Lab Title: Observing Project – Orion, Saturn, and the Moon Your Name
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Enhanced Mass Loss Rates in Red Supergiants and Their Impact in The
Revista Mexicana de Astronom´ıa y Astrof´ısica, 55, 161–175 (2019) DOI: https://doi.org/10.22201/ia.01851101p.2019.55.02.04 ENHANCED MASS LOSS RATES IN RED SUPERGIANTS AND THEIR IMPACT ON THE CIRCUMSTELLAR MEDIUM L. Hern´andez-Cervantes1,2, B. P´erez-Rend´on3, A. Santill´an4, G. Garc´ıa-Segura5, and C. Rodr´ıguez-Ibarra6 Received September 25 2018; accepted May 8 2019 ABSTRACT In this work, we present models of massive stars between 15 and 23 M⊙, with enhanced mass loss rates during the red supergiant phase. Our aim is to explore the impact of extreme red supergiant mass-loss on stellar evolution and on their cir- cumstellar medium. We computed a set of numerical experiments, on the evolution of single stars with initial masses of 15, 18, 20 and, 23 M⊙, and solar composi- tion (Z = 0.014), using the numerical stellar code BEC. From these evolutionary models, we obtained time-dependent stellar wind parameters, that were used ex- plicitly as inner boundary conditions in the hydrodynamical code ZEUS-3D, which simulates the gas dynamics in the circumstellar medium (CSM), thus coupling the stellar evolution to the dynamics of the CSM. We found that stars with extreme mass loss in the RSG phase behave as a larger mass stars. RESUMEN En este trabajo presentamos modelos evolutivos de estrellas en el intervalo de 15 a 23 M⊙, usando un incremento en la tasa de p´erdida de masa durante su fase de supergigante roja para explorar el impacto de una fuerte p´erdida de masa en la evoluci´on de la estrella y en la din´amica de su medio circunestelar. -
Standing on the Shoulders of Giants: New Mass and Distance Estimates
Draft version October 15, 2020 Typeset using LATEX twocolumn style in AASTeX63 Standing on the shoulders of giants: New mass and distance estimates for Betelgeuse through combined evolutionary, asteroseismic, and hydrodynamical simulations with MESA Meridith Joyce,1, 2 Shing-Chi Leung,3 Laszl´ o´ Molnar,´ 4, 5, 6 Michael Ireland,1 Chiaki Kobayashi,7, 8, 2 and Ken'ichi Nomoto8 1Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125, USA 4Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly-Thege ´ut15-17, H-1121 Budapest, Hungary 5MTA CSFK Lendulet¨ Near-Field Cosmology Research Group, Konkoly-Thege ´ut15-17, H-1121 Budapest, Hungary 6ELTE E¨otv¨os Lor´and University, Institute of Physics, Budapest, 1117, P´azm´any P´eter s´et´any 1/A 7Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 8Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan (Dated: Accepted XXX. Received YYY; in original form ZZZ) ABSTRACT We conduct a rigorous examination of the nearby red supergiant Betelgeuse by drawing on the synthesis of new observational data and three different modeling techniques. Our observational results include the release of new, processed photometric measurements collected with the space-based SMEI instrument prior to Betelgeuse's recent, unprecedented dimming event. -
The Hypergiants VY Canis Majoris, Eta Carinae, V766 Centauri and The
Sixteenth Marcel Grossmann Meeting Contribution ID: 967 Type: Talk in the parallel session The hypergiants VY Canis Majoris, Eta Carinae, V766 Centauri and the red supergiants Betelgeuse, Antares and Aldebaran in the 2.5K SGQ AAVSO database Thursday, 8 July 2021 16:35 (7 minutes) I observe variable stars since 1997. The “candidacy” of Mira Ceti as Betlehem Star because close to Jupiter- Saturn triple conjunction of 6-7 b.C. started at Pontifical University of Lateran and continued in Yale (2001- 2004). Maxima correlation function ruled out Mira for having two consecutive bright maxima, but this prop- erty was confirmed in the “oldest” Myra-type: R Leonis, R Hydrae and Chi Cygni, from their almostfour- century-long lightcurves. To a bright maximum normally a dim one follows, as the correlation function of their consecutive maxima shows. These studies were supported by historical and personal visual observations. Since 2011 I observe firstmag- nitude variable stars, with airmass correction to reach 0.01 magnitudes accuracy with naked eye. AAVSO observer Sebastian Otero first claimed this accuracy, as for NovaCentauri 2013, observed by me fromPorto Alegre and Rio de Janeiro. Betelgeuse’s 801 observations in 10 years, include the deep minimum of 2020. My SGQ contributions to AAVSO-database, paralleled with Betelgeuse’s V-band measurements, help to define the “personal equations” present in all 25M visual observations before CCD era (1911-on) going back to 1893 for Betelgeuse. The temporal extension of lightcurves is crucial to understand the stellar behaviour. More complicate cases are Antares and Aldebaran, less variable and with distant comparison stars. -
