Special Steel Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Special Steel Sheet JFEカタログ英語版用 表1-4データ 2016年6月 JFEテクノリサーチ(株)制作 Cat.No.B1E-005-05 SPECIAL STEEL SHEET http://www.jfe-steel.co.jp/en/ HEAD OFFICE Hibiya Kokusai Building, 2-3 Uchisaiwaicho 2-chome, Chiyodaku, Tokyo 100-0011, Japan Phone: (81)3-3597-3111 Fax: (81)3-3597-4860 ■ ASIA PACIFIC ■ EUROPE and MIDDLE EAST SEOUL BANGKOK LONDON JFE Steel Korea Corporation JFE Steel (Thailand) Ltd. JFE Steel Europe Limited 6th Floor, 410, Teheran-ro, Gangnam-gu, Seoul 22nd Floor, Abdulrahim Place 990, Rama IV Road, 15th Floor, The Broadgate Tower, 20 Primrose Street, 135-570, Korea Bangkok 10500, Thailand London EC2A 2EW, U.K. (Geumgang-Tower, Daechi-dong) Phone: (66)2-636-1886 Fax: (66)2-636-1891 Phone: (44)20-7426-0166 Fax: (44)20-7247-0168 Phone: (82)2-3468-4130 Fax: (82)2-3468-4137 SINGAPORE DUBAI BEIJING JFE Steel Asia Pte. Ltd. JFE Steel Corporation, Dubai Office JFE Steel Corporation Beijing 16 Raffles Quay, No.15-03, Hong Leong Building, P.O.Box 261791 LOB19-1208, Jebel Ali Free Zone 1009 Beijing Fortune Building No.5, Dongsanhuan 048581, Singapore Dubai, U.A.E. North Road, Chaoyang District, Beijing, 100004, Phone: (65)6220-1174 Fax: (65)6224-8357 Phone: (971)4-884-1833 Fax: (971)4-884-1472 P.R.China Phone: (86)10-6590-9051 Fax: (86)10-6590-9056 JAKARTA JFE Steel Corporation, Jakarta Office ■ NORTH, CENTRAL and SOUTH AMERICA SHANGHAI 6th Floor Summitmas II, JL Jendral Sudirman Kav. JFE Consulting (Shanghai) Co., Ltd. 61-62, Jakarta 12190, Indonesia NEW YORK Room 801, Building A, Far East International Plaza, Phone: (62)21-522-6405 Fax: (62)21-522-6408 JFE Steel America, Inc. 319 Xianxia Road, Shanghai 200051, P.R.China 600 Third Avenue, 12th Floor, New York, NY 10016, Phone: (86)21-6235-1345 Fax: (86)21-6235-1346 NEW DELHI U.S.A. JFE Steel India Private Limited Phone: (1)212-310-9320 Fax: (1)212-308-9292 GUANGZHOU 806, 8th Floor, Tower-B, Unitech Signature Towers, JFE Consulting (Guangzhou) Co., Ltd. South City-I, NH-8, Gurgaon 122001, Haryana, India HOUSTON Room 3901 Citic Plaza, 233 Tian He North Road, Phone: (91)124-426-4981 Fax: (91)124-426-4982 JFE Steel America, Inc., Houston Office Guangzhou, 510613, P.R.China 10777 Westheimer, Suite 230, Houston, TX 77042, Phone: (86)20-3891-2467 Fax: (86)20-3891-2469 MUMBAI U.S.A. JFE Steel India Private Limited, Mumbai Office Phone: (1)713-532-0052 Fax: (1)713-532-0062 MANILA 308, A Wing, 215 Atrium, Andheri - Kurla Road, JFE Steel Corporation, Manila Office Andheri (East), Mumbai - 400093, Maharashtra, India MEXICO CITY 23rd Floor 6788 Ayala Avenue, Oledan Square, Phone: (91)22-3076-2760 Fax: (91)22-3076-2764 JFE Steel America, Inc., Mexico Office Makati City, Metro Manila, Philippines Ruben Dario #281, 1404 Col. Bosque de Phone: (63)2-886-7432 Fax: (63)2-886-7315 CHENNAI Chapultepec, C.P. 11580, Mexico, D.F. Mexico JFE Steel India Private Limited, Chennai Office Phone: (52)55-5985-0097 Fax: (52)55-5985-0099 HO CHI MINH CITY Ground Floor, SPIC Annexe Building, No.86, Mount JFE Steel Vietnam Co., Ltd. Road, Guindy, Chennai - 600032, Tamil Nadu, India RIO DE JANEIRO Unit 1401, 14th Floor, Kumho Asiana Plaza, Phone: (91)44-2230-0285 Fax: (91)44-2230-0287 JFE Steel do Brasil LTDA 39 Le Duan Street, Dist 1, HCMC, Vietnam Praia de Botafogo, 228 Setor B, Salas 508 & 509, Phone: (84)8-3825-8576 Fax: (84)8-3825-8562 BRISBANE Botafogo, CEP 22250-040, Rio de Janeiro-RJ, Brazil JFE Steel Australia Resources Pty Ltd. Phone: (55)21-2553-1132 Fax: (55)21-2553-3430 HANOI Level28, 12 Creek Street, Brisbane QLD 4000 JFE Steel Vietnam Co., Ltd., Hanoi Branch Australia Unit 510, 5th Floor, Hanoi Press Club, 59A Ly Thai To Phone: (61)7-3229-3855 Fax: (61)7-3229-4377 Street, Hoan Kiem