Pseudogap in High-Temperature Superconductors

Total Page:16

File Type:pdf, Size:1020Kb

Pseudogap in High-Temperature Superconductors Physics ± Uspekhi 44 (5) 515 ± 539 (2001) # 2001 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences REVIEWS OF TOPICAL PROBLEMS PACS numbers: 74.20.Mn, 74.72. ± h, 74.25. ± q, 74.25.Jb Pseudogap in high-temperature superconductors M V Sadovski|¯ DOI: 10.1070/PU2001v044n05ABEH000902 Contents 1. Introduction 515 2. Basic experimental facts 516 2.1 Specific heat and tunneling; 2.2 NMR and kinetic properties; 2.3 Optical conductivity; 2.4 Fermi surface and ARPES; 2.5 Other experiments 3. Theoretical models of the pseudogap state 522 3.1 Scattering on short-range-order fluctuations: Qualitative ideas; 3.2 Recurrent procedure for the Green functions; 3.3 Spectral density and the density of states; 3.4 Two-particle Green function and optical conductivity 4. Superconductivity in the pseudogap state 529 4.1 Gor'kov equations; 4.2 Transition temperature and the temperature dependence of the gap; 4.3 Cooper instability; 4.4 Ginzburg ± Landau equations and the basic properties of superconductors with a pseudogap near Tc; 4.5 Effects of the non-self-averaging nature of the order parameter 5. Conclusion. Problems and prospects 536 References 538 Abstract. The paper reviews the basic experimental facts and a the very unusual properties of these systems in the normal number of theoretical models relevant to the understanding of (nonsuperconducting) state, and without a clear understand- the pseudogap state in high-temperature superconductors. The ing of the nature of these properties there is little hope for state is observed in the region of less-than-optimal current- completely elucidating the microscopic mechanism of high-Tc carrier concentrations in the HTSC cuprate phase diagram superconductivity. In recent years one of the main aspects of and manifests itself as various anomalies in the electronic high-Tc superconductor physics has been the study of the properties, presumably due to the antiferromagnetic short- anomalies of what is known as the pseudogap state [1], which range-order fluctuations that occur as the antiferromagnetic is observed in the region of the phase diagram corresponding region of the phase diagram is approached. The interaction of to charge-carrier concentrations lower than optimal one (i.e. current carriers with these fluctuations leads to an anisotropic the concentration corresponding to the maximum tempera- transformation of the electron spectrum and causes the system ture of the superconducting transition, Tc); it is usually called to behave as a non-Fermi liquid in certain regions of the Fermi the `underdoped' region. In this region there are many surface. Simple theoretical models for describing the basic anomalies of the electronic properties in both the normal properties of the pseudogap state, in particular renormaliza- and the superconducting state, which are related to the drop tion-induced anomalies in the superconducting state, are dis- in the single-particle density of states and to the anisotropic cussed. transformation of the charge-carrier spectral density. The understanding of the nature and properties of the pseudogap 1. Introduction state is the central problem of any approach to the description of the complex phase diagram of HTSC systems. Hundreds of The study of high-temperature (or high-Tc) superconductiv- experimental and theoretical papers have been devoted to this ity (HTSC) in copper oxides remains one of the central problem 1. avenues of research in the physics of the condensed state. The goal of the present review is to present the main Despite enormous efforts of both experimenters and theore- experimental facts pertaining to the observations of the ticians, the nature of this phenomenon remains unclear. It is a pseudogap state in underdoped high-Tc cuprates and to well-known fact that the main difficulties here are related to discuss a number of simple theoretical models of this state. The review is not exhaustive in either describing the experi- mental data or giving the full theoretical picture. The M V Sadovski|¯ Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences experimental data are presented fairly briefly, since the ul. Amundsena 106, 620016 Ekaterinburg, Russian Federation literature already has a number of good reviews [2 ± 6] Tel. (7-3432) 67 87 86. Fax (7-3432) 67 87 94 E-mail: [email protected] 1 Suffice it to say that the well-known E-archive of preprints, cond-mat, Received 27 November 2000, revised 8 February 2001 contains more than 600 papers devoted, in one way or another, to the Uspekhi Fizicheskikh Nauk 171 (5) 539 ±564 (2001) physics of the pseudogap sate. At the major conference on superconduc- Translated by E Yankovsky; edited by A V Getling tivity held in Houston, M 2S ± HTSC-VI ( February 2000), four section meetings were devoted to this problem Ð more than to any other problem of HTSC physics. 