Ribbeite, a Second Example of Edge-Sharing Silicate Tetrahedra In

Total Page:16

File Type:pdf, Size:1020Kb

Ribbeite, a Second Example of Edge-Sharing Silicate Tetrahedra In American Mineralogist, Volume 78, pages 190-194, 1993 Ribbeite, a secondexample of edge-sharingsilicate tetrahedra in the leucophoenicitegroup Rosnnr L. Fnnpo Department of Geology, Trinity University, San Antonio, Texas 78212, U.S.A. Ror-l.No C. Rousn, DoNllo R. Pracon Department of Geological Sciences,University of Michigan, Ann Arbor, Michigan 48109, U.S'A. Ansrn-lcr Ribbeite,Mn,(OH),(SiOo)r, is orthorhombicPnmawith a : 10.732(l)A, t : ts.Oz61 A, c : 4.81l(l) A, Z : 4, and V:809.2 43. Its structurehas beendetermined by direct methods and refined to a residual of 0.037 (unweighted) for all reflections. Ribbeite is structurally related to leucophoenicitein that it contains serrated,edge-sharing chains of Mn octahedra and two distinct types of Si tetrahedral sites: (l) a single, isolated, fully occupied Si tetrahedron, and (2) a pair ofedge-sharing,half-occupied Si tetrahedra,which are related by an inversion center. Ribbeite is the unit-cell-twinned dimorph of alleghany- ite; the disordered edge-sharingtetrahedra in ribbeite are a direct consequenceof mixed unit-cell glide operations in alleghanyite:statistically, half of the glides are alternate, half are en echelor. The valence requirements of O atoms in edge-sharingtetrahedra are met by two H bonds and one anomalouslyshort Si-O distanceof l'522(3) A. INrnonucrroN ccp Mg(3)'?,i.e., the unit cell is based on two twin bands that are each three atoms wide. Other members of the The new mineral ribbeite, Mnr(OH)r(SiOo)r, was de- humite group are based on intergrowths of twin bands scribed from the Kombat mine in Namibia by Peacoret that are two and three atoms wide. The twin-layer repeat al.(1987).Theynotedthatitisorthorhombic,spacegroup notation is given in Table l White and Hyde (1983a) Pbnm or Pbn2, (nonstandardsettings), with lattice pa- noted that the older method of denoting humites, rametersa:4.799(l), b: 10.742(6),c:15.70(l) A nMgrSiOo'Mg(OH,F)r,corresponds to twinned ccp (obtained by least-squaresrefinement of the powder dif- Mg(3,2) with r : x * l- fraction data), Z : 4, and with the calculated chemical The relationship between leucophoenicitesand hum- formula (MnoroMgouoFeoorCaoor)onusi,e.HrroO,o(from ites was enigmatic(Dunn, 1985) until White and Hyde electron microprobe analysis).In addition, Peacor et al. (1983a) noted that leucophoenicites(1,21 are regular in- (1987) observed that ribbeite and alleghanyite are poly- tergrowths of a twin band one atom wide with bands two morphically related, with ribbeite belonging to the leu- atoms wide; the bridging structure common to (3,2) cophoenicitegroup and alleghanyiteto the humite group humites and (1,2') leucophoenicitesis (2) olivine. White (Table l). and Hyde (1983a) also observed that subjecting the ol- The structures of the humite-group minerals are well ivine structure to repeatedcrystallographic shear produc- known and have been reviewed by Ribbe (1982). They es successivemembers of the leucophoenicitegroup. Kato were originally describedas periodic layers ofolivine and et al. (1989) noted that the twin operation is a glide plane, brucite-sellaite(Taylor and West, 1928),but Ribbe et al. and Yau and Peacor (1986) generalizedthe relationship, (1968) showed that this layer concept for humite struc- stating that "a similar glide in every member of the hum- tures is inappropriate. Thompson (1978) st'ggesteda de- ite family (3,2") results in a structure of the leucophoeni- scription with alternating modules of olivine and nor- cite family (1,2'*'7." Table I summarizes the relation- bergite. White and Hyde (1982a, 