Dist., Hanoi, Vietnam Phone: (84)4-3936-7776 Fax: (84)4-3936-7775 Notice While every effort has been made to ensure the accuracy of the information contained within this publication, the use of the information is at the reader’s risk and no warranty is implied or expressed by JFE Steel Corporation with respect to the use of information contained herein. The information in this publication is subject to change or modification without notice. Please contact the JFE Steel office for the latest information. Copyright © JFE Steel Corporation. All Rights Reserved. Any reproduction, modification, translation, distribution, transmission, uploading of the contents of the document, in whole or in part, is strictly prohibited. 1607R(1106) JTR Printed in Japan SPECIAL STEEL SHEET East Japan Works (Chiba) Contents JFE Steel Corporation Characteristics .................................................. 1 produces various types of Application ...................................................... 2 special steel sheets under an Manufacturing process ................................... 3 Applicable standard ........................................ integrated quality control 4 Surface finish and heat treatment ................. 4 system using modern Chemical composition ..................................... 5 facilities mainly in Chiba Available product size range .......................... 6 and Keihin Area of East Dimensional tolerance .................................... 7 Japan Works. JFE’s special Mechanical properties by heat treatment ..... 8 steel products support Effect of chemical elements ........................... 9 technical innovation and Introduction of functional products SUPERHOTTM/SUPERHOT-F ........................ improved productivity at 10 Hardness conversion table ............................ customers, and have won 12 Unit mass per mm ......................................... 12 an excellent reputation Instructions for ordering .............................. 13 for high dimensional accuracy, quenchability, and workability. “SUPERHOT” is a trademark of JFE Steel Corporation registered in Japan. SPECIAL STEEL SHEET Characteristics 1. Uniform quality Integrated operation control and highly computerized production processes ensure a high level of uniformity in product quality. 2. High dimensional accuracy and excellent surface quality JFE’s production plants boast some of the world’s most advanced steelmaking, hot rolling, and cold rolling equipment, ensuring high dimensional accuracy and outstanding surface quality. 3. Wide product line A wide range of steel grades and product dimensions are available to meet diverse customer requirements. 4. Strict quality control and inspection system All products can be used with confidence thanks to scientific quality control and strict testing and inspection. (JFE’s steel sheet production system is certified under ISO 9001.) Characteristics East Japan Works (Keihin) 1 SPECIAL STEEL SHEET Application Chains Carbon steels for machine structure Automotive clutch parts Chain parts Automotive seat belt parts Springs and washers Sprocket gears Automotive AT parts Gears Alloy steels for machine structure Application Automotive reclining seat gear parts Door lock parts Shock absorber Circular saw blades Alloy tool steels Knives Hand saws Tools Hose bands, sheet springs Carbon tool steels Razor blades Needles Springs Measures Bearing parts 2 SPECIAL STEEL SHEET Manufacturing process 1 Steelmaking 2 Continuous Slab (Converter) casting Continuous caster The finishing trains have applied pair-cross mill (The most modern mill with freely changeable roll gap widthwise) and most modern thickness 3 Hot rolling control system. Following characteristics of