516 M V Sadovski|¯ Physics ± Uspekhi 44 (5) devoted to these problems in one way or another. The hundred kelvins and vanishes at hole concentrations p lower theoretical part is also fairly subjective and, to a large or of order 0.05, with the system becoming a (poor) metal. A extent, reflects the author's viewpoint. There are two basic further increase in the hole concentration transforms the theoretical scenarios for explaining the pseudogap anomalies system into a superconductor, with the transition tempera- of HTSC systems. The first one is based on the model in which ture increasing with the carrier concentration and going Cooper pairs are formed above the transition temperature through a characteristic maximum at p0 0:15 ± 0.17 (opti- [7 ± 10], with the subsequent establishment of their phase mum doping) and then decreasing and vanishing at coherence at T < Tc. The second scenario assumes that the p 0:250:30, although in this (overdoped) region the pseudogap state emerges due to `dielectric' type, short-range- metallic behavior is still quite evident. Here, at p > p0 the order fluctuations, which are present in the region of under- metallic properties are fairly traditional (Fermi-liquid beha- doped compositions in the phase diagram. The most popular vior), while at p < p0 the system becomes an anomalous picture here is that of antiferromagnetic (AFM) fluctuations metal, whose behavior (as most researchers believe) cannot [11 ± 15], although one cannot exclude that fluctuations of be described by the Fermi-liquid theory 2. charge-density waves (CDW), structural distortions, or phase The anomalies of physical properties currently attributed separation on a microscopic scale can play a similar role. I to the formation of a pseudogap state are observed in the à believe that many experiments conducted in recent years metallic phase at p < p0 and at temperatures T < T , where à speak in favor (fairly persuasively) of the second scenario. T decreases from values of order TN at p 0:05 and vanish Hence in our theoretical discussion we will limit ourselves to at a certain `critical' carrier concentration pc somewhat higher relevant models, giving a quite full description of the work of than p0 (Fig. 1a). For instance, Tallon and Loram [6] stated the present author and his collaborators, and also of the work that this happens at p pc 0:19. According to some of other researchers whose main ideas and approaches are in researchers (mostly adherents of the idea of the superconduct- the same vein. Accordingly, in the most part of the review we ing nature of the pseudogap), T à merges with the line of the will deal with the model of antiferromagnetic fluctuations, superconducting-transition temperature Tc near the optimum although its validity cannot be thought of as fully corrobo- concentration p0 (Fig. 1b). Below we will see that the majority rated. of new experimental data most likely support the variant of Neither can we claim that the list of references is complete the phase diagram depicted in Fig. 1a (for more details see and, the more so, that it reflects priorities in this field. It is Ref. [6]). Note that most researchers agree that T à does not assumed that the reader will find the necessary literature from have the meaning of the temperature of a phase transition; the papers in the list of references. The author would like to rather, it simply defines a characteristic temperature scale apologize to the numerous authors of papers not cited here Ð below which pseudogap anomalies appear in the system. In the aim was to make the list not too long. this region of the phase diagram a system exhibits no features characteristic of phase transitions in the behavior of thermo- 2. Basic experimental facts dynamic quantities 3. The general idea is that all these anomalies, to put it simply, are related to the suppression (in Typical variants of the phase diagram of HTSC cuprates are the given region) of the density of states of single-particle depicted in Fig. 1. Depending on the concentration of charge excitations near the Fermi level, which is what the general carriers (mainly holes), several phases and regions with concept of the pseudogap means 4. Here T à is simply anomalous physical properties can be observed in the high- proportional to the size of the pseudogap on the energy conductivity CuO2 plane. In the region of low hole concentra- scale. Sometimes another characteristic temperature scale is à tions all known HTSC cuprates are antiferromagnetic specified, T2 (see Fig. 1b), which is related to the transition insulators. As the current-carrier concentration increases, from a `weak'- to a `strong'-pseudogap regime [14]. The the Ne el temperature TN rapidly drops from values of several reasoning here is based on a change in the spin response of the system in the vicinity of this temperature. In the present 500 review we almost never touch on the corresponding details.
