Finite Von Neumann Algebras : Examples and Some Basics 2 1.1

Total Page:16

File Type:pdf, Size:1020Kb

Finite Von Neumann Algebras : Examples and Some Basics 2 1.1 ERGODIC THEORY AND VON NEUMANN ALGEBRAS : AN INTRODUCTION CLAIRE ANANTHARAMAN-DELAROCHE Contents 1. Finite von Neumann algebras : examples and some basics 2 1.1. Notation and preliminaries 2 1.2. Measure space von Neumann algebras 5 1.3. Group von Neumann algebras 5 1.4. Standard form 9 1.5. Group measure space von Neumann algebras 11 1.6. Von Neumann algebras from equivalence relations 16 1.7. Two non-isomorphic II1 factors 20 Exercises 23 2. About factors arising from equivalence relations 25 2.1. Isomorphisms of equivalence relations vs isomorphisms of their von Neumann algebras 25 2.2. Cartan subalgebras 25 2.3. An application: computation of fundamental groups 26 Exercise 27 1 2 1 2 3. Study of the inclusion L (T ) ⊂ L (T ) o F2 29 3.1. The Haagerup property 30 3.2. Relative property (T) 31 References 35 1 2 CLAIRE ANANTHARAMAN-DELAROCHE 1. Finite von Neumann algebras : examples and some basics This section presents the basic constructions of von Neumann algebras coming from measure theory, group theory, group actions and equivalence relations. All this examples are naturally equipped with a faithful trace and are naturally represented on a Hilbert space. This provides a plentiful source of tracial von Neumann algebras to play with. 1.1. Notation and preliminaries. Let H be a complex Hilbert space1 with inner-product h·; ·i (always assumed to be antilinear in the first vari- able), and let B(H) be the algebra of all bounded linear operators from H to H. Equipped with the involution x 7! x∗ (adjoint of x) and with the operator norm, B(H) is a Banach ∗-algebra with unit IdH. We shall denote by kxk, or sometimes kxk1, the operator norm of x 2 B(H). Throughout this text, we shall consider the two following weaker topologies on B(H): • the strong operator topology (s.o. topology), that is, the locally con- vex topology on B(H) generated by the seminorms pξ(x) = kxξk; ξ 2 H; • the weak operator topology (w.o. topology), that is, the locally con- vex topology on B(H) generated by the seminorms pξ,η(x) = j!ξ,η(x)j; ξ; η 2 H; where !ξ,η is the linear functional x 7! hξ; xηi on B(H). This latter topology is weaker than the s.o. topology. One of its important properties is that the unit ball of B(H) is w.o. compact. This is an immediate consequence of Tychonoff's theorem. This unit ball, endowed with the uniform structure associated with the s.o. topology is a complete space. In case H is separable, both topologies on the unit ball are metrizable and second-countable. On the other hand, when H is infinite dimensional, this unit ball is not separable with respect to the operator norm (Exercise 1.1). A von Neumann algebra M on H is a ∗-subalgebra of B(H) which is closed 2 in the s.o. topology and contains IdH. We shall sometimes write (M; H) to specify the Hilbert space on which M acts. The unit IdH of M will also be denoted 1M or simply 1. Given a subset S of B(H), we denote by S0 its commutant in B(H): S0 = fx 2 B(H): xy = yx for all y 2 Sg: 1In this text, H is always assumed to be separable. 2We shall see in Theorem 1.3 that we may require, equivalently, that M is closed in the w.o. topology. ERGODIC THEORY AND VON NEUMANN ALGEBRAS 3 Then S00 is the commutant of S0, that is, the bicommutant of S. Note that S0 is a s.o. closed unital subalgebra of B(H); if S = S∗, then S0 = (S0)∗ and therefore S0 is a von Neumann algebra on H. The first example of von Neumann algebra coming to mind is of course 0 n M = B(H). Then, M = C IdH. When H = C , we get the algebra Mn(C) of n × n matrices with complex entries, the simplest example of von Neumann algebra. We recall that a C∗-algebra on H is a ∗-subalgebra of B(H) which is closed in the norm topology. Hence a von Neumann algebra is a C∗-algebra, but the converse is not true. For instance the C∗-algebra K(H) of compact operators on an infinite dimensional Hilbert space H is not a von Neumann algebra on H : its s.o. closure is B(H). For us, a homomorphism between two C∗-algebras preserves the algebraic operations and the involution. We recall that it is automatically a contrac- tion and a positive map, i.e. it preserves the positive cones. For a concise introduction to the theory of C∗-algebras, we refer to [16]. 