1982b) described shipsbetweenleucophoenicitesandhumites. humites in terms of anion-stuffed cation arrays that cor- The structures of leucophoenicite (Moore, 1970) and respond to those in either well-known alloy types or la- jerrygibbsite (Kato et al., 1989) have been discussedin mellar intergrowths of such alloys. The arrays can be de- terms of unit-cell twinning by Yau and Peacor (1986). scribed as twinned cubic-closest-packed(ccp) bands of We now report the crystal structure of ribbeite, which is octahedrallycoordinated cations. Using this system,White indeed the unit-cell-twinned dimorph of alleghanyite,as and Hyde (1983a) described forsterite as twinned ccp predicted by Peacor et al. (1987). Ribbeite is similar to Mg(2)r, where the twin bands of Mg cations are two at- leucophoenicitein that it contains two distinct types of oms wide and the superscriptdenotes the number of twin tetrahedral sites: (l) a single, isolated, fully occupied Si individuals (bands) in a unit cell. Norbergite is twinned tetrahedron, and (2) a pair ofedge-sharing,half-occupied 0003-004x/93l0r 02-0 r 90$02.00 I 90 FREED ET AL.: RIBBEITE 191 TABLE1, Summaryof structuredata for the humiteand leucophoenicitegroups nMZ SiO4M, . Twin Mineral ldealformula (OH,F), Spacegroup. formula'. Reference Humitegroup Norbergite Mg3(SiO4XOH), n: 1 Pbnm (3F Gibbsand Ribbe(1969) MANt Mn3(SiO"XOH), n: 1 Pbnm (3F Francisand Ribbe(1978) Chondrodite Mgs(SiO4),(OH), n:2 nllb (3,2) Gibbset al. (1970) Alleghanyite Mn5(SiO4),(OH), n:2 nllb (3,2) Rentzeperis(1970) Humite Mgi(Si04)3(OH), n:3 Pbnm (3,21" Ribbeand Gibbs(1971) Manganhumite Mn?(SiO4)3(OH), n:3 Pbnm (3,2)" Francisand Ribbe(1978) Clinohumite Mg,(SiO")4(OH), n: 4 n.lb (3,2") Robinsonet al. (1973) Sonolite Mn,(SiOr)4(OH), n: 4 n.lb (3,2") Kato et al. (1989) Olivinegroup Forsterite Mg,(SiO4) Pbnm (2)" Francisand Ribbe(1980) Tephroite Mn,(Si04) Pbnm (2)', Francisand Ribbe(1980) Leucophoenicitegroup Unknown Mn3(SiO4XOH), n:1 (1,2)? Ribbeite Mn5(SiO4),(OH), n:2 Pbnm (1,z',)', this study Leucophoenicite Mn?(SiO4)3(OH), n:3 n'lb (1,2') Moore(1970) Jerrygibbsite Mn,(SiO4)4(OH), Pbnm (1,2n)', Kato et al. (1989) t Convenlionalbut nonstandardsettings. -'After Whiteand Hyde(1982a, 1982b, 1983a). t Synthetic Mn analogueof norbergite. Si tetrahedra,related by an inversion center.A transmis- Si, and most of the O atoms; synthesesof electron density sion electron microscopy (TEM) study of leucophoenicite and differenceelectron density revealed the positions of (White and Hyde, 1983b) supported the structure pro- the remaining atoms other than H. Least-squaresstruc- posedby Moore (1970). ture refinement was performed using the 802 reflections having 1.o. > 3o(1"o"),where o is the standard deviation S:rnucrunp soLUTroN AND REFTNEMENT from the counting statistics.The function minimized was Intensity measurementswere made using an anhedral )w(lFl.o" - lFl*J', wherew : 4lFlio"/o'1(lFl:b").With crystalof approximatedimensions 0.12 x 0. 16 x 0.31 isotropic displacementfactors, the refinement converged mm; this crystal was selectedfrom the type material of to a value of 0.059 for the unweightedresidual. However, ribbeite (Peacoret al., 1987; Smithsonian Institution cat- strong parameterinteraction betweenpairs of nonequiva- alog no. NMNH 163208).Intensities of I l3l reflections lent atoms and the inability to refine all O atoms with with sin d < 0.818 and constitutingone asymmetricunit anisotropic displacementfactors suggestedthat the acen- were measruedwith monochromatized MoKa radiation tric structure was incorect. Therefore, the centrosym- by an Enraf-Nonius CAD4 kappa-axis diffractometer, metric spacegroup Pnma was selected,and after appro- controlled by a MicroVAX 3100 computer. All calcula- priate