Low Temperature Austenite Decomposition in Carbon Steels

Total Page:16

File Type:pdf, Size:1020Kb

Low Temperature Austenite Decomposition in Carbon Steels Low Temperature Austenite Decomposition in Carbon Steels Albin Stormvinter Doctoral Thesis KTH Royal Institute of Technology School of Industrial Engineering and Management Department of Materials Science and Engineering Division of Physical Metallurgy SE-10044 Stockholm, Sweden Stockholm 2012 i Albin Stormvinter Low Temperature Austenite Decomposition in Carbon Steels KTH Royal Institute of Technology, School of Industrial Engineering and Management, Department of Materials Science and Engineering, Division of Physical Metallurgy, SE-10044 Stockholm, Sweden ISRN KTH/MSE--12/19--SE+METO/AVH ISBN 978-91-7501-449-4 Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan i Stockholm framlägges till offentlig granskning för avläggande av teknologie doktorsexamen 27 september 2012, kl. 10.00 i sal F3, Lindstedsvägen 26, Kungliga Tekniska högskolan, Stockholm. © Albin Stormvinter, August 2012 Printed by Universitetsservice US-AB, Stockholm, Sweden ii To Emma iii iv Abstract Martensitic steels have become very important engineering materials in modern society. Crucial parts of everyday products are made of martensitic steels, from surgical needles and razor blades to car components and large-scale excavators. Martensite, which results from a rapid diffusionless phase transformation, has a complex nature that is challenging to characterize and to classify. Moreover the possibilities for modeling of this phase transformation have been limited, since its thermodynamics and kinetics are only reasonably well understood. However, the recent development of characterization capabilities and computational techniques, such as CALPHAD, and its applicability to ferrous martensite has not been fully explored yet. In the present work, a thermodynamic method for predicting the martensite start temperature (Ms) of commercial steels is developed. It is based mainly on information on Ms from binary Fe-X systems obtained from experiments using very rapid cooling, and Ms values for lath and plate martensite are treated separately. Comparison with the experimental Ms of several sets of commercial steels indicates that the predictive ability is comparable to models based on experimental information of Ms from commercial steels. A major part of the present work is dedicated to the effect of carbon content on the morphological transition from lath- to plate martensite in steels. A range of metallographic techniques were employed: (1) Optical microscopy to study the apparent morphology; (2) Transmission electron microscopy to study high-carbon plate martensite; (3) Electron backscattered diffraction to study the variant pairing tendency of martensite. The results indicate that a good understanding of the martensitic microstructure can be achieved by combining qualitative metallography with quantitative analysis, such as variant pairing analysis. This type of characterization methodology could easily be extended to any alloying system and may thus facilitate martensite characterization in general. Finally, a minor part addresses inverse bainite, which may form in high-carbon alloys. Its coupling to regular bainite is discussed on the basis of symmetry in the Fe-C phase diagram. Keywords: Carbon steels, Electron backscattered diffraction, Martensite, Microscopy, Microstructure, Thermodynamic modeling. v vi Preface In the present doctoral thesis I would like to share my knowledge gained during the past four years, as a PhD student in physical metallurgy at the Department of Materials Science and Engineering at KTH Royal Institute of Technology, Sweden. The work has mainly been carried out within the martensite formation project (Supplements 1-5) which runs within the Hero-m research center, although Supplement 6 addresses inverse bainite and hence belongs to the bainite formation project within Hero-m. A large part of the characterization work on martensite is the result of two research stints conducted by the present author: at INP-Grenoble (France) in the spring of 2010 and at Tohoku University (Sendai, Japan) in the summer of 2011. In particular this doctoral thesis will discuss the following challenges, which are related to low temperature austenite decomposition in carbon steels: Thermodynamically based prediction of the martensite start temperature (Ms) Quantitative microstructure characterization: The effect of carbon content on the martensite morphology with emphasis on the transition from lath to plate martensite. Inverse bainite in hypereutectoid Fe-C alloys. The outline of this thesis is as follows; In the first chapter, introduction, the topic low temperature austenite decomposition and the aims and purposes related to the three challenges listed above are introduced. In Chapters 2-4 my