Recommended publications
  • Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors
    PHYSICAL REVIEW X 4, 031017 (2014) Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors Patrick A. Lee* Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 17 April 2014; published 29 July 2014) The enigmatic pseudogap phase in underdoped cuprate high-Tc superconductors has long been recognized as a central puzzle of the Tc problem. Recent data show that the pseudogap is likely a distinct phase, characterized by a medium range and quasistatic charge ordering. However, the origin of the ordering wave vector and the mechanism of the charge order is unknown. At the same time, earlier data show that precursive superconducting fluctuations are also associated with this phase. We propose that the pseudogap phase is a novel pairing state where electrons on the same side of the Fermi surface are paired, in strong contrast with conventional Bardeen-Cooper-Schrieffer theory which pairs electrons on opposite sides of the Fermi surface. In this state the Cooper pair carries a net momentum and belongs to a general class called pair density wave. The microscopic pairing mechanism comes from a gauge theory formulation of the resonating valence bond (RVB) picture, where spinons traveling in the same direction feel an attractive force in analogy with Ampere’s effects in electromagnetism. We call this Amperean pairing. Charge order automatically appears as a subsidiary order parameter even when long-range pair order is destroyed by phase fluctuations. Our theory gives a prediction of the ordering wave vector which is in good agreement with experiment. Furthermore, the quasiparticle spectrum from our model explains many of the unusual features reported in photoemission experiments.
    [Show full text]
  • Pseudogap Formation Above the Superconducting Dome in Iron-Pnictides
    Pseudogap formation above the superconducting dome in iron-pnictides T. Shimojima1,2,*, T. Sonobe1, W. Malaeb3,4,, K. Shinada1, A. Chainani5,6, S. Shin2,3,4,5,T. Yoshida4,7, S. Ideta1, A. Fujimori4,7, H. Kumigashira8, K Ono8, Y. Nakashima9,H. Anzai10, M. Arita10, A. Ino9, H. Namatame10, M. Taniguchi9,10, M. Nakajima4,7,11,S. Uchida4,7, Y. Tomioka4,11, T.Ito4,11, K. Kihou4,11, C. H. Lee4,11, A. Iyo4,11,H. Eisaki4,11, K. Ohgushi3,4, S. Kasahara12,13, T. Terashima12, H. Ikeda13, T. Shibauchi13, Y. Matsuda13, K. Ishizaka1,2 1 Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8656, Japan. 2 JST, CREST, Chiyoda, Tokyo 102-0075, Japan 3 ISSP, University of Tokyo, Kashiwa 277-8581, Japan. 4 JST, TRIP, Chiyoda, Tokyo 102-0075, Japan 5 RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan 6 Department of Physics, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan 7 Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan. 8 KEK, Photon Factory, Tsukuba, Ibaraki 305-0801, Japan. 9 Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan. 10Hiroshima Synchrotron Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan 11National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan. 12 Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8502, Japan. 13Department of Physics, Kyoto University, Kyoto 606-8502, Japan. The nature of the pseudogap in high transition temperature (high-Tc) superconducting cuprates has been a major issue in condensed matter physics. It is still unclear whether the high-Tc superconductivity can be universally associated with the pseudogap formation.
    [Show full text]
  • Pseudogap and Charge Density Waves in Two Dimensions
    1 Pseudogap and charge density waves in two dimensions S. V. Borisenko1, A. A. Kordyuk1,2, A. N. Yaresko3, V. B. Zabolotnyy1, D. S. Inosov1, R. Schuster1, B. Büchner1, R. Weber4, R. Follath4, L. Patthey5, H. Berger6 1Leibniz-Institute for Solid State Research, IFW-Dresden, D-01171, Dresden, Germany 2Institute of Metal Physics, 03142 Kyiv, Ukraine 3Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany 4BESSY, Berlin, Germany 5Swiss Light Source, Paul Scherrer Institut, CH-5234 Villigen, Switzerland 6Institute of Physics of Complex Matter, EPFL, 1015 Lausanne, Switzerland An interaction between electrons and lattice vibrations (phonons) results in two fundamental quantum phenomena in solids: in three dimensions it can turn a metal into a superconductor whereas in one dimension it can turn a metal into an insulator1, 2, 3. In two dimensions (2D) both superconductivity and charge-density waves (CDW)4, 5 are believed to be anomalous. In superconducting cuprates, critical transition temperatures are unusually high and the energy gap may stay unclosed even above these temperatures (pseudogap). In CDW-bearing dichalcogenides the resistivity below the transition can decrease with temperature even faster than in the normal phase6, 7 and a basic prerequisite for the CDW, the favourable nesting conditions (when some sections of the Fermi surface appear shifted by the same vector), seems to be absent8, 9, 10. Notwithstanding the existence of alternatives11, 12, 13, 14, 15 to conventional theories1, 2, 3, both phenomena in 2D still remain the most fascinating puzzles in condensed matter physics. Using the latest developments in high-resolution angle-resolved photoemission spectroscopy (ARPES) here we show that the normal-state pseudogap also exists in one of the most studied 2D examples, dichalcogenide 2H-TaSe2, and the formation of CDW is driven by a conventional nesting instability, which is masked by the pseudogap.
