Lost Foam Casting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Casting High Quality C12A
Casting High Quality C12A Valve Manufacturers Association of America March 2012 BRADKEN ENERGY PRODUCTS March 2012 Elaine Thomas, Director of Metallurgy Bradken Tacoma ASTM A217 C12A and ASME Code case 2197-7 Chemistry Element wt% C 0.08 – 0.12 Mn 0.30 – 0.60 Si 0.20 – 0.50 P 0.020 S 0.010 Mo 0.85 – 1.05 Cr 8.0 – 9.5 Nb 0.060 – 0.10 V 0.18 – 0.25 N 0.030 – 0.070 Al .02 Ti .01 Zr .01 2 © 2011 BRADKEN® QUALITY SYSTEM MANUAL 3 © 2011 BRADKEN® CERTIFICATES • ASME • ISO 9002:2002 • Det Norske Veritas • Nuclear Industry Assessment Committee (Audit) • American Bureau of Shipbuilding • LLOYDS Registrar • Boeing D6-56202 4 © 2011 BRADKEN® EMPLOYEE TRAINING • • TrainingTraining Manuals Manuals for Skilled for Skilled Positions Positions • • ContinuingContinuing Education Education From ProfessionalFrom Professional Society Participation Society Participation ––AmericanAmerican SocietySociety for forTesting Testing and Materials and Materials ––SteelSteel FoundersFounders Society Society of America of America ––AmericanAmerican FoundryFoundry Society Society ––AmericanAmerican WeldingWelding Society Society ––AmericanAmerican SocietySociety for forNon Non-destructive-destructive Testing Testing • • ContinuingContinuing Education Education From NationalFrom NationalConferences Conferences – Offshore Technical Conference – Offshore Technical Conference – Submarine Industrial Base ––SubmarineMarine Machinery Industrial Association Base Conference ––MarineHydro Vision Machinery Association ––HydroPower -VisionGen – Power-Gen 5 © 2011 BRADKEN® THE CASTING -
Permanent Mold
PERMANENT MOLD CASTING PROCESSES Many variations of the permanent mold process are well-suited for mass production of high-integrity light metal castings for automotive components. This article is based on “High Integrity Permanent Mold Casting Processes: Current and Future,” a presentation at the American Foundry Society’s 6th International Conference on Permanent Mold Casting of Aluminum and Magnesium. J. L. Jorstad* JLJ Technologies Inc. This Chrysler NS cross member was cast on a tilt permanent mold machine. Richmond, Virginia However, with the incorporation of ceramic-foam filters and their ability Permanent mold casting consists of several basic to smooth melt flow (Fig. 1), opportu- processes. In this article, key characteristics of nities become available to top-pour each will be considered in terms of their impact with significantly fewer entrapped ox- on high-integrity products. ides and other quality detractors. Turbulent flow Combining filters with down-sprue GRAVITY FILLING PROCESSES and runner designs proposed by Prof. Gravity pouring, whether manual, via auto- Campbell has made it possible to pour ladles, or robotic pouring, can be susceptible to reasonably high-integrity aluminum turbulence, which has a negative effect on high- castings, perhaps most suitable for a Pintegrity castings. It is nearly impossible to have variety of less-critical automotive molten aluminum free fall more than a few cen- applications. timeters without initially exceeding a safe flow Static top-pouring has another velocity of about 0.5 to 1 m/s. Note that a free fall downside too, an ever-diminishing of less than 0.1 m will accelerate to more than 1 effective metal head as fill progresses. -
Implementation of Metal Casting Best Practices
Implementation of Metal Casting Best Practices January 2007 Prepared for ITP Metal Casting Authors: Robert Eppich, Eppich Technologies Robert D. Naranjo, BCS, Incorporated Acknowledgement This project was a collaborative effort by Robert Eppich (Eppich Technologies) and Robert Naranjo (BCS, Incorporated). Mr. Eppich coordinated this project and was the technical lead for this effort. He guided the data collection and analysis. Mr. Naranjo assisted in the data collection and analysis of the results and led the development of the final report. The final report was prepared by Robert Naranjo, Lee Schultz, Rajita Majumdar, Bill Choate, Ellen Glover, and Krista Jones of BCS, Incorporated. The cover was designed by Borys Mararytsya of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy, the Advanced Technology Institute, and the Cast Metals Coalition in conducting this project. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof. The views and opinions expressed by the authors herein do not necessarily state or reflect those of the United States Government or any Agency thereof. -
Mahimkar, C., Richards, V., Lekakh, S., Metal-Ceramic Shell Interactions During Investment Casting, Transactions Of