On Massive Dust Clumps in the Envelope of the Red Supergiant VY Canis Majoris
Astronomy & Astrophysics manuscript no. VYCMAclumps_CONTI_May2019 c ESO 2019 July 2, 2019 On massive dust clumps in the envelope of the red supergiant VY Canis Majoris ? T. Kaminski´ Center for Astrophysics | Harvard & Smithsonian, Smithsonian Astrophysical Observatory, e-mail: [email protected] Received; accepted ABSTRACT The envelope of the red supergiant VY CMa has long been considered an extreme example of episodic mass loss that is possibly taking place in other cool and massive evolved stars. Recent (sub-)millimeter observations of the envelope revealed the presence of massive dusty clumps within 800 mas from the star which reinforce the picture of drastic mass-loss phenomena in VY CMa. We present new ALMA observations at an angular resolution of 0.100and at an unprecedented sensitivity that reveal further details about the dusty clumps. We resolve more discrete features and identify a submillimeter counterpart of a more distant Clump SW known from visual observations. The brightest clump, named C, is marginally resolved in the observations. Gas seen against the resolved continuum emission of clump C produces a molecular spectrum in absorption, in lines of mainly sulfur-bearing species. Except for SW Clump, no molecular emission is found to be associated with the dusty clumps and we propose that the dusty structures have an atypically low gas content. We attempt to reproduce the properties of the dusty clumps through three-dimensional radiative-transfer modeling. Although a clump configuration explaining the observations is found, it is not unique. A very high optical depth of all clumps to the stellar radiation make the modeling very challenging and requires unrealistically high dust masses for one of them. -
Winter Observing Notes
Wynyard Planetarium & Observatory Winter Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Tour of the Sky with the Naked Eye NGC 457 CASSIOPEIA eta Cas Look for Notice how the constellations 5 the ‘W’ swing around Polaris during shape the night Is Dubhe yellowish compared 2 Polaris to Merak? Dubhe 3 Merak URSA MINOR Kochab 1 Is Kochab orange Pherkad compared to Polaris? THE PLOUGH 4 Mizar Alcor Figure 1: Sketch of the northern sky in winter. North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. To your right is a group of stars like the outline of a saucepan standing up on it’s handle. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The top two stars are called the Pointers. Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white-hot. 2. Use the Pointers to guide you to the left, to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the right are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris. Check with binoculars. © Rob Peeling, CaDAS, 2007 version 2.0 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Winter Polaris, Kochab and Pherkad mark the constellation Ursa Minor, the Little Bear. -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
A Magnetar Model for the Hydrogen-Rich Super-Luminous Supernova Iptf14hls Luc Dessart
A&A 610, L10 (2018) https://doi.org/10.1051/0004-6361/201732402 Astronomy & © ESO 2018 Astrophysics LETTER TO THE EDITOR A magnetar model for the hydrogen-rich super-luminous supernova iPTF14hls Luc Dessart Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS, UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile e-mail: [email protected] Received 2 December 2017 / Accepted 14 January 2018 ABSTRACT Transient surveys have recently revealed the existence of H-rich super-luminous supernovae (SLSN; e.g., iPTF14hls, OGLE-SN14-073) that are characterized by an exceptionally high time-integrated bolometric luminosity, a sustained blue optical color, and Doppler- broadened H I lines at all times. Here, I investigate the effect that a magnetar (with an initial rotational energy of 4 × 1050 erg and 13 field strength of 7 × 