1.1.1. Von Neumann's bicommutant theorem. [25] We begin by showing that, although different (for infinite dimensional Hilbert spaces), the s.o. and w.o. topologies introduced in the first chapter have the same continuous linear functionals. For ξ; η in a Hilbert space H we denote by !ξ,η the linear functional x 7! hξ; xηi on B(H). We set !ξ = !ξ,ξ. Proposition 1.1. Let ! be a linear functional on B(H). The following conditions are equivalent : Pn (i) there exist ξ1; : : : ; ξn; η1; : : : ηn 2 H such that !(x) = i=1 !ηi,ξi (x) for all x 2 B(H) ; (ii) ! is w.o. continuous ; (iii) ! is s.o. continuous. Proof. (i) ) (ii) ) (iii) is obvious. It remains to show that (iii) ) (i). Let ! be a s.o. continuous linear functional. There exist vectors ξ1; : : : ; ξn 2 H and c > 0 such that, for all x 2 B(H), n X 21=2 j!(x)j ≤ c kxξik : i=1 n times z }| { Let H⊕n = H ⊕ · · · ⊕ H be the Hilbert direct sum of n copies of H. We ⊕n set ξ = (ξ1; : : : ; ξn) 2 H and for x 2 B(H), θ(x)ξ = (xξ1; : : : ; xξn): The linear functional : θ(x)ξ 7! !(x) is continuous on the vector sub- space θ(B(H))ξ of H⊕n. Therefore it extends to a linear continuous func- tional on the norm closure K of θ(B(H))ξ. It follows that there exists 4 CLAIRE ANANTHARAMAN-DELAROCHE η = (η1; : : : ; ηn) 2 K such that, for x 2 B(H), n X !(x) = (θ(x)ξ) = hη; θ(x)ξiH⊕n = hηi; xξii: i=1 Corollary 1.2. The above proposition remains true when B(H) is replaced by any von Neumann subalgebra M. Proof. Immediate, since by the Hahn-Banach theorem, continuous w.o. (resp. s.o.) linear functionals on M extend to linear functionals on B(H) with the same continuity property. In the sequel, the restrictions of the functionals !ξ,η and !ξ = !ξ,ξ to any von Neumann subalgebra of B(H) will be denoted by the same expressions. Recall that two locally convex topologies for which the continuous linear functionals are the same have the same closed convex subsets. Therefore, the s.o. and w.o. closures of any convex subset of B(H) coincide. The following fundamental theorem shows that a von Neumann algebra may also be defined by purely algebraic conditions. Theorem 1.3 (von Neumann's bicommutant theorem). Let M be a unital self-adjoint subalgebra of B(H). The following conditions are equiva- lent : (i) M = M 00. (ii) M is weakly closed. (iii) M is strongly closed. Proof. (i) ) (ii) ) (iii) is obvious. Let us show that (iii) ) (i). Since the inclusion M ⊂ M 00 is trivial, we only have to prove that every x 2 M 00 belongs to the s.o. closure of M (which is M, by assumption (iii)). More precisely, given " > 0 and ξ1; : : : ; ξn 2 H, we have to show the existence of y 2 M such that for 1 ≤ i ≤ n; kxξi − yξik ≤ ": We consider first the case n = 1. Given ξ 2 H, we denote by [Mξ] the orthogonal projection from H onto the norm closure Mξ of Mξ. Since this vector space is invariant under M, the projection [Mξ] is in the commutant M 0. Hence xξ = x[Mξ]ξ = [Mξ]xξ; and so we have xξ 2 Mξ. Therefore, given " > 0, there exists y 2 M such that kxξ − yξk ≤ ". We now reduce the general case to the case n = 1 thanks to the following very useful and basic matrix trick. We identify the algebra B(H⊕n) with the algebra Mn(B(H)) of n by n matrices with entries in B(H). We denote ERGODIC THEORY AND VON NEUMANN ALGEBRAS 5 by θ : B(H) !B(H⊕n) the diagonal map 0y ··· 01 B. .. .C y 7! @. .A : 0 ··· y We set N = θ(M). A straightforward computation shows that the commu- tant N 0 of N is the algebra of n × n matrices with entries in M 0. It follows that for every x 2 M 00, we have θ(x) 2 N 00. We apply the first part of the ⊕n proof to θ(x) and N. Given " > 0 and ξ = (ξ1; : : : ; ξn) 2 H , we get an element θ(y) 2 N such that kθ(x)ξ − θ(y)ξk ≤ ", that is, kxξi − yξik ≤ " for i = 1; : : : ; n. 1.2. Measure space von Neumann algebras. Every probability mea- sure space (X; µ) gives rise in a natural way to an abelian von Neumann algebra. Proposition 1.4. Let (X; µ) be a probability measure space. We set A = L1(X; µ). 1 (i) For f 2 L (X; µ), denote by Mf the multiplication operator by f 2 on L (X; µ).
Recommended publications
  • Quasi-Expectations and Amenable Von Neumann
    PROCEEDINGS OI THE „ „ _„ AMERICAN MATHEMATICAL SOCIETY Volume 71, Number 2, September 1978 QUASI-EXPECTATIONSAND AMENABLEVON NEUMANN ALGEBRAS JOHN W. BUNCE AND WILLIAM L. PASCHKE1 Abstract. A quasi-expectation of a C*-algebra A on a C*-subalgebra B is a bounded linear projection Q: A -> B such that Q(xay) = xQ(a)y Vx,y £ B, a e A. It is shown that if M is a von Neumann algebra of operators on Hubert space H for which there exists a quasi-expectation of B(H) on M, then there exists a projection of norm one of B(H) on M, i.e. M is injective. Further, if M is an amenable von Neumann subalgebra of a von Neumann algebra N, then there exists a quasi-expectation of N on M' n N. These two facts yield as an immediate corollary the recent result of A. Cormes that all amenable von Neumann algebras are injective. Let A be a unital C*-algebra and B a unital C*-subalgebra of A. By a quasi-expectation of A on B, we mean a bounded linear projection Q: A -» B such that Q(xay) = xQ(a)y Vx,y G B, a G A. A classical result of J. Tomiyama [13] says that any projection of norm one of A onto F is a quasi-expectation. In what follows, we will show that if M is a von Neumann algebra of operators on Hubert space H, then the existence of a quasi-expec- tation of B(H) on M implies the existence of a projection of norm one of B(H) on M.
    [Show full text]
  • Von Neumann Algebras Form a Model for the Quantum Lambda Calculus∗
    Von Neumann Algebras form a Model for the Quantum Lambda Calculus∗ Kenta Cho and Abraham Westerbaan Institute for Computing and Information Sciences Radboud University, Nijmegen, the Netherlands {K.Cho,awesterb}@cs.ru.nl Abstract We present a model of Selinger and Valiron’s quantum lambda calculus based on von Neumann algebras, and show that the model is adequate with respect to the operational semantics. 1998 ACM Subject Classification F.3.2 Semantics of Programming Language Keywords and phrases quantum lambda calculus, von Neumann algebras 1 Introduction In 1925, Heisenberg realised, pondering upon the problem of the spectral lines of the hydrogen atom, that a physical quantity such as the x-position of an electron orbiting a proton is best described not by a real number but by an infinite array of complex numbers [12]. Soon afterwards, Born and Jordan noted that these arrays should be multiplied as matrices are [3]. Of course, multiplying such infinite matrices may lead to mathematically dubious situations, which spurred von Neumann to replace the infinite matrices by operators on a Hilbert space [44]. He organised these into rings of operators [25], now called von Neumann algebras, and thereby set off an explosion of research (also into related structures such as Jordan algebras [13], orthomodular lattices [2], C∗-algebras [34], AW ∗-algebras [17], order unit spaces [14], Hilbert C∗-modules [28], operator spaces [31], effect algebras [8], . ), which continues even to this day. One current line of research (with old roots [6, 7, 9, 19]) is the study of von Neumann algebras from a categorical perspective (see e.g.