    [Show full text]
  • High Temperature Superconductivity in the Cuprates B. Keimer1, S. A
    High Temperature Superconductivity in the Cuprates B. Keimer1, S. A. Kivelson2, M. R. Norman3, S. Uchida4, J. Zaanen5 The discovery of high temperature superconductivity in the cuprates in 1986 triggered a spectacular outpouring of creative and innovative scientific inquiry. Much has been learned over the ensuing 28 years about the novel forms of quantum matter that are exhibited in this strongly correlated electron system. This progress has been made possible by improvements in sample quality, coupled with the development and refinement of advanced experimental techniques. In part, avenues of inquiry have been motivated by theoretical developments, and in part new theoretical frameworks have been conceived to account for unanticipated experimental observations. An overall qualitative understanding of the nature of the superconducting state itself has been achieved, while profound unresolved issues have come into increasingly sharp focus concerning the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the “normal” state at elevated temperatures. New conceptual approaches, drawing from string theory, quantum information theory, and various numerically implemented approximate approaches to problems of strong correlations are being explored as ways to come to grips with this rich tableaux of interrelated phenomena. Introduction: The discovery of high temperature superconductivity in the cuprate perovskite LBCO1 ranks among the major scientific events of the 20th century – it triggered developments in both theoretical and experimental physics that have significantly changed our understanding of condensed matter systems. Most obviously, the superconducting transition temperatures in the cuprates exceed those of any previously known superconductor by almost an order of magnitude, passing by a large factor what was, at the time, widely believed to be the highest possible temperature at which superconductivity could survive (Fig.
    [Show full text]
  • Absence of Superconducting Dome at the Charge-Density-Wave Quantum Phase Transition in 2H-Nbse2
    PHYSICAL REVIEW RESEARCH 2, 043392 (2020) Absence of superconducting dome at the charge-density-wave quantum phase transition in 2H-NbSe2 Owen Moulding,1 Israel Osmond,1 Felix Flicker,2,3,4 Takaki Muramatsu,1 and Sven Friedemann 1,* 1HH Wills Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1TL, United Kingdom 2Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Department of Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom 3School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom 4School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom (Received 15 June 2020; revised 11 November 2020; accepted 25 November 2020; published 18 December 2020) Superconductivity is often found in a dome around quantum critical points, i.e., second-order quantum phase transitions. Here, we show that an enhancement of superconductivity is avoided at the critical pressure of the charge-density-wave (CDW) state in 2H-NbSe2. We present comprehensive high-pressure Hall effect and magnetic susceptibility measurements of the CDW and superconducting state in 2H-NbSe2. Initially, the second-order CDW transition is suppressed smoothly but it drops to zero abruptly at PCDW = 4.4 GPa thus indicating a change to first order, while the superconducting transition temperature Tc rises continuously up to PCDW but is constant above. The putative first-order nature of the CDW transition is suggested as the cause for the absence of a superconducting dome at PCDW. Indeed, we show that the suppression of the superconducting state at low pressures is due to the loss of density of states inside the CDW phase, while the initial suppression of the CDW state is accounted for by the stiffening of the underlying bare phonon mode.
    [Show full text]
  • Fractional Fermi Fluid As a Model to Understand the Pseudogap Regime in High Temperature Cuprate Superconductors
    Fractional fermi fluid as a model to understand the pseudogap regime in high temperature cuprate superconductors Viviana Nguyen May 13, 2018 Abstract At low temperatures, T < Tc, atoms form Cooper pairs in the superconducting state. Because it takes energy to break these pairs, there is no way to remove a single particle without adding energy to the system. This leads to a gap in the single-particle energy spectrum. When temperature is increased such that T > Tc, remnants of this gap, where certain energy ranges have few states associated with them, remain. These have been termed pseudogaps. This pseudogap behavior has been found to exist in under- doped cuprates and is temperature and doping dependent. This paper aims to review the pseudogap regime of cuprate superconductors and to discuss the experimental observations of this pseudogap. Then it will introduce the fractional fermi liquid model as an explanation for this pseudogap. 1 1 Introduction Since their discovery by Bednorz and Muller in 1986, high temperature superconducting cuprates have been one of the most studied correlated electron materials. However, the origin of this superconductivity still re- mains a mystery. It was discovered that cuprate superconductors exhibit a wide range of phases as a function of hole doping. In particular, this paper will focus on the pseudogap regime of under-doped superconducting cuprates. In this regime, a pseudogap emerges in the electron energy spectrum at temperatures much larger than the superconducting transition temperature TC . Additionally, various forms of competing order seem to emerge. This paper is structured in the following way: first, an analysis of the the crystal structure of the of cuprates, then a brief discussion of the cuprate superconducting state, followed by a summary of the behavior observed in the pseudogap regime of under-doped cuprates.