products are achieved. • High dimensional accuracy (Thickness tolerance of ±0.080mm with SUPERHOT) • Excellent surface quality • Uniform mechanical properties Non pickled hot rolled coil Finishing train (Pair-cross mill) Manufacturing process Rougher Hot rolling mill Pickled product 4 Pickling 5 Annealing Annealed product 4 Shot blasting Hot rolled coil without scale Shot blasted product 6 Cold rolling 7 Annealing 8 Skinpassing Cold rolled product Cold rolling mill Cold rolled coil 3 SPECIAL STEEL SHEET Applicable standard Classification Standard Designation Carbon steels for machine structual use S-C Alloy steels for machine structual use SMnC, SCr, SCM, SNCM Carbon tool steels SK Hot rolled Alloy tool steels SKS steel sheet Spring steels SUP High carbon chromium bearing steels SUJ Carbon Steels SAE Alloy Steels SAE Cold rolled special steel strip S-CM, SK-M Carbon steels for machine structual use S-C Cold rolled Carbon tool steels SK steel sheet Alloy tool steels SKS Carbon Steels SAE Applicable standard/Surface finish and heat treatment Surface finish and heat treatment Hot rolled steel sheet Surface Annealing Remarks Hot rolled coils are annealed with scale. Decarburized layer is generated at surface. Suitable for Yes Non applications which needs grinding. pickled No As hot rolled with scale. Hardness because not annealed. Availability of working is subject to negotiation. Hot rolled and annealed after descaling at pickling line. Attractive surface and very little decarburized Yes layer. Pickled Descaled at pickling line. Comparatively soft material suitable to applications which require no working or No will be annealed by customers. Hot rolled and annealed after descaling by shot blasting. Suitable for applications which require rough Yes Shot surface finish and for thicker gauge which can not be pickled. blasted Mechanically descaled by shot blasting. Rough finish surface and hardened surface. Suitable for punch No working. Cold rolled steel sheet Surface Annealing Remarks Carbon is spheroidized by annealing after cold rolling. Bright finish at skinpass after annealing with Yes Bright bright finish rolls. finish No As cold rolled. Suitable for applications
Recommended publications
  • Bainite - from Nano to Macro Symposium on Science and Application of Bainite 1/2 June 2017 Dorint Hotel, Wiesbaden, Germany
    Bainite - from nano to macro Symposium on science and application of Bainite 1/2 June 2017 Dorint Hotel, Wiesbaden, Germany Honoring Professor Sir Harshad K. D. H. Bhadeshia Proceedings Bainite – from nano to macro, Wiesbaden (Germany), 1/2 June 2017 Copyright © 2017 Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e. V. All rights reserved. No part of the contents of this publication may be reproduced or transmitted in any form by any means without the written permission of the publisher. Arbeitsgemeinschaft Wärmebehandlung und Werkstofftechnik e. V. Paul-Feller-Str. 1 28199 Bremen Germany www.awt-online.org image sources: bulk nanostructured steel (coloured micrograph) Source: Garcia-Mateo, Caballero, Bhadeshia; Dorint Hotels & Resorts; Harshad K. D. H. Bhadeshia; Wiesbaden Marketing GmbH. Bainite – from nano to macro, Wiesbaden (Germany), 1/2 June 2017 International Committee H. Altena (Austria) S. Denis (France) I. Felde (Hungary) B. Haase (Germany) S. Hock (UK) P. Jacquot (France) Ch. Keul (Germany) B. Kuntzmann (Switzerland) V. Leskovśek (Slovenia) K. Löser (Germany) S. Mackenzie (USA) D. Petta (Italy) H.-W. Raedt (Germany) R. Schneider (Austria) B. Smoljan (Croatia) P. Stolař (Czech Republic) G. Totten (USA) E. Troell (Sweden) B. Vandewiele (Belgium) H.-J. Wieland (Germany) Bainite – from nano to macro, Wiesbaden (Germany), 1/2 June 2017 Sponsors of Bainite – from nano to macro Bainite – from nano to macro, Wiesbaden (Germany), 1/2 June 2017 Foreword Bainite – from nano to macro Symposium on science and application of bainite honoring Prof. Sir Harshad K. D. H. Bhadeshia, Tata Professor for Metallurgy and Director of SKF University Technology Center at the University Cambridge, UK and Professor for Computational Metallurgy at Pohang University of Science and Technology, Korea.
