Bmal1 Regulates Inflammatory Responses in Macrophages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SHARP1 (BHLHE41) Mouse Monoclonal Antibody [Clone ID: OTI3H4] Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA806354 SHARP1 (BHLHE41) Mouse Monoclonal Antibody [Clone ID: OTI3H4] Product data: Product Type: Primary Antibodies Clone Name: OTI3H4 Applications: IHC, WB Recommended Dilution: WB 1:2000, IHC 1:150 Reactivity: Human Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Human recombinant protein fragment corresponding to amino acids 1-297 of human BHLHE41(NP_110389) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 50.3 kDa Gene Name: basic helix-loop-helix family member e41 Database Link: NP_110389 Entrez Gene 79365 Human Q9C0J9 Background: This gene encodes a basic helix-loop-helix protein expressed in various tissues. The encoded protein can interact with ARNTL or compete for E-box binding sites in the promoter of PER1 and repress CLOCK/ARNTL's transactivation of PER1. This gene is believed to be involved in the control of circadian rhythm and cell differentiation. Defects in this gene are associated with the short sleep phenotype. [provided by RefSeq, Feb 2014] This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 SHARP1 (BHLHE41) Mouse Monoclonal Antibody [Clone ID: OTI3H4] – TA806354 Synonyms: BHLHB3; DEC2; hDEC2; SHARP1 Protein Families: Transcription Factors Protein Pathways: Circadian rhythm - mammal Product images: HEK293T cells were transfected with the pCMV6- ENTRY control (Left lane) or pCMV6-ENTRY BHLHE41 ([RC206882], Right lane) cDNA for 48 hrs and lysed. -
Targeting Glioblastoma Stem Cells Through Disruption of the Circadian Clock
Published OnlineFirst August 27, 2019; DOI: 10.1158/2159-8290.CD-19-0215 RESEARCH ARTICLE Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock Zhen Dong1, Guoxin Zhang1, Meng Qu2, Ryan C. Gimple1,3, Qiulian Wu1, Zhixin Qiu1, Briana C. Prager1,3, Xiuxing Wang1, Leo J.Y. Kim1,3, Andrew R. Morton3, Deobrat Dixit1, Wenchao Zhou4, Haidong Huang4, Bin Li5, Zhe Zhu1, Shideng Bao4, Stephen C. Mack6, Lukas Chavez7, Steve A. Kay2, and Jeremy N. Rich1 Downloaded from cancerdiscovery.aacrjournals.org on September 24, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst August 27, 2019; DOI: 10.1158/2159-8290.CD-19-0215 ABSTRACT Glioblastomas are highly lethal cancers, containing self-renewing glioblastoma stem cells (GSC). Here, we show that GSCs, differentiated glioblastoma cells (DGC), and nonmalignant brain cultures all displayed robust circadian rhythms, yet GSCs alone displayed exquisite dependence on core clock transcription factors, BMAL1 and CLOCK, for optimal cell growth. Downregulation of BMAL1 or CLOCK in GSCs induced cell-cycle arrest and apoptosis. Chromatin immu- noprecipitation revealed that BMAL1 preferentially bound metabolic genes and was associated with active chromatin regions in GSCs compared with neural stem cells. Targeting BMAL1 or CLOCK attenu- ated mitochondrial metabolic function and reduced expression of tricarboxylic acid cycle enzymes. Small-molecule agonists of two independent BMAL1–CLOCK negative regulators, the cryptochromes and REV-ERBs, downregulated stem cell factors and reduced GSC growth. Combination of cryp- tochrome and REV-ERB agonists induced synergistic antitumor effi cacy. Collectively, these fi ndings show that GSCs co-opt circadian regulators beyond canonical circadian circuitry to promote stemness maintenance and metabolism, offering novel therapeutic paradigms. -
Circadian Rhythmicity and the Influence of 'Clock
2311 Z Kiss and P M Ghosh Prostate cancer and the 23:11 T123–T134 Thematic Review ‘clock’ genes WOMEN IN CANCER THEMATIC REVIEW Circadian rhythmicity and the influence of ‘clock’ genes on prostate cancer Zsofia Kiss1,2 and Paramita M Ghosh1,2,3 1VA Northern California Health Care System, Mather, California, USA Correspondence 2Department of Urology, University of California at Davis, Sacramento, California, USA should be addressed 3Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, to P M Ghosh California, USA Email [email protected] Abstract Key Words The androgen receptor (AR) plays a key role in the development and progression f circadian clock of prostate cancer (CaP). Since the mid-1990s, reports in the literature pointed out f androgen receptor higher incidences of CaP in some select groups, such as airline pilots and night shift f melatonin workers in comparison with those working regular hours. The common finding in these f per1 ‘high-risk’ groups was that they all experienced a deregulation of the body’s internal f bmal1 circadian rhythm. Here, we discuss how the circadian rhythm affects androgen levels and modulates CaP development and progression. Circadian rhythmicity of androgen Endocrine-Related Cancer Endocrine-Related production is lost in CaP patients, with the clock genes Per1 and Per2 decreasing, and Bmal1 increasing, in these individuals. Periodic expression of the clock genes was restored upon administration of the neurohormone melatonin, thereby suppressing CaP progression. Activation of the melatonin receptors and the AR antagonized each other, and therefore the tumour-suppressive effects of melatonin and the clock genes were most clearly observed in the absence of androgens, that is, in conjunction with androgen deprivation therapy (ADT). -