intention has been to condense selected works on three important subjects related to this work: Phase transformations, Characterization techniques, and Thermodynamics. I make no claim that these chapters would advance the understanding of low temperature austenite decomposition further; instead they should be viewed as either an introduction to the different topics for the novice or as an interpretation of the dense literature on the subjects done by the present author. The readers are referred to the cited works for more details. The expert reader may in fact skip Chapters 2-4 and move on to Chapters 5-7 where I summarize the results from the supplements and discuss them in relation to existing literature. Albin Stormvinter Stockholm, 2012-08-01 vii Appended papers I. Investigation of Lath and Plate Martensite in a Carbon Steel A. Stormvinter, P. Hedström and A. Borgenstam Solid State Phenomena, 172-174, (2011), p. 61-66. II. Thermodynamically Based Prediction of the Martensite Start Temperature for Commercial Steels A. Stormvinter, A. Borgenstam and J. Ågren Metallurgical and Materials Transactions A, Online first, 2012, DOI: 10.1007/s11661-012-1171-z III. A transmission electron microscopy study of plate martensite formation in high-carbon low alloy steels A. Stormvinter, P. Hedström and A. Borgenstam Submitted manuscript IV. Effect of Carbon Content on the Orientation Relationship between Austenite and bct- Martensite in Fe-C Alloys resolved by Electron Backscattered Diffraction A. Stormvinter, G. Miyamoto, T. Furuhara, and A. Borgenstam Submitted manuscript V. Effect of Carbon Content on the Variant Pairing of Martensite in Fe-C alloys A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström and A. Borgenstam. Submitted manuscript VI. On the Symmetry Among the Diffusional Transformation Products of Austenite A. Borgenstam, P. Hedström, M. Hillert, P. Kolmskog, A. Stormvinter and J. Ågren Metallurgical and Materials Transactions A, 42(6), (2010), p. 1558-1574. * The appended papers will be referred to as [1–6] in the present thesis viii My contribution to the appended papers I. Major part of: literature survey, experimental work, and writing. II. Major part of: literature survey, modeling work, and writing. III. Major part of: literature survey, experimental work, analysis, and writing. IV. Major part of: literature survey, experimental work, analysis, and writing. V. Major part of: literature survey, experimental work, analysis, and writing. VI. Part of experimental work, contributed to discussions and took part in the writing. Other related reports not included in the thesis A. On the Three-Dimensional Microstructure of Martensite in Carbon Steels Peter Hedström, Albin Stormvinter, Annika Borgenstam, Ali Gholinia, Bartlomiej Winiarski, Philip J. Withers, Oskar Karlsson and Joacim Hagström Proceedings of the International Conference on 3D Materials Science 2012. Parts of this work have been presented at the following international conferences 1. “Investigation of the Transition from Lath to Plate Martensite in Fe-C”, Albin Stormvinter, Peter Hedström and Annika Borgenstam, Solid-Solid Phase Transformations in Inorganic Materials (PTM2010), 6 - 11 June 2010, Avignon, France. 2. “A Phenomenological Model for the Prediction of Martensite Start Temperature in Steels”, Albin Stormvinter and Annika Borgenstam, The TMS Annual Meeting & Exhibition 2011 (TMS2011), 27 February - 3 March 2011, San Diego, USA. 3. “Thermodynamically Based Prediction of the Ms Temperature for Commercial Steels”, Albin Stormvinter and Annika Borgenstam, International Conference on Martensitic Transformations 2011 (ICOMAT2011), 4 - 9 September 2011, Osaka, Japan. 4. “Martensitic Meso- and Nanostructures in High-Carbon Low-Alloyed Steels”, Albin Stormvinter, Peter Hedström, and Annika Borgenstam, The TMS Annual Meeting & Exhibition 2012 (TMS2012), 11 - 15 March 2012, Orlando, USA. ix x Table of Contents Abstract ................................................................................................................................................................ v Preface ................................................................................................................................................................ vii 1 Introduction ..................................................................................................................................................... 1 1.1 Aim of the present work ........................................................................................................................ 2 2 Low temperature austenite decomposition ................................................................................................. 5 2.1 Martensite ................................................................................................................................................