    [Show full text]
  • 2000 Stainless Steels: an Introduction to Their Metallurgy and Corrosion
    Dairy, Food and Environmental Sanitation, Vol. 20, No. 7, Pages 506-517 Copyright© International Association for Food Protection, 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322 Stainless Steels: An Introduction to Their Metallurgy and Corrosion Resistance Roger A. Covert and Arthur H. Tuthill* and why they sometimes do not. In most cases, selection of the proper stainless steel leads to satisfactory performance. COMPOSITION, NOMEN- CLATURE AND GENERAL PROPERTIES Most metals are mixtures of a primary metallic element and one or more intentionally added other ele- This article has been peer-reviewed by two professionals. ments. These mixtures of elements are called alloys. Stainless steels are alloys, as are brasses (copper + zinc), bronzes (copper + tin), the many alu- INTRODUCTION better understanding of stainless minum alloys, and many other me- Worldwide, in industry, in busi- steels, especially to the non-metal- tallic materials. In general, solid ness and in the home, metals called lurgist. metals and alloys consist of randomly stainless steels are used daily. It is Industries are concerned with oriented grains that have a well-de- important to understand what these integrity of equipment and product fined crystalline structure, or lattice, materials are and why they behave purity. To achieve these, stainless within the grains. In stainless steels, the way they do. This is especially steels are often the economical and the crystalline structures within the true because the word “stainless” is practical materials of choice for pro- grains have been given names such as itself somewhat of a misnomer; these cess equipment. However, before ferrite, austenite, martensite, or a materials can stain and can corrode intelligent decisions can be made mixture of two or more of these.
    [Show full text]
  • Carbon Steel
    EN380 12-wk Exam Solution Fall 2019 Carbon Steel. 1. [19 pts] Three compositions of plain carbon steel are cooled very slowly in a turned-off furnace from ≈ 830◦C (see phase diagram below). For each composition, the FCC grains of γ−austenite (prior to transformation) are shown in an optical micrograph of the material surface. Sketch and label the phases making up the microstructures present in the right hand micrograph just after the austenite has completed transformation (note: the gray outlines of the prior γ grains may prove helpful). (a) [4 pts] C0 = 0:42% C (by wt). 830◦C 726◦C EN380 12-wk Exam Solution Page 1 Fall 2019 EN380 12-wk Exam Solution Fall 2019 (b) [4 pts] C0 = 0:80% C (by wt). 830◦C 726◦C (c) [4 pts] C0 = 1:05% C (by wt). 830◦C 726◦C (d) [7 pts] For the composition of part (c), C0 = 1:05% C (by wt), calculate the fraction of the solid that is pearlite at 726◦C. CF e3C − C0 6:67% − 1:05% Wpearlite = Wγ at 728◦C = = = 95:74% Pearlite CF e3C − Cγ 6:67% − 0:8% EN380 12-wk Exam Solution Page 2 Fall 2019 EN380 12-wk Exam Solution Fall 2019 2. [11 pts] Write in the correct term for each of the following related to carbon steels[1 pt each] (terms will be used exactly once): This material features carbon content in excess of Cast Iron 2:0% and is known for its excellent hardness, wear resistance, machinability and castability.