reindexingof reflections,direct methods were again tions involved in the solution and refinement of the struc- employed. An .E map revealed the locations of Mn, Si, ture were performed using the Enraf-Nonius crystallo- and all O atoms. kast-squares refinement of this struc- graphic software system MolEN. The intensities of six ture with isotropic displacement factors convergedto an standard reflections were monitored during data mea- unweighted residual of 0.069. A refinement of the total surement, and these showed a total average intensity occupancyfactor ofSi2 yieldeda value of0.485(5). This changeof 0.850/0.Cell parameterswere obtained by least- correspondsto 3.88(4)atoms, which is equal to four at- squaresanalysis using the setting anglesof 24 reflections oms within three estimated standard deviations: i.e.. the in the range 5o < 0 < l2'. In the Pnma standardsetting, Si2 site is essentially500/o occupied. ribbeite is orthorhombic, with a : 10.732(l) A, b : Introduction ofanisotropic displacementfactors for all 15.672(6)A, c : 4.811(l)A, z : 4, and V: 809.2A.. atoms reduced the residual to 0.032. At this point an Intensities were reducedto structure factor amplitudes by inspection of the list of observedand calculatedstructure correction for Lorentz-polarization effects and applica- factors revealeda pattern ofintense, low-angle reflections tion of an empirical absorption correction derived from having l.Fl.o, < lFl*,.A combined isotropic extinction ry'-scansof six reflections. conection (i.e., combining the effectsof primary and sec- Peacoret al. (1987) determined that ribbeite has space ondary extinction) of the form l F l .o,(corr.) : l -Fl .o"[ * group Pbnm or Pbn2, (Pnma qr Pna2, in the standard g( | 1l *,)l was therefore applied, and that further reduced settings).Intensity statistics were inconclusive for select- the residual to 0.027. A differencesynthesis revealed two ing either the centric or acentric structure. The noncen- small peaks of 0.5 e/A3 situated at distancesof 0.6 and trosymmetric spacegroup Pna2rwas thereforearbitrarily 0.8 A from the hydroxyl O atoms 05 and 06, respec- chosenas the basis for structure solution by direct meth- tively. These were assumedto be H atoms and were la- ods, using the Multan
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Sussexite Mn2+BO2(OH)
    2+ Sussexite Mn BO2(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. As bladed acicular crystals, to 7 mm; cross-vein or radial fibrous, in felted or matted aggregates, nodular. Twinning: Submicroscopic twinning on {100} which cannot be resolved optically. Physical Properties: Tenacity: Inflexible. Hardness = 3–3.5 D(meas.) = 3.30 D(calc.) = 3.335 Optical Properties: Semitransparent. Color: White to buff, straw-yellow, pale pink; colorless in transmitted light. Streak: White. Luster: Silky, dull, earthy. Optical Class: Biaxial (–). Orientation: Parallel extinction; X = elongation; Z ⊥ flattening. Dispersion: r> v. α= 1.670 β = 1.728 γ = 1.732 2V(meas.) = ∼25◦ Cell Data: Space Group: P 21/a. a = 12.866(3) b = 10.718(2) c = 3.287(1) β =94.75(3)◦ Z=8 X-ray Powder Pattern: N’chwaning II mine, South Africa. 6.43 (10), 2.773 (7), 3.34 (6), 2.632 (6), 2.494 (6), 2.741 (5), 2.694 (5) Chemistry: (1) (3) B2O3 30.52 30.33 FeO 0.16 MnO 49.40 61.82 MgO 9.56 CaO 2.03 H2O 8.33 7.85 Total [100.00] 100.00 (1) Franklin, New Jersey, USA; recalculated to 100% after deduction of willemite 4.5%. (2) N’chwaning II mine, South Africa; by electron microprobe, analysis not given; stated to correspond to (Mn0.95Mg0.05)Σ=1.00BO2(OH). (3) MnBO2(OH). Polymorphism & Series: Forms a series with szaib´elyite. Occurrence: A rare hydrothermal mineral typically in veinlets in boron-bearing metamorphosed Mn–Fe–Zn deposits.