    [Show full text]
  • Evidence for a Vestigial Nematic State in the Cuprate Pseudogap Phase
    Evidence for a Vestigial Nematic State in the Cuprate Pseudogap Phase Sourin Mukhopadhyay1,2, Rahul Sharma2,3, Chung Koo Kim3, Stephen D. Edkins4, Mohammad H. Hamidian5, Hiroshi Eisaki6, Shin-ichi Uchida6,7, Eun-Ah Kim2, Michael J. Lawler2, Andrew P. Mackenzie8, J. C. Séamus Davis9,10 and Kazuhiro Fujita3 1. Department of Physics, IIST, Thiruvananthapuram 695547, India 2. LASSP, Department of Physics, Cornell University, Ithaca, NY 14853, USA 3. CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973, USA 4. Department of Applied Physics, Stanford University, Stanford, CA 94305, USA 5. Department of Physics, Harvard University, Cambridge, MA, USA 6. Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan 7. Dept. of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan 8. Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany 9. Department of Physics, University College Cork, Cork, T12 R5C, Ireland 10. Department of Physics, Oxford University, Oxford, OX1 3PU, UK ABSTRACT: The CuO2 antiferromagnetic insulator is transformed by hole-doping into an exotic quantum fluid usually referred to as the pseudogap (PG) phase1,2. Its defining characteristic is a strong suppression of the electronic density-of-states D(E) for energies |E|<*, where * is the pseudogap energy1,2. Unanticipated broken-symmetry phases have been detected by a wide variety of techniques in the PG regime, most significantly a finite Q density-wave (DW) state and a Q=0 nematic (NE) state. Sublattice-phase-resolved3,4,5 imaging of electronic structure allows the doping and energy dependence of these distinct broken symmetry states to be visualized simultaneously.
    [Show full text]
  • Superconductor Transition in a Copper-Oxide Superconductor
    ARTICLE Received 5 Mar 2013 | Accepted 18 Aug 2013 | Published 20 Sep 2013 DOI: 10.1038/ncomms3459 Disappearance of nodal gap across the insulator–superconductor transition in a copper-oxide superconductor Yingying Peng1, Jianqiao Meng1, Daixiang Mou1, Junfeng He1, Lin Zhao1,YueWu1, Guodong Liu1, Xiaoli Dong1, Shaolong He1, Jun Zhang1, Xiaoyang Wang2, Qinjun Peng2, Zhimin Wang2, Shenjin Zhang2, Feng Yang2, Chuangtian Chen2, Zuyan Xu2, T.K. Lee3 & X.J. Zhou1 The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi2Sr2–xLaxCuO6 þ d system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coex- istence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator–superconductor transition at a critical doping level of B0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order dis- appears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity. 1 National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. 2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
    [Show full text]
  • Angle-Resolved Photoemission Spectroscopy Studies of Curpate Superconductors
    Angle-Resolved Photoemission Spectroscopy Studies of Curpate Superconductors ZHI-XUN SHEN Department of Applied Physics, Physics and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305 This paper summarizes experimental results presented at the international conference honoring Prof. C.N. Yang’s 80th birthday. I show seven examples that illustrate how one can use angle- resolved photoemission spectroscopy to gain insights into the many-body physics responsible for the rich phase diagram of cuprate superconductors. I hope to give the reader a snapshot of the evolution of this experimental technique from a tool to study chemical bonds and band structure to an essential many- body spectroscopy for one of the most important physics problems of our time. Complex phenomenon in solids is going to be a major theme of physics in the 21st century. As better controlled model systems, a sophisticated understanding on the universality and diversity of these solids may lead to great revelations well beyond themselves. With its rich phases and extremely high superconducting transition temperature, the cuprate superconductor is the most dramatic example of complex phenomena in solids and is thus the most challenging and important problem of the field over the last two decades. High-resolution angle-resolved photoemission spectroscopy (ARPES) has emerged as a leading tool to push the frontier of this important field of modern physics. It helped setting the intellectual agenda by testing new ideas, discovering surprises, and challenging orthodoxies. Indeed, quite a few ARPES papers are among the most cited physics papers for the periods surveyed by the Institute of Scientific Information [1-5].