    [Show full text]
  • Role of Austenitization Temperature on Structure Homogeneity and Transformation Kinetics in Austempered Ductile Iron
    Metals and Materials International https://doi.org/10.1007/s12540-019-00245-y Role of Austenitization Temperature on Structure Homogeneity and Transformation Kinetics in Austempered Ductile Iron M. Górny1 · G. Angella2 · E. Tyrała1 · M. Kawalec1 · S. Paź1 · A. Kmita3 Received: 17 December 2018 / Accepted: 14 January 2019 © The Author(s) 2019 Abstract This paper considers the important factors of the production of high-strength ADI (Austempered Ductile Iron); namely, the austenitization stage during heat treatment. The two series of ADI with diferent initial microstructures were taken into consideration in this work. Experiments were carried out for castings with a 25-mm-walled thickness. Variable techniques (OM, SEM, dilatometry, DSC, Variable Magnetic Field, hardness, and impact strength measurements) were used for investi- gations of the infuence of austenitization time on austempering transformation kinetics and structure in austempered ductile iron. The outcome of this work indicates that the austenitizing temperature has a very signifcant impact on structure homo- geneity and the resultant mechanical properties. It has been shown that the homogeneity of the metallic matrix of the ADI microstructure strongly depends on the austenitizing temperature and the initial microstructure of the spheroidal cast irons (mainly through the number of graphite nodules). In addition, this work shows the role of the austenitization temperature on the formation of Mg–Cu precipitations in ADI. Keywords Metals · Casting · ADI · Heat treatment · Mg2Cu particles 1 Introduction light/heavy trucks, construction and mining equipment, railroad, agricultural, gears and crankshafts, and brackets, Austempered ductile iron (ADI) belongs to the spheroidal among others [5–7]. In the literature, numerous papers have graphite cast iron (SGI) family, which is subjected to heat been published on ADI: particularly, on the numerical sim- treatment; i.e., austenitization and austempering.
    [Show full text]
  • Structure/Property Relationships in Irons and Steels Bruce L
    Copyright © 1998 ASM International® Metals Handbook Desk Edition, Second Edition All rights reserved. J.R. Davis, Editor, p 153-173 www.asminternational.org Structure/Property Relationships in Irons and Steels Bruce L. Bramfitt, Homer Research Laboratories, Bethlehem Steel Corporation Basis of Material Selection ............................................... 153 Role of Microstructure .................................................. 155 Ferrite ............................................................. 156 Pearlite ............................................................ 158 Ferrite-Pearl ite ....................................................... 160 Bainite ............................................................ 162 Martensite .................................... ...................... 164 Austenite ........................................................... 169 Ferrite-Cementite ..................................................... 170 Ferrite-Martensite .................................................... 171 Ferrite-Austenite ..................................................... 171 Graphite ........................................................... 172 Cementite .......................................................... 172 This Section was adapted from Materials 5election and Design, Volume 20, ASM Handbook, 1997, pages 357-382. Additional information can also be found in the Sections on cast irons and steels which immediately follow in this Handbook and by consulting the index. THE PROPERTIES of irons and steels