Recommended publications
  • High-Carbon Steels: Fully Pearlitic Microstructures and Applications
    © 2005 ASM International. All Rights Reserved. www.asminternational.org Steels: Processing, Structure, and Performance (#05140G) CHAPTER 15 High-Carbon Steels: Fully Pearlitic Microstructures and Applications Introduction THE TRANSFORMATION OF AUSTENITE to pearlite has been de- scribed in Chapter 4, “Pearlite, Ferrite, and Cementite,” and Chapter 13, “Normalizing, Annealing, and Spheroidizing Treatments; Ferrite/Pearlite Microstructures in Medium-Carbon Steels,” which have shown that as microstructure becomes fully pearlitic as steel carbon content approaches the eutectiod composition, around 0.80% carbon, strength increases, but resistance to cleavage fracture decreases. This chapter describes the me- chanical properties and demanding applications for which steels with fully pearlitic microstructures are well suited. With increasing cooling rates in the pearlite continuous cooling trans- formation range, or with isothermal transformation temperatures ap- proaching the pearlite nose of isothermal transformation diagrams, Fig. 4.3 in Chapter 4, the interlamellar spacing of pearlitic ferrite and cementite becomes very fine. As a result, for most ferrite/pearlite microstructures, the interlamellar spacing is too fine to be resolved in the light microscope, and the pearlite appears uniformly dark. Therefore, to resolve the inter- lamellar spacing of pearlite, scanning electron microscopy, and for the finest spacings, transmission electron microscopy (TEM), are necessary to resolve the two-phase structure of pearlite. Figure 15.1 is a TEM mi- crograph showing very fine interlamellar structure in a colony of pearlite from a high-carbon steel rail. This remarkable composite structure of duc- © 2005 ASM International. All Rights Reserved. www.asminternational.org Steels: Processing, Structure, and Performance (#05140G) 282 / Steels: Processing, Structure, and Performance tile ferrite and high-strength cementite is the base microstructure for rail and the starting microstructure for high-strength wire applications.
    [Show full text]
  • 2000 Stainless Steels: an Introduction to Their Metallurgy and Corrosion
    Dairy, Food and Environmental Sanitation, Vol. 20, No. 7, Pages 506-517 Copyright© International Association for Food Protection, 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322 Stainless Steels: An Introduction to Their Metallurgy and Corrosion Resistance Roger A. Covert and Arthur H. Tuthill* and why they sometimes do not. In most cases, selection of the proper stainless steel leads to satisfactory performance. COMPOSITION, NOMEN- CLATURE AND GENERAL PROPERTIES Most metals are mixtures of a primary metallic element and one or more intentionally added other ele- This article has been peer-reviewed by two professionals. ments. These mixtures of elements are called alloys. Stainless steels are alloys, as are brasses (copper + zinc), bronzes (copper + tin), the many alu- INTRODUCTION better understanding of stainless minum alloys, and many other me- Worldwide, in industry, in busi- steels, especially to the non-metal- tallic materials. In general, solid ness and in the home, metals called lurgist. metals and alloys consist of randomly stainless steels are used daily. It is Industries are concerned with oriented grains that have a well-de- important to understand what these integrity of equipment and product fined crystalline structure, or lattice, materials are and why they behave purity. To achieve these, stainless within the grains. In stainless steels, the way they do. This is especially steels are often the economical and the crystalline structures within the true because the word “stainless” is practical materials of choice for pro- grains have been given names such as itself somewhat of a misnomer; these cess equipment. However, before ferrite, austenite, martensite, or a materials can stain and can corrode intelligent decisions can be made mixture of two or more of these.