    [Show full text]
  • The Picking Table Volume 27, No. 1 – Spring 1986
    TABLE JOURNAL of the FRANKLIN-OGDENSBURG MINERALOGICAL SOCIETY, INC. SPRING. 1986 VOLUME 27, NO.l The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. F.QM.S. Notes prise a spectacular fluorescent display. For PRESIDENT'S MESSAGE years the Gerstmann Mineral Museum has displayed the collection for the delight and With the melting of the snow, the rocks of education of amateur and professional mineralo- the Buckwheat Dump emerge from their white gists alike. The Franklin Mineral Museum mantle, and the seismic tremors rumble through is most grateful to Arthur and Harriet Mitteldorf the souls of the collector community. Whatever for this most generous donation and to Ewald Spring may mean to the average mortal, to Gerstmann for its accumulation and for his FOMS members it brings a special appeal to sponsorship of the Franklin Mineral Museum dig in the dirt, not to plant, but to explore as the recipient. Transfer of the collection again the crystalline mysteries of Nature. will be effected as soon as suitable space is available to house it. Let us not lose sight of the fact that we are a community, however widespread, dedicated JLB to a great common interest and purpose: the expansion and preservation of knowledge about the world's most remarkable mineral location. ABOUT THE COVER SKETCH Like all great enterprises, this demands the efforts and participation of many. To the Located Sphalerite Occurrences—Franklin Mine extent that we share our knowledge, our time, and our interest with each other and the world, It is suggested that you refer to this hand Franklin lives.
    [Show full text]
  • MINERALS and MINERAL VARIETIES from METAMORPHOSED Mn DEPOSITS of BISTRITA MOUNTAINS, ROMANIA
    Acta Mineralogica-Petrographica, Abstract Series 1, Szeged, 2003 MINERALS AND MINERAL VARIETIES FROM METAMORPHOSED Mn DEPOSITS OF BISTRITA MOUNTAINS, ROMANIA HÎRTOPANU, P.1 & SCOTT, P.2 1 Geological Institute of Romania, Caransebeş 1, RO-78344 Bucharest, Romania. E-mail: [email protected] 2 Camborne School of Mines, Redruth, Cornwall, United Kingdom. The Bistrita Mountains belong to the Crystalline Meso- mation of some amphiboles and some pyroxenes into other zoic Zone of the East Carpathians, which consists of super- phases, there are drastical transformations of pyroxenes into posed Variscan and Alpine Nappes, overthrusted eastwards pyroxenoids (johannsenite into rhodonite), pyroxenoids into over the Flysch Zone. The manganese ore is contained by pyroxenoids (pyroxmangite into rhodonite), pyroxmangite Tulghes Group (Tg2 level) of the Variscan Putna Nappe, into manganogrunerite, garnets into garnets (spessartine- situated over the Pietrosu Bistritei Nappe and supporting the calderite into spessartine, spessartine into anisotropic spes- thrusting of the Rebra Nappe. All these Variscan nappes sartine-andradite-grossular), calderite into pyroxmangite- constitute the Alpine Sub-Bucovinian Nappe localised be- magnetite, etc. are the best evidences of continuous variation tween Alpine Infrabucovinian Nappe in the East and the of formation conditions. Alpine Bucovinian Nappe in the West. The Mn ore have a predominant carbonate rather than The mineralogy of Mn metamorphosed deposits from silicate mineralogical composition, which means a great CO2 Bistrita Mts. includes 328 minerals and mineral varieties. fluid control in the carbonation and dehydration processes They may count among the mineralogically the most com- along the many stages of the whole history of the ore and the plex deposits of the world.