10 G) would have on the properties of a typical Type II supernova (SN) ejecta (mass of 13.35 M , kinetic 51 56 energy of 1:32 × 10 erg, 0.077 M of Ni) produced by the terminal explosion of an H-rich blue supergiant star. I present a non-local thermodynamic equilibrium time-dependent radiative transfer simulation of the resulting photometric and spectroscopic evolution from 1 d until 600 d after explosion. With the magnetar power, the model luminosity and brightness are enhanced, the ejecta is hotter and more ionized everywhere, and the spectrum formation region is much more extended. This magnetar-powered SN ejecta reproduces most of the observed properties of SLSN iPTF14hls, including the sustained brightness of −18 mag in the R band, the blue optical color, and the broad H I lines for 600 d. -
The Relative Sizes of the Sun and Stars 25
The relative sizes of the sun and stars 25 Stars come in many sizes, but their true appearances are impossible to see without special telescopes. The image to the left was taken by the Hubble Space telescope and resolves the red supergiant star Betelgeuse so that its surface can be just barely seen. Follow the number clues below to compare the sizes of some other familiar stars! Problem 1 - The sun's diameter if 10 times the diameter of Jupiter. If Jupiter is 11 times larger than Earth, how much larger than Earth is the Sun? Problem 2 - Capella is three times larger than Regulus, and Regulus is twice as large as Sirius. How much larger is Capella than Sirius? Problem 3 - Vega is 3/2 the size of Sirius, and Sirius is 1/12 the size of Polaris. How much larger is Polaris than Vega? Problem 4 - Nunki is 1/10 the size of Rigel, and Rigel is 1/5 the size of Deneb. How large is Nunki compared to Deneb? Problem 5 - Deneb is 1/8 the size of VY Canis Majoris, and VY Canis Majoris is 504 times the size of Regulus. How large is Deneb compared to Regulus? Problem 6 - Aldebaran is 3 times the size of Capella, and Capella is twice the size of Polaris. How large is Aldebaran compared to Polaris? Problem 7 - Antares is half the size of Mu Cephi. If Mu Cephi is 28 times as large as Rigel, and Rigel is 50 times as large as Alpha Centauri, how large is Antares compared to Alpha Centauri? Problem 8 - The Sun is 1/4 the diameter of Regulus. -
Alpha Orionis (Betelgeuse)
AAVSO: Alpha Ori, December 2000 Variable Star Of The Month Variable Star Of The Month December, 2000: Alpha Orionis (Betelgeuse) Atmosphere of Betelgeuse - Alpha Orionis Hubble Space Telescope - Faint Object Camera January 15, 1996; A. Dupree (CfA), NASA, ESA From the city or country sky, from almost any part of the world, the majestic figure of Orion dominates overhead this time of year with his belt, sword, and club. High in his left shoulder (for those of us in the northern hemisphere) is the great red pulsating supergiant, Betelgeuse (Alpha Orionis 0549+07). Recently acquiring fame for being the first star to have its atmosphere directly imaged (shown above), Alpha Orionis has captivated observers’ attention for centuries. Betelgeuse's variability was first noticed by Sir John Herschel in 1836. In his Outlines of Astronomy, published in 1849, Herschel wrote “The variations of Alpha Orionis, which were most striking and unequivocal in the years 1836-1840, within the years since elapsed became much less conspicuous…” In 1849 the variations again began to increase in amplitude, and in December 1852 it was thought by Herschel to be “actually the largest [brightest] star in the northern hemisphere”. Indeed, when at maximum, Betelgeuse sometimes rises to magnitude 0.4 when it becomes a fierce competitor to Rigel; in 1839 and 1852 it was thought by some observers to be nearly the equal of Capella. Observations by the observers of the AAVSO indicate that Betelgeuse probably reached magnitude 0.2 in 1933 and again in 1942. At minimum brightness, as in 1927 and 1941, the magnitude may drop below 1.2. -
The Life Cycle of the Stars Chart