Paper 11-077.pdf, Page 1 of 11 AFS Proceedings 2011 © American Foundry Society, Schaumburg, IL USA Metal-Ceramic Shell Interactions during Investment Casting C. Mahimkar, V. L. Richards, and S. N. Lekakh Missouri University of Science and Technology, Rolla, Missouri Copyright 2011 American Foundry Society When steel is poured into preheated ceramic shells, the ABSTRACT prime coat of the shells comes in contact with the melt and its oxides. Thus, there is the possibility of melting Interactions of liquid steel with preheated ceramic shell and/or chemical reactions at the mold-metal interface. molds can adversely affect the surface quality of Metal-mold interactions have been studied for decades in investment castings and increase casting cleaning and the casting industry but most of the work was dedicated to finishing expenses. This phenomenon was studied using a study the specific burn-in/burn-on surface defect special cube-shaped specimen with a deep pocket. The formation when using green sand and no-bake sand temperature field in the specimen and shell during the molds. Gilliland found the mold material at or near mold- casting process was simulated with MAGMAsoft. A metal surface often becomes a burnt sand layer, which has foam pattern was used to form investment casting shells experienced temperatures equal to or very close to solidus prepared in the Missouri S&T Laboratory with three point of metal being cast1. He conducted experiments by different prime coats: silica, zircon and alumina. For pouring gray iron, ductile iron and steel into sand molds comparison, shells prepared around the same specimen and observed interface reactions in hot and cold regions. -
Compositions for Ceramic Cores Used in Investment Casting
(19) TZZ¥_Z_T (11) EP 3 170 577 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 24.05.2017 Bulletin 2017/21 B22C 9/10 (2006.01) (21) Application number: 16199374.6 (22) Date of filing: 17.11.2016 (84) Designated Contracting States: • LEMAN, John Thomas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Niskayuna, NY 12309 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • KU, Anthony Yu-Chung PL PT RO RS SE SI SK SM TR Niskayuna, NY 12309 (US) Designated Extension States: • LI, Tao BA ME Evendale, OH 45215 (US) Designated Validation States: • POLLINGER, John Patrick MA MD Niskayuna, NY 12309 (US) (30) Priority: 19.11.2015 US 201514945602 (74) Representative: Pöpper, Evamaria General Electric Technology GmbH (71) Applicant: General Electric Company GE Corporate Intellectual Property Schenectady, NY 12345 (US) Brown Boveri Strasse 7 5400 Baden (CH) (72) Inventors: • YANG, Xi Alpha, OH 45301 (US) (54) COMPOSITIONS FOR CERAMIC CORES USED IN INVESTMENT CASTING (57) The present disclosure generally relates to a ce- body, but is largely unavailable for reaction with metal ramic core comprising predominantly mullite, which is alloys used in investment casting. Methods of making derived from a precursor comprising alumina particles cast metal articles are also disclosed. and siloxane binders. Free s ilica is present in the ceramic EP 3 170 577 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 170 577 A1 Description TECHNICAL FIELD 5 [0001] The present disclosure generally relates to compositions for investment casting cores and methods for making them. -
From the on Inal Document. What Can I Write About?
DOCUMENT RESUME ED 470 655 CS 511 615 TITLE What Can I Write about? 7,000 Topics for High School Students. Second Edition, Revised and Updated. INSTITUTION National Council of Teachers of English, Urbana, IL. ISBN ISBN-0-8141-5654-1 PUB DATE 2002-00-00 NOTE 153p.; Based on the original edition by David Powell (ED 204 814). AVAILABLE FROM National Council of Teachers of English, 1111 W. Kenyon Road, Urbana, IL 61801-1096 (Stock no. 56541-1659: $17.95, members; $23.95, nonmembers). Tel: 800-369-6283 (Toll Free); Web site: http://www.ncte.org. PUB TYPE Books (010) Guides Classroom Learner (051) Guides Classroom Teacher (052) EDRS PRICE EDRS Price MF01/PC07 Plus Postage. DESCRIPTORS High Schools; *Writing (Composition); Writing Assignments; *Writing Instruction; *Writing Strategies IDENTIFIERS Genre Approach; *Writing Topics ABSTRACT Substantially updated for today's world, this second edition offers chapters on 12 different categories of writing, each of which is briefly introduced with a definition, notes on appropriate writing strategies, and suggestions for using the book to locate topics. Types of writing covered include description, comparison/contrast, process, narrative, classification/division, cause-and-effect writing, exposition, argumentation, definition, research-and-report writing, creative writing, and critical writing. Ideas in the book range from the profound to the everyday to the topical--e.g., describe a terrible beauty; write a narrative about the ultimate eccentric; classify kinds of body alterations. With hundreds of new topics, the book is intended to be a resource for teachers and students alike. (NKA) Reproductions supplied by EDRS are the best that can be made from the on inal document. -
Gating and Feeder Design of Aluminium Alloy (6061 T6) Casting for Circular Component
