Bionic Buildings Iagre JOURNAL BRANCH MEETINGS

Total Page:16

File Type:pdf, Size:1020Kb

Bionic Buildings Iagre JOURNAL BRANCH MEETINGS Agriculture • Horticulture • Forestry • Environment • Amenity LANDWARDSEarly Spring 2005 Robotics Crop Storage www.iagre.org Volume 60 No.1 Volume Bionic Buildings IAgrE JOURNAL BRANCH MEETINGS DIARY of EVENTS MARCH 2005 Speakers to include: Jeff Kew, RSPB; Tuesday 12 April 19.30 h Professor Jim Harris and Dr Mike East Midlands Branch Monday 7 March Hann, Cranfield University Silsoe; and ‘State of the Art Milking’ – A tour East Anglia Branch a representative from Ready Mix and presentation of one of the Branch AGM and Technical Talk Concrete country’s most modern milking par- Speaker: Professor Dick Godwin Talk:‘The Society for the lours Further details to be advised Environment’ Venue: Nottingham University’s School Speaker: Christopher Whetnall of Agriculture, Sutton Bonnington, Monday 7 March 19.15 h Tour: Marston Vale Millenium Nottinghamshire West Midlands Branch Country Park This is a joint meeting with the IAgrE Branch AGM and Technical Talk Venue: Marston Vale Millennium Livestock Group ‘An Update of Spraying Country Park, Marston Moretaine, Development’ Bedford Wednesday 13 April 18.15 h Speaker: President-Elect, Professor Paul For further details contact the IAgrE Western Branch Miller, SRI Secretariat or visit the IAgrE website Branch AGM and Technical Talk Venue: Friends Meeting House, www.iagre.org ‘New Holland Agricultural Diesel Stratford upon Avon Engine Development’ For more information contact: Monday 14 March 19.30 h Speaker: Mike Hawkins, New Holland [email protected] Wrekin Branch Venue: Lackham House,Wiltshire Branch AGM and Technical Talk College, Lackham Monday 7 March 19.30 h Speaker: Presidential Representative Contact Nick Paul [email protected] if Wrekin Branch Venue: Harper Adams University interested in attending this meeting. ‘Second User Applications for College Military Vehicles’ Final details to be confirmed – contact Monday 25 April 19.15 h Speaker: Stuart Hockley, Head of Branch Secretary West Midlands Branch Business Development, Leavesley ‘Stirling Engines – An Update by International Thursday 17 March 2005 Norris Bomford Venue: Harper Adams University Young Engineers Competition Venue: Salford Priors Village Hall College For further details contact the IAgrE For more information contact: Secretariat [email protected] Tuesday 8 March 19.30 h Yorkshire Branch Friday 18 March 19.30 h ‘Bird Management CSL’ East Midlands Branch Venue: Buckles Inn,Askham Richard Branch AGM and Dinner Provisional date - final details to be con- Venue: The Red House Country firmed – contact Branch Secretary Manor, Main Street, Kelham, Newark, Nottinghamshire Wednesday 9 March Meet at 19.30 h for 20.00 h dinner IAgrE Annual Conference ‘Sustainability in Engineering Design’ March Venue: Harper Adams University Scottish Branch College Branch AGM and Conference See details on Back Cover of Landwards Date and further details to be con- firmed Thursday 10 March Herts & Essex Branch APRIL 2005 Branch AGM and Technical Talk Speaker: Geoff Freedman, Forestry Civil Tuesday 12 April 19.30 h Engineering, Forest Enterprise Yorkshire Branch Further details to be confirmed Branch AGM and Technical Talk Venue: Buckles Inn,Askham Richard Monday 14 March pm Date and final details to be confirmed – South East Midlands Branch/Soil & contact Branch Secretary Water Specialist Group Mini-conference:‘Restoration Engineering’ Volume 60 No 1, 2005 The Professional Journal for Engineers, Scientists, and Technologists in Agriculture, Horticulture, Forestry, Environment LANDWARDS and Amenity CONTENTS Editor Eur Ing Prof Brian D Witney Feature Articles PhD CEng CEnv FIMechE HonFIAgrE MemASAE FFCS LAND TECHNOLOGY LTD 2 BIONIC BUILDINGS 33 South Barnton Ave, Edinburgh, EH4 6AN The future of agriculture: Agricultural Transformation Tel/Fax:+44 (0)131 336 3129 Clustered Greenfactories E-mail: [email protected] Constantino Valero and co-authors Website: http://www.landtec.co.uk Advertising 8 ENGINEERING DESIGN All enquiries to IAgrE Tel:+44 (0)1525 861096 Your future is at stake Fax: +44 (0)1525 861660 Geoffrey F D Wakeham Origination: David King 9 ROBOTICS Printing: Barr Printers Ltd Harvesting in the future: autonomous self-helping machine Publisher network Landwards is published bimonthly by: Ole Peters and Christiane Albrecht IAgrE, West End Road, Silsoe, Bedford, MK45 