    [Show full text]
  • Carbon Steel
    EN380 12-wk Exam Solution Fall 2019 Carbon Steel. 1. [19 pts] Three compositions of plain carbon steel are cooled very slowly in a turned-off furnace from ≈ 830◦C (see phase diagram below). For each composition, the FCC grains of γ−austenite (prior to transformation) are shown in an optical micrograph of the material surface. Sketch and label the phases making up the microstructures present in the right hand micrograph just after the austenite has completed transformation (note: the gray outlines of the prior γ grains may prove helpful). (a) [4 pts] C0 = 0:42% C (by wt). 830◦C 726◦C EN380 12-wk Exam Solution Page 1 Fall 2019 EN380 12-wk Exam Solution Fall 2019 (b) [4 pts] C0 = 0:80% C (by wt). 830◦C 726◦C (c) [4 pts] C0 = 1:05% C (by wt). 830◦C 726◦C (d) [7 pts] For the composition of part (c), C0 = 1:05% C (by wt), calculate the fraction of the solid that is pearlite at 726◦C. CF e3C − C0 6:67% − 1:05% Wpearlite = Wγ at 728◦C = = = 95:74% Pearlite CF e3C − Cγ 6:67% − 0:8% EN380 12-wk Exam Solution Page 2 Fall 2019 EN380 12-wk Exam Solution Fall 2019 2. [11 pts] Write in the correct term for each of the following related to carbon steels[1 pt each] (terms will be used exactly once): This material features carbon content in excess of Cast Iron 2:0% and is known for its excellent hardness, wear resistance, machinability and castability.
    [Show full text]
  • Role of Austenitization Temperature on Structure Homogeneity and Transformation Kinetics in Austempered Ductile Iron
    Metals and Materials International https://doi.org/10.1007/s12540-019-00245-y Role of Austenitization Temperature on Structure Homogeneity and Transformation Kinetics in Austempered Ductile Iron M. Górny1 · G. Angella2 · E. Tyrała1 · M. Kawalec1 · S. Paź1 · A. Kmita3 Received: 17 December 2018 / Accepted: 14 January 2019 © The Author(s) 2019 Abstract This paper considers the important factors of the production of high-strength ADI (Austempered Ductile Iron); namely, the austenitization stage during heat treatment. The two series of ADI with diferent initial microstructures were taken into consideration in this work. Experiments were carried out for castings with a 25-mm-walled thickness. Variable techniques (OM, SEM, dilatometry, DSC, Variable Magnetic Field, hardness, and impact strength measurements) were used for investi- gations of the infuence of austenitization time on austempering transformation kinetics and structure in austempered ductile iron. The outcome of this work indicates that the austenitizing temperature has a very signifcant impact on structure homo- geneity and the resultant mechanical properties. It has been shown that the homogeneity of the metallic matrix of the ADI microstructure strongly depends on the austenitizing temperature and the initial microstructure of the spheroidal cast irons (mainly through the number of graphite nodules). In addition, this work shows the role of the austenitization temperature on the formation of Mg–Cu precipitations in ADI. Keywords Metals · Casting · ADI · Heat treatment · Mg2Cu particles 1 Introduction light/heavy trucks, construction and mining equipment, railroad, agricultural, gears and crankshafts, and brackets, Austempered ductile iron (ADI) belongs to the spheroidal among others [5–7]. In the literature, numerous papers have graphite cast iron (SGI) family, which is subjected to heat been published on ADI: particularly, on the numerical sim- treatment; i.e., austenitization and austempering.
    [Show full text]
  • Preparation and Mechanical Behavior of Ultra-High Strength Low-Carbon Steel
    materials Article Preparation and Mechanical Behavior of Ultra-High Strength Low-Carbon Steel Zhiqing Lv 1,2,*, Lihua Qian 1, Shuai Liu 1, Le Zhan 1 and Siji Qin 1 1 Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China Yanshan University, Qinhuangdao 066004, China; [email protected] (L.Q.); [email protected] (S.L.); [email protected] (L.Z.); [email protected] (S.Q.) 2 State Key Laboratory of Metastable Material Science and Technology, Yanshan University, Qinhuangdao 066004, China * Correspondence: [email protected] Received: 16 December 2019; Accepted: 14 January 2020; Published: 18 January 2020 Abstract: The low-carbon steel (~0.12 wt%) with complete martensite structure, obtained by quenching, was cold rolled to get the high-strength steel sheets. Then, the mechanical properties of the sheets were measured at different angles to the rolling direction, and the microstructural evolution of low-carbon martensite with cold rolling reduction was observed. The results show that the hardness and the strength gradually increase with increasing rolling reduction, while the elongation and impact toughness obviously decrease. The strength of the sheets with the same rolling reduction are different at the angles of 0◦, 45◦, and 90◦ to the rolling direction. The tensile strength (elongation) along the rolling direction is higher than that in the other two directions, but the differences between them are not obvious. When the aging was performed at a low temperature, the strength of the initial martensite and deformed martensite increased with increasing aging time during the early stages of aging, followed by a gradual decrease with further aging.