    [Show full text]
  • Kinoshitalite (Ba,K)(Mg,Mn,Al)3Si2al2o10(OH)2
    Kinoshitalite (Ba; K)(Mg; Mn; Al)3Si2Al2O10(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: Forms small scales, < 1 mm. Physical Properties: Cleavage: 001 , perfect. Tenacity: Brittle. Hardness = 2.5{3 D(meas.) = 3.30 D(calc.) = 3.33 f g Optical Properties: Semitransparent. Color: Yellow-brown to colorless; light yellow to colorless in thin section. Luster: Vitreous. Optical Class: Biaxial ({). Pleochroism: X = very light yellow to light yellow; Y = Z = light yellow with brownish tinge. Absorption: Y Z > X. ® = 1.619 ¯ = 1.628{1.633 ° = 1.635 ' 2V(meas.) = 23± Cell Data: Space Group: C2=m: a = 5.345(3) b = 9.250(4) c = 10.256(8) ¯ = 99:99(6)± Z = 2 X-ray Powder Pattern: Noda-Tamagawa mine, Japan. 3.37 (100), 2.52 (55), 2.020 (55), 5.05 (50), 10.1 (45), 1.684 (15), 3.16 (5) Chemistry: (1) (2) (1) (2) SiO2 24.58 23.43 BaO 17.85 27.60 TiO2 0.16 Na2O 0.68 0.11 Al2O3 22.06 19.25 K2O 3.30 0.24 Fe2O3 0.71 1.87 F 0.21 + Mn2O3 3.24 H2O 2.90 FeO 0.04 H2O¡ 0.20 MnO 7.38 2.62 H2O 3.50 MgO 16.60 21.95 O = F 0.09 ¡ 2 CaO 0.05 0.05 Total 99.87 100.62 2+ (1) Noda-Tamagawa mine, Japan; corresponds to (Ba0:58K0:35Na0:11Ca0:01)§=1:05(Mg2:06Mn0:52 3+ 3+ Al0:22Mn0:21Fe0:04Ti0:01)§=3:06Si2:05Al1:94O10[(OH)1:62O0:33F0:06]§=2:01: (2) Netra, India; by electron microprobe, total Fe as Fe2O3; corresponding to (Ba0:93K0:03Na0:02Ca0:01)§=0:99 (Mg2:80Mn0:19Fe0:08)§=3:07Si2:01(Al1:94Fe0:05)§=1:99O10(OH)2: Polymorphism & Series: 1M, 2M1 polytypes.
    [Show full text]
  • Leucophoenicite Mn (Sio4)3(OH)2
    2+ Leucophoenicite Mn7 (SiO4)3(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: Crystals rare, typically slender, prismatic, elongated and striated [010], to 8 mm; in isolated grains or granular massive. Twinning: On k 001 , common, contact or interpenetrant twins, lamellar. f g Physical Properties: Cleavage: 001 , imperfect. Tenacity: Brittle. Hardness = 5.5{6 f g D(meas.) = 3.848 D(calc.) = [4.01] Optical Properties: Transparent to translucent. Color: Brown to light purple-red, raspberry-red, deep pink to light pink; rose-red to colorless in thin section. Luster: Vitreous. Optical Class: Biaxial ({). Pleochroism: Faint; rose-red 001 ; colorless 001 . Orientation: k f g ? f g X 001 cleavage. Dispersion: r > v; slight. ® = 1.751(3) ¯ = 1.771(3) ° = 1.782(3) ? f g 2V(meas.) = 74(5)± Cell Data: Space Group: P 21=a: a = 10.842(19) b = 4.826(6) c = 11.324(9) ¯ = 103:93(9)± Z = [2] X-ray Powder Pattern: Franklin, New Jersey, USA. 1.8063 (10), 2.877 (9), 2.684 (8), 4.36 (5), 3.612 (5), 2.365 (5), 2.620 (4) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 26.36 26.7 26.7 CaO 5.67 2.4 2.8 FeO trace 0.3 0.3 Na2O 0.39 MnO 60.63 62.8 64.7 K2O 0.24 ZnO 3.87 0.0 0.0 H2O 2.64 [2.3] [2.8] MgO 0.21 5.5 2.7 Total 100.01 [100.0] [100.0] (1) Franklin, New Jersey, USA; composite of two analyses, corresponding to (Mn5:89Ca0:70Zn0:32 Na0:04Mg0:03K0:01)§=6:99(Si1:01O4)3(OH)2: (2) Kombat mine, Namibia; by electron microprobe, H2O by di®erence; corresponding to (Mn5:98Mg0:92Ca0:29Fe0:02)§=7:21(SiO4)3(OH)1:72: (3) Valsesia-Valtournanche area, Italy; by electron microprobe, H2O by di®erence; corresponding to (Mn6:16Mg0:45Ca0:34Fe0:03)§=6:98(SiO4)3(OH)2:10: Mineral Group: Leucophoenicite group.