4DU 13 CROP STORAGE Tel:+44 (0)1525 861096 Fogged protection for food on the move Fax: +44(0)1525 861660 E-mail: [email protected] Terry Mabbett Website: http://www.iagre.org President Membership Matters centrefold Peter L Redman BSc(Hons) CEnv FIAgrE Chief Executive & Secretary Christopher R Whetnall News and Comment CEnv IEng FIAgrE MemASAE 7 News scan 15 Conference report: Managing soil for the 21st century 22 Company and product information Front cover: ‘Shipping combine harvesters to Bulgaria’ – overtly disguising a flight simulator in preparation for the next generation of parasonic autonomous machines, see feature articles (Photo courtesy:AGCO Ltd) The views and opinions expressed in individual contributions are not those necessarily of IAgrE or the Editor. Landwards is compiled from information received by IAgrE but no responsibility can be accepted by the governing Council, the Publishers or the Editor in respect of any errors or omissions. The Editor reserves the right to edit any material sent to the jour- nal. Material from this publication may be quoted or reported on condition that full credit is given to Landwards and to the author, and that the date of publication and volume number are stated. In the interest of factual reporting, reference to trade names and pro- prietary products may be inevitable. No endorsement of the named products or manufacturers is intended and no adverse criti- cism is implied of similar products which are not mentioned. © The Institution of Agricultural Engineers (IAgrE) ISSN 1363-8300 BIONIC BUILDINGS A conceptual model of a greenfactory displayed during the lecture presentation at the AgEng 2004 International Conference THE FUTURE OF AGRICULTUTRE: AGRICULTURAL TRANSFORMATION CLUSTERED GREENFACTORIES Constantinos Valero, Pablo Gutierrez, Teresa Riquelme, Victor Gil,Luis Ruiz, Belen Diezma, Maria Marin, Natalia Hernandez and Jose Rodriguez Abstract • energy consumption. suggesting the extent to which A forecast view of agricultural we can influence our future. production is outlined inside a Population More people and higher incomes new type of building with Despite humanity’s success in worldwide are multiplying photosynthetic walls and in vitro feeding a growing world humanity’s impact on the culture inside it. Recent population, the natural resources environment and on natural advances in genetic engineering, upon which life depends, i.e. fresh resources. (Hardner & Rice, 2002; nanoelectronics, biosensors and water, cropland, fisheries and UNFPA, 2002) bionic building will make this forests, are weakening. In the futuristic type of greenhouse new millennium the population Water BIO NOTE possible. growth is slowing at a much Water may be the resource that Constantino Valero, Department of Rural faster rate than was previously defines the limits of development. Engineering, Polytechnic University of Introduction predicted. However, significant The supply of fresh water is Madrid (UPM), Av Complutense s/n, 28040 Looking ahead to year 2200, growth continues, meaning that essentially fixed, and the balance Madrid. 913365862, Spain. E-mail: activities associated with more people will be sharing such between humanity’s demand and [email protected] Dr Valero agricultural engineers have finite resources as fresh water the available quantity is already coordinated the formal presentation of the influenced world characteristics and cropland. precarious. While global project by the participating members of all through previous centuries, in Having reached nearly 6.1 population has tripled over the the team. areas such as: billion in 2000, the human past 70 years, water use has This paper was selected for the UNACOMA • population increase; population continues to grow. grown six-fold. Worldwide, 54% Vision Award 2004, AgEng Conference in • water availability; Population projections for the of the annual available fresh water Leuven, 12-16th September 2004. A web • food production; year 2025 range from 7.2 billion is being used, two thirds of it for page has been created on the project at • land usage; to 8 billion and for 2050 range agriculture. By 2025, this figure http://iru16.iru.etsia.upm.es/atcg_en.htm • biodiversity; and from 7.9 billion to 10.9 billion, could be as high as 70% because 2 LANDWARDS EARLY SPRING 2005 of population growth alone, or consumer, but also as producer. 