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072 Gating and Feeder Design of Aluminium Alloy (6061 T6) Casting for Circular Component 1 Anshul Tiwari, 2 Aakash Singh Bhadauria 1,2 Department of Mechanical Engineering ITM University Gwalior (M.P) India --------------------------------------------------------------------***-------------------------------------------------------------------------- Abstract: Sand casting is an oldest technique to achieve (ii) material specification (iii) Design of gating system (iv) Design of feeder system Furthermore, porosity which is a required shape, Every Foundry Industries Requires Minimum common defect in every casting also caused from improper Rejection of Component, Rejection Is Caused by Undesired design of gating system The basic element of gating system Uncertainty Found in Component’s. Quality of casting is are pouring basin, sprue, runners, ingate and, it is a series depends upon flow of molten metal through gating system. of passages in which the molten metal flows into the Improper gating design is mainly responsible for the turbulence mould cavity to produce the castings for minimizing and also responsible for shrinkage porosity. In other words, degradation in metal quality and for minimizing the molten metal should enter into the mold cavity within occurrence of shrinkage porosity during the solidification. The proper feeding of the molten metal into the mould solidification time of melt, so proper design of gating system is cavity has been very problematic especially when it essential. Proper gating system design reduces the turbulence involves castings with thin sections. In order to properly in the flow of molten metal, it also minimize air entrapment, feed the molten metal into the mould cavities of these thin sand inclusion, oxide film and dross. -
The Influence of Using Different Types of Risers O R Chills on Shrinkage
ARCHIVES of FOUNDRY ENGINEERING ISSN (2299-2944) Volume 17 DOI: 10.1515/afe-2017-0064 Issue 2/2017 Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences 131 – 136 The Influence of Using Different Types of Risers or Chills on Shrinkage Production for Different Wall Thickness for Material EN-GJS-400-18LT I. Vasková*, M. Conev, M. Hrubovčáková Technical University of Košice, Faculty of Metallurgy, Institute of Metallurgy Letná 9, 042 00 Košice, Slovakia *Corresponding author. E-mail address: [email protected] Received 18.04.2017; accepted in revised form 22.05.2017 Abstract In modern times, there are increasing requirements for products quality in every part of manufacturing industry and in foundry industry it is not different. That is why a lot of foundries are researching, how to effectively produce castings with high quality. This article is dealing with search of the influence of using different types of risers or chills on shrinkage cavity production in ductile iron castings. Differently shaped risers were designed using the Wlodawer´s modulus method and test castings were poured with and without combination of chills. Efficiency of used risers and chills was established by the area of created shrinkage cavity using the ultrasound nondestructive method. There are introduced the production process of test castings and results of ultrasound nondestructive reflective method. The object of this work is to determine an optimal type of riser or chill for given test casting in order to not use overrated risers and thus increase the cost effectiveness of the ductile iron castings production. -
APPENDIX D Test Specification for Final Master Moldmaker Certification Test
APPENDIX D Test Specification for Final Master Moldmaker Certification Test Duty Task Task # Test Sequence Items A Advanced Planning and Review 1 Redline a mold design 5 2 Identify mold manufacturing cost issues 3 B Mold Design 3 Check mold components for fit and function 6 4 Design jigs and fixtures 4 C Plastic Injection Molding 5 Describe the process of plastic injection molding 2 6 Define functions of the plastic injection mold 3 7 Describe injection molded part features 3 8 Describe injection molded part defects 2 9 Control mold temperature 2 10 Describe parts and functions of the cavity/core assembly 3 11 Describe the plastic delivery system 2 12 Describe mold locating and spotting 2 13 Describe mold ejection systems 3 D Alternative Molding Process 14 Describe blow molding 1 15 Describe extrusion molding processes 1 16 Describe plastic/foam molding processes 1 17 Describe rotational molding process 1 18 Describe thermoform molding process 1 19 Describe metal injection molding 1 20 Define the die‐casting process 1 E CAD/CAM and other Software 21 Use CAD software to determine undocumented dimensions 6 22 Use CAD software to troubleshoot 4 23 Demonstrate concepts of programming using CAM software 3 24 Demonstrate knowledge of communication software 2 25 Use business production software 1 F Inspection and Measurement 26 Request and verify part dimensions and features data 6 27 Perform in‐process checks 13 G Assembly, Fit and Finish 28 Bench and polish steel 6 29 Perform or request specialty finishing 3 30 Spot together shut off areas -
Use of Casting Simulation and Rapid Prototyping in an Undergraduate Course in Manufacturing Processes