    [Show full text]
  • The Picking Table Volume 8, No. 1
    THE PICKING TABLE FRANKLIN OGDENSBURG MINSHALOGICAL SOCIETY, INC, P. 0. BOJC 146 FRANKLIN, H.J., 07416 VOLUME VIII FEBRUARY 196? NUMBER 1 The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. CLUB PROGRAM - SPRING 1967 All meetings will be held at the Hardyston School, intersection of Routes #23 and #517, Franklin, N. J. Pre meeting activities start at 1:00 P.A. Speaker will be announced at 2:30 P.M. Sunday, Field trip, 9=00 A..-I. to Noon - March 19th. Buckwheat Dump, Franklin, N.J. Meeting, 2:30 P.M. Speaker, Paul Desautels Subject - Blood Relatives Among the Minerals. Saturday, Field trip, 9:00 A.M. to Noon - April 15th Buckwheat Dump, Franklin, N.J. Meeting, 2:30 P.M. Speaker - Dr. Paul Moore. Subject - The Mineralogy of Langban, Sweden. Saturday, Field trip, 9:00 A.M. to Noon - Open Cuts, May 20th Sterling Hill Mine, Ogdensburg, H. J. Meeting, 2:30 P.M. Speaker - Dr. Clifford Frondel Subject - Franklin Minerals, New and Old Saturday, Field trio, 9:00 A.M. to Noon - June 17th Farber Quarry, Cork Hill Road, Franklin, ..J, Meeting, 2:30 P.JL Speaker - Robert Metsger Subject - The Geology of Sterling Hill. Special Events April 22/23 1967 Earth Science and Gem Show Mineralogical Society of Pennsylvania, Route 30, Lancaster, Pa. May 6/7th 3rd Annual Mineral and Gem Show Matawan Mineralogical Society, Matawan Regional High School, Matawan, ft. June 29/July 2nd 1967 National Gem and Mineral Show, Eastern Federation, Washington Hilton Hotel, Washington, D.C.
    [Show full text]
  • H Positions in Leucophoenicite, Mn7si3o12(OH)2: a Close Relative of the Hydrous B Phases
    American Mineralogist, Volume 87, pages 154–159, 2002 H positions in leucophoenicite, Mn7Si3O12(OH)2: A close relative of the hydrous B phases MARK D. WELCH,1,* WILLIAM G. MARSHALL,2 NANCY L. ROSS,3 AND KEVIN S. KNIGHT2 1Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, U.K. 2ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, U.K. 3Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, U.S.A. ABSTRACT The proton positions in leucophoenicite, ideally Mn7Si3O12(OH)2, have been determined by neu- tron powder diffraction under ambient conditions on a natural sample from Franklin, New Jersey. 2 Refinement in the P21/a space group gave Rp = 2.0% (wRp = 2.1%), χ = 4.04 for 110 refined param- eters. The two non-equivalent protons form a pair of hydroxyl groups and make hydrogen bonds to the same O7 atom of the Si1 tetrahedron at distances of 1.99(1) and 2.09(1) Å. The H····H distance in leucophoenicite is 2.16(1) Å, which is more than twice the Van der Waal’s radius of H (>2 Å) and so no proton positional disorder is expected in leucophoenicite. A comparison of the H environments is made between leucophoenicite and Phase B, Superhydrous B, and Phase A. INTRODUCTION tions of cation octahedra in leucophoenicite are like those of Understanding the behavior of hydrogenous components of the hydrous sheet of Phase B. The leucophoenicite structure mantle phases is important for interpreting the crystal chemis- consists of two polyhedral sheets which, in the centrosymmet- try and physical properties (elasticity and rheology) of these ric structure (see below), are related by inversion centers.