90%, if per capita consumption everywhere reaches the level of Objectives, materials more developed countries. and methods: available Currently, 434 million technologies people face either water stress A solution should be planned or scarcity. Depending on separating food production from future population growth rates, the land, with the following between 2.6 billion and 3.1 objectives: billion people may be living in • obtaining more land for either water-scarce or water- housing stressed conditions by 2025 • maintaining ecosystems as (UNFPA, 2002). For 2025, preserved as possible, for water usage will be 800 km3 recreation and biodiversity higher, and other related purposes problems will worsen, such as • creating a self-contained, high soil salinity and underground yielding production system water (Hardner & Rice, 2002). which is autonomous in
Recommended publications
  • A Method of Welding Path Planning of Steel Mesh Based on Point Cloud for Welding Robot
    A Method of Welding Path Planning of Steel Mesh Based on Point Cloud for Welding Robot Yusen Geng Center for Robotics, School of Control Science and Engi- neering, Shandong University Jinan 250061, China Yuankai Zhang Center for Robotics, School of Control Science and Engi- neering, Shandong University Jinan 250061, China Xincheng Tian ( [email protected] ) Center for Robotics, School of Control Science and Engi- neering, Shandong University Jinan 250061, China Xiaorui Shi Sinotruk Industry Park Zhangqiu, Sinotruk Jinan Power Co.,Ltd. Jinan 250220, China Xiujing Wang Sinotruk Industry Park Zhangqiu, Sinotruk Jinan Power Co.,Ltd. Jinan 250220, China Yigang Cui Sinotruk Industry Park Zhangqiu, Sinotruk Jinan Power Co.,Ltd. Jinan 250220, China Research Article Keywords: Without teaching and programming, 3D structured light camera, Steel mesh point cloud, Welding path planning Posted Date: April 7th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-379414/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at The International Journal of Advanced Manufacturing Technology on July 15th, 2021. See the published version at https://doi.org/10.1007/s00170-021-07601-6. Noname manuscript No. (will be inserted by the editor) 1 2 3 4 5 6 A method of welding path planning of steel mesh based on 7 8 point cloud for welding robot 9 10 Yusen Geng1,2 · Yuankai Zhang1,2 · Xincheng Tian1,2 B · Xiaorui Shi3 · 11 Xiujing Wang3 · Yigang Cui3 12 13 14 15 16 17 18 Received: date / Accepted: date 19 20 21 Abstract At present, the operators needs to carry out 1 Introduction 22 complicated teaching and programming work on the 23 welding path planning for the welding robot before weld- With the rapid development of automation and robot 24 ing the steel mesh.
    [Show full text]
  • Experiment on Optimization of Robot Welding Process Parameters
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-1S4, June 2019 Experiment on Optimization of Robot Welding Process Parameters G DilliBabu, D Siva Sankar, K. Sivaji Babu ABSTRACT---Resistance spot welding plays an important role short time and Use pressure on sheets to join. Fluxes are not in the manufacturing industry especially in the automobile used in the RSW process, and use of filler metal is very rare sector. There is a lot of research work in the area of manually [2]. spot welding process and optimization of spot welding parameters. Currently there is more demand on robot spot welding process in the manufacturing unit. But only few research works is going on in the area of robot spot welding process and optimization of robot welding parameters. The present study gives an experimental investigation on robot resistance spot welding. Optimum robot spot welding parameters were identified by using Taguchi design of experiments approach. Also the results are analyzed by using Analysis of Variance ANOVA. Keywords: Robot, Spot Welding, optimization. I. INTRODUCTION Resistance spot welding (RSW) is the oldest process widely being used for joining sheet metals in various industries because of its simplicity, easy for automation and reliability for bulk production. RSW is an autogenously Fig. 1. Resistance spot welding principal welding method, meaning that dissimilar other methods. It does not necessity filler metal. RSW uses the metal’s usual Kim[3] et al.based on this study, recently electrical resistance and contraction in the path of current severalautomobile industries are trying to decrease the mass flow, to produce heat at the interface.