NAME__________________________________DATE_______________PER________ The Life Cycle of the Stars Chart Refer to the “Life Cycle of the Stars Notes and the following terms to fill in the labels on the chart: Black Hole (Forms after the supernova of a massive star that is more than 5 times the mass of the sun) Black Dwarf Star (The remains of a white dwarf that no longer shines) Blue Supergiant Star (more than 3 times more massive than our sun) Nebula (clouds of interstellar dust and gas) Neutron Star (Forms after the supernova of a massive star. Neutron stars are about 10-20 km in diameter but 1.4 times the mass of sun) Planetary or Ring Nebula (the aftermath of a Red Giant that goes “nova”, which means it expels it outer layers) Red Dwarf Star ( a main sequence star of small size and lower temperature) Red Giant Star ( Forms from sun-like stars that start fusing helium. The star expands and cools to a red giant) Red Supergiant Star (Forms from massive stars that start fusing helium. The star expands and cools to a supergiant) Sun-Like Star (a yellow medium-sized star) Supernova (Occurs after a massive star produces iron which cannot be fused further. The result us a massive explosion) White Dwarf (The left-over core of a red giant that has expelled its outer layers. It may continue to shine for billions of years) Color all stars (except neutron star) the appropriate color with colored pencil or marker. Color nebulas red and orange. Do not color supernovas and black holes. -
Yes, Aboriginal Australians Can and Did Discover the Variability of Betelgeuse
Journal of Astronomical History and Heritage, 21(1), 7‒12 (2018). YES, ABORIGINAL AUSTRALIANS CAN AND DID DISCOVER THE VARIABILITY OF BETELGEUSE Bradley E. Schaefer Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, 70803, USA Email: [email protected] Abstract: Recently, a widely publicized claim has been made that the Aboriginal Australians discovered the variability of the red star Betelgeuse in the modern Orion, plus the variability of two other prominent red stars: Aldebaran and Antares. This result has excited the usual healthy skepticism, with questions about whether any untrained peoples can discover the variability and whether such a discovery is likely to be placed into lore and transmitted for long periods of time. Here, I am offering an independent evaluation, based on broad experience with naked-eye sky viewing and astro-history. I find that it is easy for inexperienced observers to detect the variability of Betelgeuse over its range in brightness from V = 0.0 to V = 1.3, for example in noticing from season-to-season that the star varies from significantly brighter than Procyon to being greatly fainter than Procyon. Further, indigenous peoples in the Southern Hemisphere inevitably kept watch on the prominent red star, so it is inevitable that the variability of Betelgeuse was discovered many times over during the last 65 millennia. The processes of placing this discovery into a cultural context (in this case, put into morality stories) and the faithful transmission for many millennia is confidently known for the Aboriginal Australians in particular. So this shows that the whole claim for a changing Betelgeuse in the Aboriginal Australian lore is both plausible and likely. -
Supernova Star Maps
Supernova Star Maps Which Stars in the Night Sky Will Go Su pernova? About the Activity Allow visitors to experience finding stars in the night sky that will eventually go supernova. Topics Covered Observation of stars that will one day go supernova Materials Needed • Copies of this month's Star Map for your visitors- print the Supernova Information Sheet on the back. • (Optional) Telescopes A S A Participants N t i d Activities are appropriate for families Cre with children over the age of 9, the general public, and school groups ages 9 and up. Any number of visitors may participate. Location and Timing This activity is perfect for a star party outdoors and can take a few minutes, up to 20 minutes, depending on the Included in This Packet Page length of the discussion about the Detailed Activity Description 2 questions on the Supernova Helpful Hints 5 Information Sheet. Discussion can start Supernova Information Sheet 6 while it is still light. Star Maps handouts 7 Background Information There is an Excel spreadsheet on the Supernova Star Maps Resource Page that lists all these stars with all their particulars. Search for Supernova Star Maps here: http://nightsky.jpl.nasa.gov/download-search.cfm © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Star Maps: Stars likely to go Supernova! Leader’s Role Participants’ Role (Anticipated) Materials: Star Map with Supernova Information sheet on back Objective: Allow visitors to experience finding stars in the night sky that will eventually go supernova.