Paper ID #15374 Use of Casting Simulation and Rapid Prototyping in an Undergraduate Course in Manufacturing Processes Dr. Mathew Schaefer, Milwaukee School of Engineering MATHEW SCHAEFER is Associate Professor of Mechanical Engineering at Milwaukee School of En- gineering. Prior to his academic work, Dr. Schaefer worked for G.E. Medical Systems and for Briggs & Stratton Corp. He earned his B.S. and M.S (Mechanical Engineering) and Ph.D (Materials Science) from Marquette University. His experiences in metallurgy, design, and failure analysis come from work in industry, projects and teaching at MSOE and projects completed as an independent consultant. He has taught courses both at university graduate/undergraduate level and has taught on-site professional development seminars. c American Society for Engineering Education, 2016 Use of Casting Simulation and Rapid Prototyping in an Undergraduate Course in Manufacturing Processes Abstract Mechanical Engineering students at Milwaukee School of Engineering (MSOE) study manufacturing processes in the junior year. Part of their study in this course is a project to create an original casting. This project encompasses several steps. First is to design the part and the associated mold system (gates & risers) for sand-casting the part. Next, students analyze performance of their mold layout through the use of SolidCast casting simulation software and make improvements to the initial mold layout. A final version of the casting design is submitted to the MSOE rapid prototyping center for fabrication of the casting patterns. The last step is to make an aluminum sand-cast part, in a small-scale foundry in MSOE’s labs. The project emphasizes the basic premise of the course; a manufactured part must be designed within the limitations and capabilities of the manufacturing process. -
Foundry Industry SOQ
STATEMENT OF QUALIFICATIONS Foundry Industry SOQ TRCcompanies.com Foundry Industry SOQ About TRC The world is advancing. We’re advancing how it gets planned and engineered. TRC is a global consulting firm providing environmentally advanced and technology‐powered solutions for industry and government. From solid waste, pipelines to power plants, roadways to reservoirs, schoolyards to security solutions, clients look to TRC for breakthrough thinking backed by the innovative follow‐ through of a 50‐year industry leader. The demands and challenges in industry and government are growing every day. TRC is your partner in providing breakthrough solutions that navigate the evolving market and regulatory environment, while providing dependable, safe service to our customers. We provide end‐to‐end solutions for environmental management. Throughout the decades, the company has been a leader in setting industry standards and establishing innovative program models. TRC was the first company to conduct a major indoor air study related to outdoor air quality standards. We also developed innovative measurements standards for fugitive emissions and ventilation standards for schools and hospitals in the 1960s; managed the monitoring program and sampled for pollutants at EPA’s Love Canal Project in the 1970s; developed the basis for many EPA air and hazardous waste regulations in the 1980s; pioneered guaranteed fixed‐price remediation in the 1990s; and earned an ENERGY STAR Partner of the Year Award for outstanding energy efficiency program services provided to the New York State Energy Research and Development Authority in the 2000s. We are proud to have developed scientific and engineering methodologies that are used in the environmental business today—helping to balance environmental challenges with economic growth. -
Boilermaking Manual. INSTITUTION British Columbia Dept
DOCUMENT RESUME ED 246 301 CE 039 364 TITLE Boilermaking Manual. INSTITUTION British Columbia Dept. of Education, Victoria. REPORT NO ISBN-0-7718-8254-8. PUB DATE [82] NOTE 381p.; Developed in cooperation with the 1pprenticeship Training Programs Branch, Ministry of Labour. Photographs may not reproduce well. AVAILABLE FROMPublication Services Branch, Ministry of Education, 878 Viewfield Road, Victoria, BC V9A 4V1 ($10.00). PUB TYPE Guides Classroom Use - Materials (For Learner) (OW EARS PRICE MFOI Plus Postage. PC Not Available from EARS. DESCRIPTORS Apprenticeships; Blue Collar Occupations; Blueprints; *Construction (Process); Construction Materials; Drafting; Foreign Countries; Hand Tools; Industrial Personnel; *Industrial Training; Inplant Programs; Machine Tools; Mathematical Applications; *Mechanical Skills; Metal Industry; Metals; Metal Working; *On the Job Training; Postsecondary Education; Power Technology; Quality Control; Safety; *Sheet Metal Work; Skilled Occupations; Skilled Workers; Trade and Industrial Education; Trainees; Welding IDENTIFIERS *Boilermakers; *Boilers; British Columbia ABSTRACT This manual is intended (I) to provide an information resource to supplement the formal training program for boilermaker apprentices; (2) to assist the journeyworker to build on present knowledge to increase expertise and qualify for formal accreditation in the boilermaking trade; and (3) to serve as an on-the-job reference with sound, up-to-date guidelines for all aspects of the trade. The manual is organized into 13 chapters that cover the following topics: safety; boilermaker tools; mathematics; material, blueprint reading and sketching; layout; boilershop fabrication; rigging and erection; welding; quality control and inspection; boilers; dust collection systems; tanks and stacks; and hydro-electric power development. Each chapter contains an introduction and information about the topic, illustrated with charts, line drawings, and photographs.