    [Show full text]
  • Sustainable Construction in Southern Africa
    Sustainable Construction in Southern Africa Market Review osec.ch Branchenbericht Südliches Afrika. Titel. Sustainable Construction in Southern Africa: Market Review Sprache. Englisch Seitenanzahl. 54 Seiten, Januar 2010 Reportinhalt. Dieser Branchenbericht untersucht die Parameter von nachhaltigem Bauen in den südafrikanischen Staaten und bestimmt spezifische Marktsegmente mit hohem Entwicklungspotential in dieser Region. Die Studie ergibt, dass die rasante Entwicklung im Bereich des grünen Bauens, vor allem in Südafrika, etliche Möglichkeiten für Schweizer Firmen eröffnet, ihre Produkte und Dienstleistungen in den Bereichen Bau, Architektur, Design und sauberen Technologien anzubieten. Autoren. Swiss Business Hub GCC World Trade Center Dubai 14th Floor, P.O. Box 9300 Dubai, United Arab Emirates Tel: +971 4 329 04 08 Fax: +971 4 332 90 48 [email protected] www.osec.ch Green Destinations LLC P.O. Box 14733 Kempton Park 1623 Johannesburg, South Africa Tel: +271 1 391 51 49 Fax: +271 1 391 51 48 [email protected] www.greendestinations.co.za Disclaimer: This study is being offered by OSEC, thanks to special funding from the Confederation’s Stabilization Program, designed to offer the Swiss economy immediate and efficient support. Osec 2010 © Alle Rechte vorbehalten. 2 Content 1. Background..................................................................................................................................................... 4 2. What is Sustainable Construction?...............................................................................................................
    [Show full text]
  • Robots Application for Welding
    Műszaki Tudományos Közlemények vol. 12. (2020) 50–54. DOI: English: https://doi.org/10.33894/mtk-2020.12.07 Hungarian: https://doi.org/10.33895/mtk-2020.12.07 ROBOTS APPLICATION FOR WELDING Abdallah KAfI,1 Tünde Anna KOvács,2 László Tóth,3 Zoltán NyIKEs4 1 Óbuda University, Doctoral Scool on Safety and Security Sciences, Budapest, Hungary, [email protected] 2, 3, 4 Óbuda University, Donát Bánki Faculty of Mechanical and Safety Engineering, Budapest, Hungary, 2 kovacs.tunde@ bgk.uni-obuda.hu 3 [email protected] 4 [email protected] Abstract In this work, the authors give an overview of the advancement of industrial robots and show the mechani- zation of welding processes, step by step. As manual welding is a physically exhausting professional work, engineers have sought to improve work conditions since the industrial revolution. Unfortunately, even today, many procedures can only be performed manually. In the welding process, the highest level of mechaniza- tion is represented by the use of robotics. The entrance of Robots in the history of welding is recent, though their spread and development are rapid. Keywords: welding, robot, sensor, security, danger. 1. Introduction The idea of robots or automated machines has a long history. Ancient Greek texts talk about Talos, the gigantic brass automaton (Figure 1.), protecting crete and Europe from pirates and invaders by walking three times around the island daily and throwing boulders at the approaching ships [1]. The ancient pieces (77–100 bc.) of a mechanical calculator, found under the sea, also prove hu- mans have long been able to construct automat- ic machines.