    [Show full text]
  • New Extremely Low Carbon Bainitic High-Strength Steel Bar Having Excellent Machinability and Toughness Produced by TPCP Technology*
    KAWASAKI STEEL TECHNICAL REPORT No. 47 December 2002 New Extremely Low Carbon Bainitic High-Strength Steel Bar Having Excellent Machinability and Toughness Produced by TPCP Technology* Synopsis: A non heat-treated high strength steel bar for machine structural use through a thermo-mechanical precipita- tion control process (hereafter, referred to as TPCP) has been developed. The newly developed TPCP is a tech- nique for controlling the strength of the steel by precipi- tation hardening effected with the benefit of an extremely low carbon bainitic microstructure. The carbon content Kazukuni Hase Toshiyuki Hoshino Keniti Amano of the steel is decreased to below 0.02 mass% for realiz- Senior Researcher, Dr. Eng., Senior Dr. Eng., General Plate, Shape & Joining Researcher, Plate, Manager, Plate, Shape ing the proper microstructure, which improves both the Lab., Shape & Joining Lab., & Joining Lab., notch toughness and machinability. In order to make the Technical Res. Labs. Technical Res. Labs. Technical Res. Labs. microstructure bainitic and to obtain effective precipita- tion hardening, some micro-alloying elements are added. The developed steel manufactured with these advanced techniques showed a higher impact value, higher yield strength and better machinability than those 1 Introdution of the quenched and tempered AISI 4137 steel. The impact value of the steel is 250 J/cm2 or more at room In the fields of automobiles and industrial machines temperature. The problem of the reduction in yield ratio, where carbon steels and low alloy steels
    [Show full text]
  • The Stainless Steel Family
    The Stainless Steel Family A short description of the various grades of stainless steel and how they fit into distinct metallurgical families. It has been written primarily from a European perspective and may not fully reflect the practice in other regions. Stainless steel is the term used to describe an extremely versatile family of engineering materials, which are selected primarily for their corrosion and heat resistant properties. All stainless steels contain principally iron and a minimum of 10.5% chromium. At this level, chromium reacts with oxygen and moisture in the environment to form a protective, adherent and coherent, oxide film that envelops the entire surface of the material. This oxide film (known as the passive or boundary layer) is very thin (2-3 namometres). [1nanometre = 10-9 m]. The passive layer on stainless steels exhibits a truly remarkable property: when damaged (e.g. abraded), it self-repairs as chromium in the steel reacts rapidly with oxygen and moisture in the environment to reform the oxide layer. Increasing the chromium content beyond the minimum of 10.5% confers still greater corrosion resistance. Corrosion resistance may be further improved, and a wide range of properties provided, by the addition of 8% or more nickel. The addition of molybdenum further increases corrosion resistance (in particular, resistance to pitting corrosion), while nitrogen increases mechanical strength and enhances resistance to pitting. Categories of Stainless Steels The stainless steel family tree has several branches, which may be differentiated in a variety of ways e.g. in terms of their areas of application, by the alloying elements used in their production, or, perhaps the most accurate way, by the metallurgical phases present in their microscopic structures: .