    [Show full text]
  • Chemical Analyses of Standard Sizes
    SECTION P CPHEMICAL ANALYSES OF STANDARD SIZES STANDARD METALS AND DESIGNATION SYSTEMS . 2 EFFECTS OF COMMON ALLOYING ELEMENTS IN STEEL . 3-4 DESIGNATION OF CARBON STEELS . 5-7 DESIGNATION OF ALLOY STEELS .......................... 8-12 STAINLESS AND HEAT RESISTING STEELS .................. 13-17 HIGH TEMPERATURE HIGH STRENGTH ALLOYS . 18 DESIGNATION OF ALLUMINUM ALLOYS . 19-20 OIL TOOL MATERIALS . 21 API SPECIFICATION REQUIREMENTS ....................... 22 Sec. P Page 1 STANDARD METALS AND DESIGNATION SYSTEMS UNS Studies have been made in the metals industry for the purpose of establishing certain “standard” metals and eliminating as much as possible the manufacture of other metals which vary only slightly in composition from the standard metals. These standard metals are selected on the basis of serving the significant metal- lurgical and engineering needs of fabricators and users of metal products. UNIFIED NUMBERING SYSTEM: UNS is a system of designations established in accordance with ASTM E 527 and SAE J1086, Recommended Practice for Numbering Metals and Alloys. Its purpose is to provide a means of correlat- ing systems in use by such organizations as American Iron and Steel Institute (AISI), American Society for Testing Materials (ASTM), and Society of Automotive Engineers (SAE), as well as individual users and producers. UNS designa- tion assignments are processed by the SAE, the ASTM, or other relevant trade associations. Each of these assignors has the responsibility for administering a specific UNS series of designations. Each considers requests for the assignment of new UNS designations, and informs the applicants of the action taken. UNS designation assignors report immediately to the office of the Unified Numbering System for Metals and Alloys the details of each new assignment for inclusion into the system.
    [Show full text]
  • Structure/Property Relationships in Irons and Steels Bruce L
    Copyright © 1998 ASM International® Metals Handbook Desk Edition, Second Edition All rights reserved. J.R. Davis, Editor, p 153-173 www.asminternational.org Structure/Property Relationships in Irons and Steels Bruce L. Bramfitt, Homer Research Laboratories, Bethlehem Steel Corporation Basis of Material Selection ............................................... 153 Role of Microstructure .................................................. 155 Ferrite ............................................................. 156 Pearlite ............................................................ 158 Ferrite-Pearl ite ....................................................... 160 Bainite ............................................................ 162 Martensite .................................... ...................... 164 Austenite ........................................................... 169 Ferrite-Cementite ..................................................... 170 Ferrite-Martensite .................................................... 171 Ferrite-Austenite ..................................................... 171 Graphite ........................................................... 172 Cementite .......................................................... 172 This Section was adapted from Materials 5election and Design, Volume 20, ASM Handbook, 1997, pages 357-382. Additional information can also be found in the Sections on cast irons and steels which immediately follow in this Handbook and by consulting the index. THE PROPERTIES of irons and steels
    [Show full text]
  • Hardening Characteristics of Plain Carbon Steel and Ductile Cast Iron Using Neem Oil As Quenchant
    Journal of Minerals & Materials Characterization & Engineering, Vol. 10, No.2, pp.161-172, 2011 jmmce.org Printed in the USA. All rights reserved Hardening Characteristics of Plain Carbon Steel and Ductile Cast Iron Using Neem Oil as Quenchant 1Hassan, S. B, 2Agboola. J.B, 1Aigbodion, V.S. and 1Williams, E.J. 1Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Samaru, Zaria, Nigeria. 2Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria. E-mail, [email protected], [email protected], [email protected] ABSTRACT The hardening characteristics of medium carbon steel and ductile cast iron using neem oil as quenching medium has been investigated. The samples were quenched to room temperature in Neem oil. To compare the effectiveness of the neem oil samples were also quenched in water and SAE engine oil the commercial quenchants. The microstructures and mechanical properties of the quenched samples were used to determine the quench severity of the neem oil. The result shows that hardness value of the medium carbon steel increased from 18.30HVN in the as-cast condition to 21.60, 20.30and 20.70HVN while that of ductile cast iron samples increased from 18.90HVN in the as-cast condition to 22.65, 20.30 and 21.30HVN for water, neem oil and SAE40 engine oil respectively. The as-received steel sample gave the highest impact strength value and water quenched sample gave the least impact strength. The impact strength of the medium carbon steel samples is 50.84, 41.35, 30.50 and 45.15 Joule and that of ductile iron is 2.71, 1.02, 0.68 and 1.70 Joule for as-cast condition, neem oil, water and SAE 40 engine oil quenched respectively.