    [Show full text]
  • Towards a Bionic Architecture in the Context of Sustainability
    Port Said Engineering Research Journal Faculty of Engineering - Port Said University Volume 16 No. 2 pp.: 181:189 Towards a Bionic Architecture in the Context of Sustainability Naglaa Ali Megahed Architecture and Urban Planning Department, Faculty of Engineering, Port Said University, Port Said, Egypt. E-mail address: [email protected] ABSTRACT Bionics is the complex interdisciplinary field in which biological systems and evolution are applied in solving engineering problems and developing modern technology. Bionic architecture is the organic integration of science, technology, art and nature. Architects everywhere have been trying to break away from traditional methods of designing buildings and now, they have discovered bionic architecture where building designs are inspired by nature. The principal goal of bionic architecture is to provide the improvement of architectural quality and to deliver new perspectives towards innovation in architecture and design. Bionic architecture looked more alive and vibrant than architecture built based on other disciplines, it creates structures with unique designs in attempts to investigate new approaches to sustainable design that derive from the evolutionary development of living systems, from their material properties or from their adaptive response to changes in the environment. The main purpose of this work is to outline and present a theoretical framework for understanding and reassessing bionic architecture methods, approaches and levels, in terms of overall sustainability which gives a picture of what the architecture of the future is going to look like. Keywords: Climatic Bionics; Construction Bionics; Formal Method; Metaphoric Method; Procedural Bionics; Structure Bionics; Sustainability. architects, designers and artists take inspiration from 1. Introduction nature for the solutions.
    [Show full text]
  • Computational Generative Design with Biomimicry Towards Morphogenesis in Digital Architecture
    COMPUTATIONAL GENERATIVE DESIGN WITH BIOMIMICRY TOWARDS MORPHOGENESIS IN DIGITAL ARCHITECTURE AMAL ELSHTWEİ FEBRUARY 2018 COMPUTATIONAL GENERATIVE DESIGN WITH BIOMIMICRY TOWARDS MORPHOGENESIS IN DIGITAL ARCHITECTURE A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF ÇANKAYA UNIVERSITY BY AMAL ELSHTWEİ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF INTERIOR ARCHITECTURE FEBRUARY 2018 STATEMENT OF NON-PLAGIARISM PAGE I hereby declare that all information in this document has obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name : Amal, ELSHTWEI Signature : Date : 6.02.2018 iii ABSTRACT COMPUTATIONAL GENERATIVE DESIGN WITH BIOMIMICRY TOWARDS MORPHOGENESIS IN DIGITAL ARCHITECTURE ELSHTWEI, Amal M.Sc., Department of Interior Architecture Supervisor: Assist. Prof. Dr. Gulru TUNCA February 2018, 101 pages Digital architecture has been undergoing continuous changes through different technological innovations with possibilities far beyond the traditional use of architecture design software. Several design technologies have been introduced, which use algorithms and biological simulation as their core and key morphogenetic strategies. This study examines changes in the architectural design process caused by the introduction of computational-based generative design, thus the development of new algorithmic software which enables the writing of scripts and codes in design process. By computational design techniques, it becomes possible to design free- forms found in nature, then to generate architectural form, referring to biomimicry principles. Biomimicry is an applied science that derives inspiration for solutions to human problems through the study of natural designs, systems and processes.
    [Show full text]
  • Application of Industrial Robots in the Automationof the Welding Process
    Review article Robot Autom Eng J Volume 4 Issue 1 - December 2018 Copyright © All rights are reserved by IsakKarabegović DOI: 10.19080/RAEJ.2018.04.555628 Application of Industrial Robots in the Automation of the Welding Process IsakKarabegović* Faculty of Technical Engineering, University of Bihać, Bosnia and Herzegovina Submission: November 25, 2018; Published: December 11, 2018 *Corresponding author: IsakKarabegović, Faculty of Technical Engineering, University of Bihać, Bosnia and Herzegovina Abstract The application of industrial robots in the automation of production processes has been in the use since the 1960s. The automotive industry was the first to apply industrial robots and presents the forefront of using robots compared to other industries in the world. Industrial robots are used to perform tasks which are dangerous to human health. In the automotive industry, they are working in the process of welding vehicle bodywork and painting the car body, which provided the reason for the analysis of the application of robots in welding processes. Today we are in the fourth industrial revolution that the Germans named “Industry 4.0”. The implementation of the fourth technological revolution depends on several new and innovative technological achievements, most of which are applied in robotic technology. Any automation of production processes, and thus the automation of the welding process, must include industrial robots. The paper presents the representation of industrial robots in the world, and top four countries: China, Japan, North America and Germany, where the automotive industry is most developed. Two welding processes that most commonly use industrial robots are Arc welding and Spot welding. An analysis of the application of industrial robots in these two the welding process was conducted for the period 2010-2016 for the continents of Asia, America and Europe, as well as in countries with highly developed automotive industry China, Japan, USA and Germany.