    [Show full text]
  • Jerrygibbsite Mn (Sio4)
    2+ Jerrygibbsite Mn9 (SiO4)4(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Orthorhombic. Point Group: mm2 (probable), or 2=m 2=m 2=m: As interlocking anhedral crystals, to 2 mm. Physical Properties: Cleavage: Imperfect on 001 . Hardness = 5.5 D(meas.) = 4.00(2) D(calc.) = 4.045 f g » Optical Properties: Transparent and translucent lamellae alternating 001 . Color: Violet-pink, with a brownish tinge; light pink in thin section. Strekakf: Light pink. Luster: Vitreous. Optical Class: Biaxial ({). Orientation: X = b; Y = c; Z = a. Dispersion: r > v; moderate. ® = 1.772(4) ¯ = 1.783(4) ° = 1.789(4) 2V(meas.) = 72± Cell Data: Space Group: P bn21 (probable), or P bnm: a = 4.875(2) b = 10.709(6) c = 28.18(2) Z = 4 X-ray Powder Pattern: Franklin, New Jersey, USA. 2.557 (100), 1.806 (100), 2.869 (78), 2.752 (49), 2.702 (46), 2.362 (39), 2.661 (34) Chemistry: (1) SiO2 27.1 FeO 0.3 MnO 64.1 ZnO 3.9 MgO 1.4 CaO 0.4 F 0.0 H2O 2.13 Total 99.3 (1) Franklin, New Jersey, USA; by electron microprobe, H2O by the Pen¯eld method; corresponds to (Mn7:86Zn0:59Mg0:24Ca0:16Fe0:14)§=8:99(SiO4)4(OH)2: Polymorphism & Series: Dimorphous with sonolite. Mineral Group: Leucophoenicite group. Occurrence: In a metamorphosed stratiform Zn-Mn deposit. Association: Franklinite, willemite, zincite, sonolite, leucophoenicite, tephroite. Distribution: From Franklin, Sussex Co., New Jersey, USA. Name: In honor of Professor Gerald V. Gibbs, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
    [Show full text]
  • The Picking Table Volume 19, No. 2
    JOURNAL OF THE FRANKLIN-OGDENSBURG MINERALOGICAL SOCIETY Volume 19 Sept. 1978 Number Two The contents of The Picking Table are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. SOCIETY PROGRAM - FALL 1978 All meetings will be held at the Hardyston School, Intersection of Rts. 23 and 517, Franklin, N.J. Pre- meeting activities begin at 1:00 P.M. Lectures at 2:00 P.M. Saturday, Field Trip: Trotter Mineral Dump, Main Street, Franklin, N.J. Sept. 16th 9:00 a.m. to 12:00 noon. Lecture: Speaker: Carl Francis - Curator, Harvard Museum, "Franklin Mineralogy" Saturday, Field Trip: Bodnar (Rudetown) Quarry, Quarry Rd., Rudeville, N.J. Oct. 21st 9:00 a.m. to 12:00 noon Lecture: Speaker: Kurt Siegler, "The Arsenate Minerals" Saturday, Field Trip: Buckwheat Mineral Dump, Evans Street, Franklin, N.J. Nov. 18th 9:00 a.m. to 12:00 noon. Lecture: Speaker: George Pidgeon, "Mineral Identification" DAILY FRANKLIN ATTRACTIONS BUCKWHEAT Mineral Dump — Entrance through the Franklin Mineral Museum, Evans Street, Franklin — Open April through November — Daily collecting fee. Closed Mondays. FRANKLIN Mineral Museum — Evans Street, Franklin, N.J. Open April through November. Admission fee. Closed on Mondays. GERSTMANN Franklin Mineral Museum, Walsh Road, Franklin, N.J. •- Open daily, year round. No charge; donations accepted. TROTTER Mineral Dump, Main Street, Franklin, N.J. • Behind Borough Hall — Open year round, except during inclement weather. Manager Nick Zipco on call. Daily fee. THE PICKING TABLE , official publication of The Franklin-Ogdensburg Mineralogical Society, Inc. is issued twice yearly; a March issue with news and the Spring program, and a September issue with news and the Fall program.