    [Show full text]
  • The Stainless Steel Family
    The Stainless Steel Family A short description of the various grades of stainless steel and how they fit into distinct metallurgical families. It has been written primarily from a European perspective and may not fully reflect the practice in other regions. Stainless steel is the term used to describe an extremely versatile family of engineering materials, which are selected primarily for their corrosion and heat resistant properties. All stainless steels contain principally iron and a minimum of 10.5% chromium. At this level, chromium reacts with oxygen and moisture in the environment to form a protective, adherent and coherent, oxide film that envelops the entire surface of the material. This oxide film (known as the passive or boundary layer) is very thin (2-3 namometres). [1nanometre = 10-9 m]. The passive layer on stainless steels exhibits a truly remarkable property: when damaged (e.g. abraded), it self-repairs as chromium in the steel reacts rapidly with oxygen and moisture in the environment to reform the oxide layer. Increasing the chromium content beyond the minimum of 10.5% confers still greater corrosion resistance. Corrosion resistance may be further improved, and a wide range of properties provided, by the addition of 8% or more nickel. The addition of molybdenum further increases corrosion resistance (in particular, resistance to pitting corrosion), while nitrogen increases mechanical strength and enhances resistance to pitting. Categories of Stainless Steels The stainless steel family tree has several branches, which may be differentiated in a variety of ways e.g. in terms of their areas of application, by the alloying elements used in their production, or, perhaps the most accurate way, by the metallurgical phases present in their microscopic structures: .
    [Show full text]
  • Materials Technology – Placement
    MATERIAL TECHNOLOGY 01. An eutectoid steel consists of A. Wholly pearlite B. Pearlite and ferrite C. Wholly austenite D. Pearlite and cementite ANSWER: A 02. Iron-carbon alloys containing 1.7 to 4.3% carbon are known as A. Eutectic cast irons B. Hypo-eutectic cast irons C. Hyper-eutectic cast irons D. Eutectoid cast irons ANSWER: B 03. The hardness of steel increases if it contains A. Pearlite B. Ferrite C. Cementite D. Martensite ANSWER: C 04. Pearlite is a combination of A. Ferrite and cementite B. Ferrite and austenite C. Ferrite and iron graphite D. Pearlite and ferrite ANSWER: A 05. Austenite is a combination of A. Ferrite and cementite B. Cementite and gamma iron C. Ferrite and austenite D. Pearlite and ferrite ANSWER: B 06. Maximum percentage of carbon in ferrite is A. 0.025% B. 0.06% C. 0.1% D. 0.25% ANSWER: A 07. Maximum percentage of carbon in austenite is A. 0.025% B. 0.8% 1 C. 1.25% D. 1.7% ANSWER: D 08. Pure iron is the structure of A. Ferrite B. Pearlite C. Austenite D. Ferrite and pearlite ANSWER: A 09. Austenite phase in Iron-Carbon equilibrium diagram _______ A. Is face centered cubic structure B. Has magnetic phase C. Exists below 727o C D. Has body centered cubic structure ANSWER: A 10. What is the crystal structure of Alpha-ferrite? A. Body centered cubic structure B. Face centered cubic structure C. Orthorhombic crystal structure D. Tetragonal crystal structure ANSWER: A 11. In Iron-Carbon equilibrium diagram, at which temperature cementite changes fromferromagnetic to paramagnetic character? A.
