bioRxiv preprint doi: https://doi.org/10.1101/223123; this version posted November 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Ca2+-induced mitochondrial ROS regulate the early embryonic cell cycle Yue Han1, 2, 5, Shoko Ishibashi1, 5, Javier Iglesias-Gonzalez1, Yaoyao Chen1, 3, Nick R. Love1, 4 and Enrique Amaya1,6, * 1 Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK 2 Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian, 361102 P. R. China 3 Current address: STEMCELL Technologies UK ltd, Building 7100, Cambridge Research Park, Beach Drive, Waterbeach, Cambridge, UK, CB25 9TL 4 Current address: Stanford University School of Medicine, Stanford, CA 94305, USA 5Co-first author 6Lead Contact *Correspondence:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/223123; this version posted November 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY While it has long been appreciated that reactive oxygen species (ROS) can act as second messengers in both homeostastic and stress response signaling pathways, potential roles for ROS during early vertebrate development have remained largely unexplored.