    [Show full text]
  • Functional Analysis Lecture Notes Chapter 2. Operators on Hilbert Spaces
    FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous and Bounded Operators). Let X, Y be normed linear spaces, and let L: X Y be a linear operator. ! (a) L is continuous at a point f X if f f in X implies Lf Lf in Y . 2 n ! n ! (b) L is continuous if it is continuous at every point, i.e., if fn f in X implies Lfn Lf in Y for every f. ! ! (c) L is bounded if there exists a finite K 0 such that ≥ f X; Lf K f : 8 2 k k ≤ k k Note that Lf is the norm of Lf in Y , while f is the norm of f in X. k k k k (d) The operator norm of L is L = sup Lf : k k kfk=1 k k (e) We let (X; Y ) denote the set of all bounded linear operators mapping X into Y , i.e., B (X; Y ) = L: X Y : L is bounded and linear : B f ! g If X = Y = X then we write (X) = (X; X). B B (f) If Y = F then we say that L is a functional. The set of all bounded linear functionals on X is the dual space of X, and is denoted X0 = (X; F) = L: X F : L is bounded and linear : B f ! g We saw in Chapter 1 that, for a linear operator, boundedness and continuity are equivalent.
    [Show full text]
  • Quantum Mechanics, Schrodinger Operators and Spectral Theory
    Quantum mechanics, SchrÄodingeroperators and spectral theory. Spectral theory of SchrÄodinger operators has been my original ¯eld of expertise. It is a wonderful mix of functional analy- sis, PDE and Fourier analysis. In quantum mechanics, every physical observable is described by a self-adjoint operator - an in¯nite dimensional symmetric matrix. For example, ¡¢ is a self-adjoint operator in L2(Rd) when de¯ned on an appropriate domain (Sobolev space H2). In quantum mechanics it corresponds to a free particle - just traveling in space. What does it mean, exactly? Well, in quantum mechanics, position of a particle is described by a wave 2 d function, Á(x; t) 2 L (R ): The physical meaningR of the wave function is that the probability 2 to ¯nd it in a region ­ at time t is equal to ­ jÁ(x; t)j dx: You can't know for sure where the particle is for sure. If initially the wave function is given by Á(x; 0) = Á0(x); the SchrÄodinger ¡i¢t equation says that its evolution is given by Á(x; t) = e Á0: But how to compute what is e¡i¢t? This is where Fourier transform comes in handy. Di®erentiation becomes multiplication on the Fourier transform side, and so Z ¡i¢t ikx¡ijkj2t ^ e Á0(x) = e Á0(k) dk; Rd R ^ ¡ikx where Á0(k) = Rd e Á0(x) dx is the Fourier transform of Á0: I omitted some ¼'s since they do not change the picture. Stationary phase methods lead to very precise estimates on free SchrÄodingerevolution.