    [Show full text]
  • Cast Irons$ KB Rundman, Michigan Technological University, Houghton, MI, USA F Iacoviello, Università Di Cassino E Del Lazio Meridionale, DICEM, Cassino (FR), Italy
    Cast Irons$ KB Rundman, Michigan Technological University, Houghton, MI, USA F Iacoviello, Università di Cassino e del Lazio Meridionale, DICEM, Cassino (FR), Italy r 2016 Elsevier Inc. All rights reserved. 1 Metallurgy of Cast Iron 1 2 Solidification of a Hypoeutectic Gray Iron Alloy With CE¼4.0 3 3 Matrix Microstructures in Graphitic Cast Irons – Cooling Below the Eutectic 3 4 Microstructure and Mechanical Properties of Gray Cast Iron 4 5 Effect of Carbon Equivalent 5 6 Effect of Matrix Microstructure 5 7 Effect of Alloying Elements 5 8 Classes of Gray Cast Irons and Brinell Hardness 5 9 Ductile Cast Iron 5 10 Production of Ductile Iron 6 11 Solidification and Microstructures of Hypereutectic Ductile Cast Irons 6 12 Mechanical Properties of Ductile Cast Iron 7 13 As-cast and Quenched and Tempered Grades of Ductile Iron 8 14 Malleable Cast Iron, Processing, Microstructure, and Mechanical Properties 8 15 Compacted Graphite Iron 9 16 Austempered Ductile Cast Iron 9 17 The Metastable Phase Diagram and Stabilized Austenite 9 18 Control of Mechanical Properties of ADI 10 19 Conclusion 10 References 11 Further Reading 11 Cast irons have played an important role in the development of the human species. They have been produced in various compositions for thousands of years. Most often they have been used in the as-cast form to satisfy structural and shape requirements. The mechanical and physical properties of cast irons have been enhanced through understanding of the funda- mental relationships between microstructure (phases, microconstituents, and the distribution of those constituents) and the process variables of iron composition, heat treatment, and the introduction of significant additives in molten metal processing.
    [Show full text]
  • Phase Transformations / Hardenability (Jominy End-Quench)
    Phase Transformations / Hardenability (Jominy End-Quench) Presentation Fall '15 (2151) Experiment #7 Phase Transformations & Hardenability of Steels (Jominy End-Quench Test) Jominy End Quench Test ASTM Standard A255 Concept Non-equilibrium phase transformations Continuous cooling transformation diagram & Critical cooling rates Concept of Hardenability Effect of %C & alloying on Hardenability Objective Compare hardenability of 1045 & 4340 steels (very similar wt% C) 2 Review: Eutectoid Reaction in Steels γ (Austenite , FCC) → α (Ferrite , BCC) + Fe 3C (Cementite , FC Orthorhombic) No time element; temperature change assumed slow enough for quasi-equilibrium at all points γ (Austenite) → α (Ferrite) + Fe 3C (Cementite) 0.76 %C → 0.022 %C + 6.70 %C Schematic representations of the microstructures for an iron-carbon alloy of eutectoid composition (0.76 wt% C) above and below the eutectoid temperature. 3 Fig. 9.26 from Callister & Rethwisch, Materials Science & Engineering, An Introduction, 8 th ed., J. Wiley & Sons, 2010 MECE-306 Materials Science Apps Lab 1 Phase Transformations / Hardenability (Jominy End-Quench) Presentation Fall '15 (2151) Isothermal Transformations of Eutectoid Steel – Pearlite Isothermal transformation diagram for a eutctoid Austenite (unstable) iron-carbon alloy, with superimposed isothermal heat treatment curve (ABCD ). Microstructures before, during, and after the austenite-to-pearlite transformation are shown. Notice fast transformation creates “fine” pearlite and slow transform. This figure is nicknamed the “T-T-T” plot (for creates time-temperature-transformation) “coarse” pearlite! 4 Fig. 10.14 from Callister & Rethwisch, Materials Science & Engineering, An Introduction, 8 th ed., J. Wiley & Sons, 2010 Isothermal Transformations of Hyper-Eutectoid Carbon Steel Isothermal transformation diagram for a 1.13 wt% C iron-carbon alloy: A, austenite; C, proeutectoid cementite; P, pearlite.
    [Show full text]