    [Show full text]
  • Materials Technology – Placement
    MATERIAL TECHNOLOGY 01. An eutectoid steel consists of A. Wholly pearlite B. Pearlite and ferrite C. Wholly austenite D. Pearlite and cementite ANSWER: A 02. Iron-carbon alloys containing 1.7 to 4.3% carbon are known as A. Eutectic cast irons B. Hypo-eutectic cast irons C. Hyper-eutectic cast irons D. Eutectoid cast irons ANSWER: B 03. The hardness of steel increases if it contains A. Pearlite B. Ferrite C. Cementite D. Martensite ANSWER: C 04. Pearlite is a combination of A. Ferrite and cementite B. Ferrite and austenite C. Ferrite and iron graphite D. Pearlite and ferrite ANSWER: A 05. Austenite is a combination of A. Ferrite and cementite B. Cementite and gamma iron C. Ferrite and austenite D. Pearlite and ferrite ANSWER: B 06. Maximum percentage of carbon in ferrite is A. 0.025% B. 0.06% C. 0.1% D. 0.25% ANSWER: A 07. Maximum percentage of carbon in austenite is A. 0.025% B. 0.8% 1 C. 1.25% D. 1.7% ANSWER: D 08. Pure iron is the structure of A. Ferrite B. Pearlite C. Austenite D. Ferrite and pearlite ANSWER: A 09. Austenite phase in Iron-Carbon equilibrium diagram _______ A. Is face centered cubic structure B. Has magnetic phase C. Exists below 727o C D. Has body centered cubic structure ANSWER: A 10. What is the crystal structure of Alpha-ferrite? A. Body centered cubic structure B. Face centered cubic structure C. Orthorhombic crystal structure D. Tetragonal crystal structure ANSWER: A 11. In Iron-Carbon equilibrium diagram, at which temperature cementite changes fromferromagnetic to paramagnetic character? A.
    [Show full text]
  • Cast Irons$ KB Rundman, Michigan Technological University, Houghton, MI, USA F Iacoviello, Università Di Cassino E Del Lazio Meridionale, DICEM, Cassino (FR), Italy
    Cast Irons$ KB Rundman, Michigan Technological University, Houghton, MI, USA F Iacoviello, Università di Cassino e del Lazio Meridionale, DICEM, Cassino (FR), Italy r 2016 Elsevier Inc. All rights reserved. 1 Metallurgy of Cast Iron 1 2 Solidification of a Hypoeutectic Gray Iron Alloy With CE¼4.0 3 3 Matrix Microstructures in Graphitic Cast Irons – Cooling Below the Eutectic 3 4 Microstructure and Mechanical Properties of Gray Cast Iron 4 5 Effect of Carbon Equivalent 5 6 Effect of Matrix Microstructure 5 7 Effect of Alloying Elements 5 8 Classes of Gray Cast Irons and Brinell Hardness 5 9 Ductile Cast Iron 5 10 Production of Ductile Iron 6 11 Solidification and Microstructures of Hypereutectic Ductile Cast Irons 6 12 Mechanical Properties of Ductile Cast Iron 7 13 As-cast and Quenched and Tempered Grades of Ductile Iron 8 14 Malleable Cast Iron, Processing, Microstructure, and Mechanical Properties 8 15 Compacted Graphite Iron 9 16 Austempered Ductile Cast Iron 9 17 The Metastable Phase Diagram and Stabilized Austenite 9 18 Control of Mechanical Properties of ADI 10 19 Conclusion 10 References 11 Further Reading 11 Cast irons have played an important role in the development of the human species. They have been produced in various compositions for thousands of years. Most often they have been used in the as-cast form to satisfy structural and shape requirements. The mechanical and physical properties of cast irons have been enhanced through understanding of the funda- mental relationships between microstructure (phases, microconstituents, and the distribution of those constituents) and the process variables of iron composition, heat treatment, and the introduction of significant additives in molten metal processing.
    [Show full text]
  • Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition
    metals Article Bainitic Transformation and Properties of Low Carbon Carbide-Free Bainitic Steels with Cr Addition Mingxing Zhou, Guang Xu * , Junyu Tian, Haijiang Hu and Qing Yuan The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China; [email protected] (M.Z.); [email protected] (J.T.); [email protected] (H.H.); [email protected] (Q.Y.) * Correspondence: [email protected]; Tel.: +86-027-6886-2813 Received: 28 June 2017; Accepted: 6 July 2017; Published: 10 July 2017 Abstract: Two low carbon carbide-free bainitic steels (with and without Cr addition) were designed, and each steel was treated by two kinds of heat treatment procedure (austempering and continuous cooling). The effects of Cr addition on bainitic transformation, microstructure, and properties of low carbon bainitic steels were investigated by dilatometry, metallography, X-ray diffraction, and a tensile test. The results show that Cr addition hinders the isothermal bainitic transformation, and this effect is more significant at higher transformation temperatures. In addition, Cr addition increases the tensile strength and elongation simultaneously for austempering treatment at a lower temperature. However, when the austempering temperature is higher, the strength increases and the elongation obviously decreases by Cr addition, resulting in the decrease in the product of tensile strength and elongation. Meanwhile, the austempering temperature should be lower in Cr-added steel than that in Cr-free steel in order to obtain better comprehensive properties. Moreover, for the continuous cooling treatment in the present study, the product of tensile strength and elongation significantly decreases with Cr addition due to more amounts of martensite.