Effects of PM Exposure on the Methylation of Clock Genes in a Population of Subjects with Overweight Or Obesity
International Journal of Environmental Research and Public Health Article Effects of PM Exposure on the Methylation of Clock Genes in A Population of Subjects with Overweight or Obesity Paola Monti 1 , Simona Iodice 2, Letizia Tarantini 2, Francesca Sacchi 2, Luca Ferrari 2 , Massimiliano Ruscica 3 , Massimiliano Buoli 4,5 , Luisella Vigna 1,6 , Angela Cecilia Pesatori 1,2 and Valentina Bollati 2,* 1 Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] (P.M.); [email protected] (L.V.); [email protected] (A.C.P.) 2 EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; [email protected] (S.I.); [email protected] (L.T.); [email protected] (F.S.); [email protected] (L.F.) 3 Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; [email protected] 4 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy; [email protected] 5 Department of Neurosciences and Mental Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy 6 Center of Obesity and Work EASO Collaborating Centers for Obesity Management, 20122 Milan, Italy * Correspondence: [email protected]; Tel.: +39-025-032-0127 Abstract: The expression of clock genes, regulating the synchronization of metabolic and behavioral processes with environmental light/dark cycles, is regulated by methylation and might be influenced by short-term exposure to airborne particulate matter (PM), especially in individuals that are hyper- Citation: Monti, P.; Iodice, S.; sensitive to proinflammatory cues. -
Effect of Type 2 Diabetes Mellitus on the Hypoxia-Inducible Factor 1
Journal of Clinical Medicine Article Effect of Type 2 Diabetes Mellitus on the Hypoxia-Inducible Factor 1-Alpha Expression. Is There a Relationship with the Clock Genes? Carolina López-Cano 1 , Liliana Gutiérrez-Carrasquilla 1, Ferran Barbé 2,3, Enric Sánchez 1 , Marta Hernández 1, Raquel Martí 1, Vicky Ceperuelo-Mallafre 4, Mireia Dalmases 2,3, Sonia Fernández-Veledo 4,5 , Joan Vendrell 4,5 , Cristina Hernández 5,6 , Rafael Simó 5,6,* and Albert Lecube 1,5,* 1 Endocrinology and Nutrition Department, University Hospital Arnau de Vilanova, Obesity, Diabetes and Metabolism (ODIM) Research Group, IRBLleida, University of Lleida, 25198 Lleida, Spain; [email protected] (C.L.-C.); [email protected] (L.G.-C.); [email protected] (E.S.); [email protected] (M.H.); [email protected] (R.M.) 2 Respiratory Department, University Hospital Arnau de Vilanova-Santa María, Translational Research in Respiratory Medicine, IRBLleida, Universityof Lleida, 25198 Lleida, Spain; [email protected] (F.B.); [email protected] (M.D.) 3 Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain 4 Endocrinology and Nutrition Department, University Hospital de Tarragona Joan XXIII, Institut d’Investigació Sanitària Pere Virgili (IISPV), Rovira i Virgili University, 43001 Tarragona, Spain; [email protected] (V.C.-M.); [email protected] (S.F.-V.); [email protected] (J.V.) 5 Centro de Investigación Biomédica en Red de Diabetes -
The Reciprocal Interplay Between Tnfα and the Circadian Clock
www.nature.com/scientificreports OPEN The reciprocal interplay between TNFα and the circadian clock impacts on cell proliferation and Received: 26 March 2018 Accepted: 18 July 2018 migration in Hodgkin lymphoma Published: xx xx xxxx cells Mónica Abreu 1,2, Alireza Basti1,2, Nikolai Genov1,2, Gianluigi Mazzoccoli 3 & Angela Relógio 1,2 A bidirectional interaction between the circadian network and efector mechanisms of immunity brings on a proper working of both systems. In the present study, we used Hodgkin lymphoma (HL) as an experimental model for a type of cancer involving cells of the immune system. We identifed this cancer type among haematological malignancies has having a strong diferential expression of core- clock elements. Taking advantage of bioinformatics analyses and experimental procedures carried out in III- and IV-stage HL cells, and lymphoblastoid B cells, we explored this interplay and bear out diverse interacting partners of both systems. In particular, we assembled a wide-ranging network of clock-immune-related genes and pinpointed TNF as a crucial intermediary player. A robust circadian clock hallmarked III-stage lymphoma cells, diferently from IV-stage HL cells, which do not harbour a properly functioning clockwork. TNF and circadian gene modulation impacted on clock genes expression and triggered phenotypic changes in lymphoma cells, suggesting a crucial involvement of core-clock elements and TNF in the physiopathological mechanisms hastening malignancy. Our results move forward our understanding of the putative role of the core-clock and TNF in the pathobiology of Hodgkin lymphoma, and highlight their infuence in cellular proliferation and migration in lymphatic cancers. -