    [Show full text]
  • Sensor-Enabled Multi-Robot System for Automated Welding and In-Process Ultrasonic NDE
    sensors Article Sensor-Enabled Multi-Robot System for Automated Welding and In-Process Ultrasonic NDE Momchil Vasilev, Charles N. MacLeod, Charalampos Loukas , Yashar Javadi * , Randika K. W. Vithanage, David Lines , Ehsan Mohseni, Stephen Gareth Pierce and Anthony Gachagan Centre for Ultrasonic Engineering (CUE), Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XQ, UK; [email protected] (M.V.); [email protected] (C.N.M.); [email protected] (C.L.); [email protected] (R.K.W.V.); [email protected] (D.L.); [email protected] (E.M.); [email protected] (S.G.P.); [email protected] (A.G.) * Correspondence: [email protected] Abstract: The growth of the automated welding sector and emerging technological requirements of Industry 4.0 have driven demand and research into intelligent sensor-enabled robotic systems. The higher production rates of automated welding have increased the need for fast, robotically deployed Non-Destructive Evaluation (NDE), replacing current time-consuming manually deployed inspection. This paper presents the development and deployment of a novel multi-robot system for automated welding and in-process NDE. Full external positional control is achieved in real time allowing for on-the-fly motion correction, based on multi-sensory input. The inspection capabilities of the system are demonstrated at three different stages of the manufacturing process: after all welding passes are complete; between individual welding passes; and during live-arc welding deposition. The specific advantages and challenges of each approach are outlined, and the defect detection capability Citation: Vasilev, M.; MacLeod, C.N.; is demonstrated through inspection of artificially induced defects.
    [Show full text]
  • Bionic Science As a Tool for Innovation in Mega-Cities
    Bionic Science as a Tool for Innovation in Mega-Cities Rosa Cervera and Javier Pioz Abstract The conquest of vertical space in the context of architecture and con- struction appears to be one of the smartest solutions in the quest to balance the current overpopulation and energy consumption rationale of our mega-cities. However, actual structural models of vertical construction are exceedingly restricted. Upon reaching the 500/650-m high frontier, considerably large amounts of construction material are necessary to complete just below 30% of the built up area. Bionic Architecture contains a myriad of innovative tools that enable the development of groundbreaking designs for vertical engineering. Nature provides us with countless examples from which we draw ideas. When we observe a tree and how its structure works, we see a complex system of veins and fibres, which have an amazing capacity to resist strong winds and also to conduct fluids. This self-regulated natural system is an ideal model to “imitate” when designing high-rise skyscrapers, which, similarly, fight against the wind and hold shifting masses of people. The application of bionics ranges from improving the aerody- namics of aircraft and creating water-resistant surfaces, to designing and building pioneering high rise ecological skyscrapers and revolutionary Vertical Cities that are capable of sourcing the energy and accommodating up to 100,000 people. The Be-Bionic City Tower is a pioneering architectural design of a Vertical City, and the first high-rise structure to reach 1228 m. high. It is also the first fully self-sustainable vertical construction, which means that it can fully satisfy its energy needs drawing from natural resources such as sunlight, wind and rainwater.