    [Show full text]
  • An Electron Microscope Study of Leucophoenicite
    American Mineralogist, Volume 68, pages 04, l9E3 An electronmicroscope study of leucophoenicite Triuorny J. Wnrrer AND BRUcEG. Hvoe Research School of Chemistry, Australian National University P.O. Box 4, Canberra,A.C.T. 2600,Australia Abstract Three leucophoenicitespecimens were examinedin the transmissionelectron micro- scopeand by X-ray powder diffractionand electron-probemicroanalysis. A comparisonof observedand computer-simulatedstructure images supports Moore's proposalsthat the leucophoenicitestructure possessesedge-shared pairs of 04 tetrahedra that are half- occupiedby Si, and that the crystalscontain planarfaults parallelto (001).The latter are interpretedas lamellaeof other membersof a proposedleucophoenicite series (analogous to the well-known humite series).Such faults frequentlycause microtwinning, often on a scaleof less than 1004. Humite seriesmembers were also very occasionallyintergrown with leucophoenicite,and one specimen(from Pajsberg,Sweden) was associatedwith chrysotile. In the electron beam leucophoenicitereadily decomposesto tephroite, Mn2SiOa. Introduction to a simplealloy structure(White and Hyde, 1983a).The Leucophoeniciteis dimorphicwith manganhumite,ide- cation array is twinned, cubic-close-packed(c.c.p.) Mn ally 3Mn2SiO+'Mn(OH)2, although the former always with Si in three-quartersof the Mn6 trigonalprisms at the containsseveral weight percent of CaO (in the present compositionplanes. Two protons occupy each of the specimens-6%). A morphological study by palache remainingprisms. Oxygenatoms are in SiMn3tetrahedra (1928) indicated that it is crystallographicallydistinct and Mn3 triangles (HMnr tetrahedra). from the humite minerals, and a preliminary power X-ray The cation array is a regular intergrowth of the Ni2In examination(Moore, 1967)suggested the existenceof alloy type (twinnedc.c.p. Ni . 2,2. with In in Ni6 severalleucophoenicite types with monoclinicor ortho- trigonalprisms) and the CrB alloy type (twinnedc.c.p.
    [Show full text]
  • ON LEUCOPHOENICITES I. a Norr on Form Dnwlopuonrs Peur B
    1226 MINERALOGICAL NOTES RrlBnnNcrs PAr.Acun, C; H. BnnueN, .tNn C. IinoNonr- (1951) Dana's System oJ Mineralogl,, vol II John Wiley and Sons, New York. RtcnuoNn, W. E. (1940) Crystal chemistry of the phosphates,arsenates, and vanadates of the type AzXOr (Z). Amer. Mineral.25, Ml-479 Srnusz, H (1957)MineralogischeTabellen. Akademische Verlagsgesellschaft, Leipzig. Srerlns, L. W. (1935) Austinite, a new arsenate mineral, from Gold llill, IJta"h.Amer. Mineral 20, 172-119. AN MINERALOGIST, VOL 52, JULY AUGUST, 1967 ON LEUCOPHOENICITES I. A Norr oN FoRMDnwlopuoNrs Peur B. Moonn, Department of the GeophysicalSciences, University oJ Chicago,Chicago, Il,linois. INrnonucrroN Leucophoenicite,3MnrSiOu.Mn(OH)2, is generallyregarded as a mem- ber of the manganesehumite group. However, unlike the monoclinic members alleghanyite, 2MnzSiOq.Mn(OH)2, and sonolite, 4Mn2SiOa 'Mn(OH)2, which seemto be normal membersof the manganesehumite series,being isotypic with chondrodite and clinohumite respectivel)-, leucophoenicitedoes not erppearto have the orthorhombic symmetry expectedfor the manganeseanaiogue of humite. The detailedstudies on leucophoenicitemorphology by Palache(1928) led him to concludethat "No interpretation of the highly peculiarassemblage of forms offeredthe slightest resemblanceto the form seriesof an1' member of the humite group to which leucophoeniciteis related chemicalll"' (p. 316). Leucophoeniciteis one of the more conspicuousand abundant of the accessoryminerals from Franklin, New Jersel'l occurring as raspberry- red to pink massesusually associatedwith green willemite and coarse granular franklinite. In most specimensit appearsas a replacementmin- eral and Palacheconsidered it a pneumatolytic product, somehowcon- nected with the pegmatite Ienseswhich intruded certain portions of the ore body'.Crystals of leucophoenicite,however, appear to be confinedto openhydrothermal veins and disptaya wide variety of developmentsand a range of colorsfrom pink to red to brown.
    [Show full text]