    [Show full text]
  • Evidence for a Vestigial Nematic State in the Cuprate Pseudogap Phase
    Evidence for a vestigial nematic state in the cuprate pseudogap phase Sourin Mukhopadhyaya,b, Rahul Sharmab,c, Chung Koo Kimc, Stephen D. Edkinsd, Mohammad H. Hamidiane, Hiroshi Eisakif, Shin-ichi Uchidaf,g, Eun-Ah Kimb, Michael J. Lawlerb, Andrew P. Mackenzieh, J. C. Séamus Davisi,j,1, and Kazuhiro Fujitac aDepartment of Physics, Indian Institute of Space Science and Technology, 695547 Thiruvananthapuram, India; bLaboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853; cCondensed Matter Physics and Material Science Department, Brookhaven National Laboratory, Upton, NY 11973; dDepartment of Applied Physics, Stanford University, Stanford, CA 94305; eDepartment of Physics, Harvard University, Cambridge, MA 02138; fNanoelectronics Research Institute, Institute of Advanced Industrial Science and Technology, 305-8568 Tsukuba, Ibaraki, Japan; gDepartment of Physics, University of Tokyo, 113-0033 Tokyo, Japan; hMax Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany; iDepartment of Physics, University College Cork, T12 R5C Cork, Ireland; and jClarendon Laboratory, University of Oxford, OX1 3PU Oxford, United Kingdom Contributed by J. C. Séamus Davis, April 27, 2019 (sent for review December 21, 2018; reviewed by Riccardo Comin and Laimei Nie) The CuO2 antiferromagnetic insulator is transformed by hole- Already this is a conundrum: While the onset temperature TNEðpÞ doping into an exotic quantum fluid usually referred to as the of this broken symmetry tracks the temperature TpðpÞ at which pseudogap (PG) phase. Its defining characteristic is a strong sup- pseudogap opens (Fig. 1C), within mean-field theory of elec- pression of the electronic density-of-states D(E) for energies jEj < Δ*, tron fluids ordering at Q = 0 it cannot open an energy gap on the where Δ* is the PG energy.
    [Show full text]
  • Pseudogap Phase of Cuprate Superconductors Confined by Fermi
    ARTICLE DOI: 10.1038/s41467-017-02122-x OPEN Pseudogap phase of cuprate superconductors confined by Fermi surface topology N. Doiron-Leyraud1, O. Cyr-Choinière1, S. Badoux1, A. Ataei1, C. Collignon1, A. Gourgout1, S. Dufour-Beauséjour 1, F.F. Tafti1, F. Laliberté1, M.-E. Boulanger1, M. Matusiak1,2, D. Graf3, M. Kim4,5, J.-S. Zhou6, N. Momono7, T. Kurosawa8, H. Takagi9 & Louis Taillefer1,10 The properties of cuprate high-temperature superconductors are largely shaped by com- 1234567890 peting phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping p* that is material-dependent. What determines p* is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping pFS at which the large Fermi surface goes from hole-like to electron-like, so that p* ≤ pFS. We derive this result from high-magnetic-field transport measurements in La1.6−xNd0.4SrxCuO4 under pressure, which reveal a large and unexpected shift of p* with pressure, driven by a corresponding shift in pFS. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that p* can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap. 1 Institut Quantique, Département de Physique & RQMP, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada. 2 Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wrocław, Poland.
    [Show full text]
  • ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY of Sr1−Xlaxcuo2 THIN FILMS GROWN by MOLECULAR-BEAM EPITAXY
    ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY OF Sr1−xLaxCuO2 THIN FILMS GROWN BY MOLECULAR-BEAM EPITAXY A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by John Wallace Harter May 2013 c 2013 John Wallace Harter ALL RIGHTS RESERVED ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY OF Sr1−xLaxCuO2 THIN FILMS GROWN BY MOLECULAR-BEAM EPITAXY John Wallace Harter, Ph.D. Cornell University 2013 Among the multitude of known cuprate material families and associated structures, the archetype is “infinite-layer” ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of mag- netic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate super- structures, ordered vacancies, and other complications that abound among the other ma- terial families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1−xLaxCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band de- velops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap.
    [Show full text]