    [Show full text]
  • Motion Signal Processing for a Remote Gas Metal Arc Welding Application
    robotics Article Motion Signal Processing for a Remote Gas Metal Arc Welding Application Lucas Christoph Ebel 1,*,†,‡, Patrick Zuther 1,‡, Jochen Maass 2,‡ and Shahram Sheikhi 2 1 Institute for Material Science and Welding Techniques, University of Applied Science Hamburg, 20099 Hamburg, Germany; [email protected] 2 Research and Transfer Center FTZ-3i, University of Applied Science Hamburg, 20099 Hamburg, Germany; [email protected] (J.M.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +49-40-428-75-8988 † Current address: University of Applied Science Hamburg Berliner Tor 5, 20099 Hamburg, Germany. ‡ These authors contributed equally to this work. Received: 9 April 2020; Accepted: 27 April 2020; Published: 1 May 2020 Abstract: This article covers the signal processing for a human–robot remote controlled welding application. For this purpose, a test and evaluation system is under development. It allows a skilled worker to weld in real time without being exposed to the associated physical stress and hazards. The torch movement of the welder in typical welding tasks is recorded by a stereoscopic sensor system. Due to a mismatch between the speed of the acquisition and the query rate for data by the robot control system, a prediction has to be developed. It should generate a suitable tool trajectory from the acquired data, which has to be a C2-continuous function. For this purpose, based on a frequency analysis, a Kalman-Filter in combination with a disturbance observer is applied. It reproduces the hand movement with sufficient accuracy and lag-free.
    [Show full text]
  • Arc Welding Robots
    Arc welding robots Kawasaki Robot Arc welding robots ROBOT DIVISION Tokyo Head Office/Robot Division 1-14-5, Kaigan, Minato-ku, Tokyo 105-8315, Japan Phone: +81-3-3435-2501 Fax: +81-3-3437-9880 Akashi Works/Robot Division 1-1, Kawasaki-cho, Akashi, Hyogo 673-8666, Japan Kawasaki Robot Phone: +81-78-921-2946 Fax: +81-78-923-6548 Global Network CAUTIONS TO BE TAKEN Kawasaki Robotics (USA), Inc. TO ENSURE SAFETY 28140 Lakeview Drive, Wixom, MI 48393, U.S.A. Phone: +1-248-446-4100 Fax: +1-248-446-4200 l For those persons involved with the operation / service of your system, including Kawasaki Robot, they must strictly Kawasaki Robotics (UK) Ltd. observe all safety regulations at all times. They should Unit 4 Easter Court, Europa Boulevard, Westbrook Warrington carefully read the Manuals and other related safety Cheshire, WA5 7ZB, United Kingdom Phone: +44-1925-71-3000 Fax: +44-1925-71-3001 documents. l Products described in this catalogue are general industrial Kawasaki Robotics GmbH robots. Therefore, if a customer wishes to use the Robot Im Taubental 32, 41468 Neuss, Germany for special purposes, which might endanger operators or Phone: +49-2131-34260 Fax: +49-2131-3426-22 if the Robot has any problems, please contact us. We will Kawasaki Robotics Korea, Ltd. be pleased to help you. 43, Namdong-daero 215beon-gil, Namdong-gu, Incheon, 21633, l Be careful as Photographs illustrated in this catalogue are Korea frequently taken after removing safety fences and other Phone: +82-32-821-6941 Fax: +82-32-821-6947 safety devices stipulated in the safety regulations from Kawasaki Robotics (Tianjin) Co., Ltd.
    [Show full text]
  • Functional Bionics/Biomimetics
    Contents Forum on the Development of Bionic Engineering .................................................... 1 A Research and Innovation Frontier for Bio-inspired Technologies .........................................................................................................................................................Shih Chi Liu 1 Biomimetics – research and innovative development to turn scientific knowledge into beneficial practice ...........................................................................................................................................Rainer W. Erb 2 Biomimetics: Challenges, Development and Opportunities ................................................................................................................................................Ille C. Gebeshuber 6 Plenaries ......................................................................................................................... 7 Biomimetic superhydrophobic surfaces and their application: Lotus- and Salvinia-Effect .................................................................................................................................................Wilhelm Barthlott 7 Biomimetics on gecko locomotion: Behaviour, reaction forces and Bio-inspired wall-climbing robots Zhendong Dai, Zhouyi Wang, Aihong Ji, Xing Qiang, Longbao Han, Jintong Wang, Qiang Wu, Wenhua Gu, ............................................................................................................................................Jiurong Sun,Dai
    [Show full text]