    [Show full text]
  • Algebra of Operators Affiliated with a Finite Type I Von Neumann Algebra
    UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA doi: 10.4467/20843828AM.16.005.5377 53(2016), 39{57 ALGEBRA OF OPERATORS AFFILIATED WITH A FINITE TYPE I VON NEUMANN ALGEBRA by Piotr Niemiec and Adam Wegert Abstract. The aim of the paper is to prove that the ∗-algebra of all (closed densely defined linear) operators affiliated with a finite type I von Neumann algebra admits a unique center-valued trace, which turns out to be, in a sense, normal. It is also demonstrated that for no other von Neumann algebras similar constructions can be performed. 1. Introduction. With every von Neumann algebra A one can associate the set Aff(A) of operators (unbounded, in general) which are affiliated with A. In [11] Murray and von Neumann discovered that, surprisingly, Aff(A) turns out to be a unital ∗-algebra when A is finite. This was in fact the first example of a rich set of unbounded operators in which one can define algebraic binary op- erations in a natural manner. This concept was later adapted by Segal [17,18], who distinguished a certain class of unbounded operators (namely, measurable with respect to a fixed normal faithful semi-finite trace) affiliated with an ar- bitrary semi-finite von Neumann algebra and equipped it with a structure of a ∗-algebra (for an alternative proof see e.g. [12] or x2 in Chapter IX of [21]). A more detailed investigations in algebras of the form Aff(A) were initiated by a work of Stone [19], who described their models for commutative A in terms of unbounded continuous functions densely defined on the Gelfand spectrum X of A.
    [Show full text]
  • Operator Algebras: an Informal Overview 3
    OPERATOR ALGEBRAS: AN INFORMAL OVERVIEW FERNANDO LLEDO´ Contents 1. Introduction 1 2. Operator algebras 2 2.1. What are operator algebras? 2 2.2. Differences and analogies between C*- and von Neumann algebras 3 2.3. Relevance of operator algebras 5 3. Different ways to think about operator algebras 6 3.1. Operator algebras as non-commutative spaces 6 3.2. Operator algebras as a natural universe for spectral theory 6 3.3. Von Neumann algebras as symmetry algebras 7 4. Some classical results 8 4.1. Operator algebras in functional analysis 8 4.2. Operator algebras in harmonic analysis 10 4.3. Operator algebras in quantum physics 11 References 13 Abstract. In this article we give a short and informal overview of some aspects of the theory of C*- and von Neumann algebras. We also mention some classical results and applications of these families of operator algebras. 1. Introduction arXiv:0901.0232v1 [math.OA] 2 Jan 2009 Any introduction to the theory of operator algebras, a subject that has deep interrelations with many mathematical and physical disciplines, will miss out important elements of the theory, and this introduction is no ex- ception. The purpose of this article is to give a brief and informal overview on C*- and von Neumann algebras which are the main actors of this summer school. We will also mention some of the classical results in the theory of operator algebras that have been crucial for the development of several areas in mathematics and mathematical physics. Being an overview we can not provide details. Precise definitions, statements and examples can be found in [1] and references cited therein.
    [Show full text]
  • A NEW BICOMMUTANT THEOREM Ultrapowers1 AU of Separable
    A NEW BICOMMUTANT THEOREM I. FARAH Abstract. We prove an analogue of Voiculescu's theorem: Relative bicommutant of a separable unital subalgebra A of an ultraproduct of simple unital C∗-algebras is equal to A. Ultrapowers1 AU of separable algebras are, being subject to well-developed model-theoretic methods, reasonably well-understood (see e.g. [12, Theo- rem 1.2] and x2). Since the early 1970s and the influential work of McDuff and Connes central sequence algebras A0 \ AU play an even more important role than ultrapowers in the classification of II1 factors and (more recently) C∗-algebras. While they do not have a well-studied abstract analogue, in [12, Theorem 1] it was shown that the central sequence algebra of a strongly self-absorbing algebra ([27]) is isomorphic to its ultrapower if the Continuum Hypothesis holds. Relative commutants B0 \ DU of separable subalgebras of ultrapowers of strongly self-absorbing C∗-algebras play an increasingly important role in classification program for separable C∗-algebras ([22, x3], [5]; see also [26], [29]). In the present note we make a step towards better understanding of these algebras. C∗-algebra is primitive if it has representation that is both faithful and ir- reducible. We prove an analogue of the well-known consequence of Voiculescu's theorem ([28, Corollary 1.9]) and von Neumann's bicommutant theorem ([4, xI.9.1.2]). Q ∗ Theorem 1. Assume U Bj is an ultraproduct of primitive C -algebras and A is a separable C∗-subalgebra. In addition assume A is a unital subalgebra if Q WOT U Bj is unital.
