarsely crys- talline masses (up to 2 incha diameter) associated with pyrite in a matrix of milky quartz. Although the property has not been visited by the authors, the hand sample indicates a vein-type origrn. All fragments of stannite- kesterite mounted in d-olishedsections exhibit exsolution textures which va- ried from extremely fifie-grained (Figure l) to the coarser textures shown in Figure 2. In some cases, the exsolution features could only be distin- guished by etdring with a 1:1 HNO, solution, which preferentially etches the stannite phase.
    [Show full text]