    [Show full text]
  • Advanced Ultra High Strength Bainitic Steels
    ADVANCED ULTRA HIGH STRENGTH BAINITIC STEELS F. G. Caballero1, C. García-Mateo1, C. Capdevila1 and C. García de Andrés1 1 Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo, 8- E- 28040 Madrid, Spain. Te: +34 91 5538900, Fax: +34 91 5347425, e-mail of corresponding author: [email protected] Abstract: The addition of about 2 wt-% of silicon to steel enables the production of a distinctive microstructure consisting of a mixture of bainitic ferrite, carbon-enriched retained austenite and some martensite. The silicon suppresses the precipitation of brittle cementite, and hence should lead to an improvement in toughness. However, the full benefit of this carbide-free bainitic microstructure has frequently not been realised. This is because the bainite reaction stops well before equilibrium is reached. This leaves large regions of untransformed austenite which under stress decompose to hard, brittle martensite. The essential principles governing the optimisation of such microstructures are well established, particularly that an increase in the amount of bainitic ferrite in the microstructure is needed in order to consume the blocks of austenite. With careful design, impressive combinations of strength and toughness have been reported for high-silicon bainitic steels. More recently, it has been demonstrated experimentally that models based on phase transformation theory can be applied successfully to the design of carbide free bainitic steels. Toughness values of nearly 130 MPa m1/2 were obtained for strength in the range of 1600-1700 MPa. This compares well with maraging steels, which are at least thirty times more expensive. However, the concepts of bainite transformation theory can be exploited even further to design steels that transform to bainite at temperatures as low as 150 ºC.
    [Show full text]
  • Me8491 - Engineering Metallurgy Unit- I / Alloys and Phase Diagrams Part-A
    ME8491 - ENGINEERING METALLURGY UNIT- I / ALLOYS AND PHASE DIAGRAMS PART-A: 1. Write the constitution of austenite. Austenite is a primary solid solution based on γ iron having FCC structure. The 0 maximum solubility of carbon in FCC iron is about 2% at 1140 C. 2. Classify plain carbon steel. Low carbon steel – less than 0.25% carbon, Medium carbon steel – 0.25% to 0.60% carbon, High carbon steel – more than 0.60% carbon. 3. Define Alloy. It is a mixture of two or more metals or a metal and a non metal 4. What are alloying elements? The element which is present in the largest proportion is called the base metal and all other elements presents are called alloying base elements. 5. How will you explain peretectic reaction? In peretectic reaction, up on cooling, a solid and a liquid phase transform isothermally and reversibly to a solid phase having a different composition. Liquid + Solid1== solid2 6. What is steel? Steel is a composition unto 0.008% carbon is regarded as commercially pure iron those from 0.008-2% Carbon represent the steel. 7. State the condition for Gibb‟s phase rule. Pressure variable is kept constant at one atmosphere Gibb phase rule F=c-p+2; F=c-p+1(condensed Gibb phase rule). 8. Explain base metal. The element which present in the largest proportion is called the base metal 9. Differential between substitution and interstitial solid solutions. When the solute (Impurities) substitutes for parent solvent atoms in a crystal lattice, they are called substitution atoms, and the manure of the two elements is called a substitution solid solution.
    [Show full text]