    [Show full text]
  • Set Theory and Von Neumann Algebras
    SET THEORY AND VON NEUMANN ALGEBRAS ASGER TORNQUIST¨ AND MARTINO LUPINI Introduction The aim of the lectures is to give a brief introduction to the area of von Neumann algebras to a typical set theorist. The ideal intended reader is a person in the field of (descriptive) set theory, who works with group actions and equivalence relations, and who is familiar with the rudiments of ergodic theory, and perhaps also orbit equivalence. This should not intimidate readers with a different background: Most notions we use in these notes will be defined. The reader is assumed to know a small amount of functional analysis. For those who feel a need to brush up on this, we recommend consulting [Ped89]. What is the motivation for giving these lectures, you ask. The answer is two-fold: On the one hand, there is a strong connection between (non-singular) group actions, countable Borel equiva- lence relations and von Neumann algebras, as we will see in Lecture 3 below. In the past decade, the knowledge about this connection has exploded, in large part due to the work of Sorin Popa and his many collaborators. Von Neumann algebraic techniques have lead to many discoveries that are also of significance for the actions and equivalence relations themselves, for instance, of new cocycle superrigidity theorems. On the other hand, the increased understanding of the connection between objects of ergodic theory, and their related von Neumann algebras, has also made it pos- sible to construct large families of non-isomorphic von Neumann algebras, which in turn has made it possible to prove non-classification type results for the isomorphism relation for various types of von Neumann algebras (and in particular, factors).
    [Show full text]
  • Approximation Properties for Group C*-Algebras and Group Von Neumann Algebras
    transactions of the american mathematical society Volume 344, Number 2, August 1994 APPROXIMATION PROPERTIES FOR GROUP C*-ALGEBRAS AND GROUP VON NEUMANN ALGEBRAS UFFE HAAGERUP AND JON KRAUS Abstract. Let G be a locally compact group, let C*(G) (resp. VN(G)) be the C*-algebra (resp. the von Neumann algebra) associated with the left reg- ular representation / of G, let A(G) be the Fourier algebra of G, and let MqA(G) be the set of completely bounded multipliers of A(G). With the com- pletely bounded norm, MqA(G) is a dual space, and we say that G has the approximation property (AP) if there is a net {ua} of functions in A(G) (with compact support) such that ua —»1 in the associated weak '-topology. In par- ticular, G has the AP if G is weakly amenable (•» A(G) has an approximate identity that is bounded in the completely bounded norm). For a discrete group T, we show that T has the AP •» C* (r) has the slice map property for sub- spaces of any C*-algebra -<=>VN(r) has the slice map property for a-weakly closed subspaces of any von Neumann algebra (Property Sa). The semidirect product of weakly amenable groups need not be weakly amenable. We show that the larger class of groups with the AP is stable with respect to semidirect products, and more generally, this class is stable with respect to group exten- sions. We also obtain some results concerning crossed products. For example, we show that the crossed product M®aG of a von Neumann algebra M with Property S„ by a group G with the AP also has Property Sa .
    [Show full text]
  • Functional Analysis (WS 19/20), Problem Set 8 (Spectrum And
    Functional Analysis (WS 19/20), Problem Set 8 (spectrum and adjoints on Hilbert spaces)1 In what follows, let H be a complex Hilbert space. Let T : H ! H be a bounded linear operator. We write T ∗ : H ! H for adjoint of T dened with hT x; yi = hx; T ∗yi: This operator exists and is uniquely determined by Riesz Representation Theorem. Spectrum of T is the set σ(T ) = fλ 2 C : T − λI does not have a bounded inverseg. Resolvent of T is the set ρ(T ) = C n σ(T ). Basic facts on adjoint operators R1. | Adjoint T ∗ exists and is uniquely determined. R2. | Adjoint T ∗ is a bounded linear operator and kT ∗k = kT k. Moreover, kT ∗T k = kT k2. R3. | Taking adjoints is an involution: (T ∗)∗ = T . R4. Adjoints commute with the sum: ∗ ∗ ∗. | (T1 + T2) = T1 + T2 ∗ ∗ R5. | For λ 2 C we have (λT ) = λ T . R6. | Let T be a bounded invertible operator. Then, (T ∗)−1 = (T −1)∗. R7. Let be bounded operators. Then, ∗ ∗ ∗. | T1;T2 (T1 T2) = T2 T1 R8. | We have relationship between kernel and image of T and T ∗: ker T ∗ = (im T )?; (ker T ∗)? = im T It will be helpful to prove that if M ⊂ H is a linear subspace, then M = M ??. Btw, this covers all previous results like if N is a nite dimensional linear subspace then N = N ?? (because N is closed). Computation of adjoints n n ∗ M1. ,Let A : R ! R be a complex matrix. Find A . 2 M2. | ,Let H = l (Z). For x = (:::; x−2; x−1; x0; x1; x2; :::) 2 H we dene the right shift operator −1 ∗ with (Rx)k = xk−1: Find kRk, R and R .
    [Show full text]
  • Categorical Characterizations of Operator-Valued Measures
    Categorical characterizations of operator-valued measures Frank Roumen Inst. for Mathematics, Astrophysics and Particle Physics (IMAPP) Radboud University Nijmegen [email protected] The most general type of measurement in quantum physics is modeled by a positive operator-valued measure (POVM). Mathematically, a POVM is a generalization of a measure, whose values are not real numbers, but positive operators on a Hilbert space. POVMs can equivalently be viewed as maps between effect algebras or as maps between algebras for the Giry monad. We will show that this equivalence is an instance of a duality between two categories. In the special case of continuous POVMs, we obtain two equivalent representations in terms of morphisms between von Neumann algebras. 1 Introduction The logic governing quantum measurements differs from classical logic, and it is still unknown which mathematical structure is the best description of quantum logic. The first attempt for such a logic was discussed in the famous paper [2], in which Birkhoff and von Neumann propose to use the orthomod- ular lattice of projections on a Hilbert space. However, this approach has been criticized for its lack of generality, see for instance [22] for an overview of experiments that do not fit in the Birkhoff-von Neumann scheme. The operational approach to quantum physics generalizes the approach based on pro- jective measurements. In this approach, all measurements should be formulated in terms of the outcome statistics of experiments. Thus the logical and probabilistic aspects of quantum mechanics are combined into a unified description. The basic concept of operational quantum mechanics is an effect on a Hilbert space, which is a positive operator lying below the identity.
    [Show full text]
  • Von Neumann Algebras
    1 VON NEUMANN ALGEBRAS ADRIAN IOANA These are lecture notes from a topics graduate class taught at UCSD in Winter 2019. 1. Review of functional analysis In this section we state the results that we will need from functional analysis. All of these are stated and proved in [Fo99, Chapters 4-7]. Convention. All vector spaces considered below are over C. 1.1. Normed vector spaces. Definition 1.1. A normed vector space is a vector space X over C together with a map k · k : X ! [0; 1) which is a norm, i.e., it satisfies that • kx + yk ≤ kxk + kyk, for al x; y 2 X, • kαxk = jαj kxk, for all x 2 X and α 2 C, and • kxk = 0 , x = 0, for all x 2 X. Definition 1.2. Let X be a normed vector space. (1) A map ' : X ! C is called a linear functional if it satisfies '(αx + βy) = α'(x) + β'(y), for all α; β 2 C and x; y 2 X. A linear functional ' : X ! C is called bounded if ∗ k'k := supkxk≤1 j'(x)j < 1. The dual of X, denoted X , is the normed vector space of all bounded linear functionals ' : X ! C. (2) A map T : X ! X is called linear if it satisfies T (αx+βy) = αT (x)+βT (y), for all α; β 2 C and x; y 2 X. A linear map T : X ! X is called bounded if kT k := supkxk≤1 kT (x)k < 1. A linear bounded map T is usually called a linear bounded operator, or simply a bounded operator.
    [Show full text]