Daily Rhythmicity of Clock Gene Transcript Levels in Fast and Slow
Wu et al. BMC Genomics (2016) 17:1008 DOI 10.1186/s12864-016-3373-z RESEARCHARTICLE Open Access Daily rhythmicity of clock gene transcript levels in fast and slow muscle fibers from Chinese perch (Siniperca chuatsi) Ping Wu1†, Yu-Long Li1†, Jia Cheng1†, Lin Chen1, Xin Zhu1, Zhi-Guo Feng3, Jian-She Zhang1,2* and Wu-Ying Chu1,2* Abstract Background: Clock genes are considered to be the molecular core of biological clock in vertebrates and they are directly involved in the regulation of daily rhythms in vertebrate tissues such as skeletal muscles. Fish myotomes are composed of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. To date, there is no report on the characterization of the circadian clock system components of slow muscles in fish. Results: In the present study, the molecular clock components (clock, arntl1/2, cry1/2/3, cry-dash, npas2, nr1d1/2, per1/2/3, rorα and tim genes) and their daily transcription levels were characterized in slow and fast muscles of Chinese perch (Siniperca chuatsi). Among the 15 clock genes, nrld2 and per3 had no daily rhythmicity in slow muscles, and cry2/3 and tim displayed no daily rhythmicity in fast muscles of the adult fish. In the slow muscles, the highest expression of the most clock paralogs occurred at the dark period except arntl1, nr1d1, nr1d2 and tim. With the exception of nr1d2 and tim, the other clock genes had an acrophase at the light period in fast muscles. The circadian expression of the myogenic regulatory factors (mrf4 and myf5), mstn and pnca showed either a positive or a negative correlation with the transcription pattern of the clock genes in both types of muscles. -
Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis
International Journal of Molecular Sciences Review Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis Andy W. C. Man , Huige Li and Ning Xia * Department of Pharmacology, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; [email protected] (A.W.C.M.); [email protected] (H.L.) * Correspondence: [email protected] Abstract: Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arterioscle- rosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardio- vascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock. Keywords: clock genes; inflammation; oxidative stress; circadian disruption; cardiovascular diseases Citation: Man, A.W.C.; Li, H.; Xia, N. -
Molecular Clock REV-Erbα Regulates Cigarette Smoke–Induced Pulmonary Inflammation and Epithelial- Mesenchymal Transition
RESEARCH ARTICLE Molecular clock REV-ERBα regulates cigarette smoke–induced pulmonary inflammation and epithelial- mesenchymal transition Qixin Wang,1 Isaac K. Sundar,2 Joseph H. Lucas,1 Thivanka Muthumalage,1 and Irfan Rahman1 1Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA. 2Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA. Cigarette smoke (CS) is the main etiological factor in the pathogenesis of emphysema/chronic obstructive pulmonary disease (COPD), which is associated with abnormal epithelial-mesenchymal transition (EMT). Previously, we have shown an association among circadian rhythms, CS-induced lung inflammation, and nuclear heme receptorα (REV-ERBα), acting as an antiinflammatory target in both pulmonary epithelial cells and fibroblasts. We hypothesized that molecular clock REV- ERBα plays an important role in CS-induced circadian dysfunction and EMT alteration. C57BL/6J WT and REV-ERBα heterozygous (Het) and –KO mice were exposed to CS for 30 days (subchronic) and 4 months (chronic), and WT mice were exposed to CS for 10 days with or without REV-ERBα agonist (SR9009) administration. Subchronic/chronic CS exposure caused circadian disruption and dysregulated EMT in the lungs of WT and REV-ERBα–KO mice; both circadian and EMT dysregulation were exaggerated in the REV-ERBα–KO condition. REV-ERBα agonist, SR9009 treatment reduced acute CS-induced inflammatory response and abnormal EMT in the lungs. Moreover, REV-ERBα agonist (GSK4112) inhibited TGF-β/CS–induced fibroblast differentiation in human fetal lung fibroblast 1 (HFL-1). -
Supplementary Figures S1-3, Tables S1-3
Supplementary Material Supplementary Material and Methods MEFs preparation and electroporation Dissected embryos were washed in cold PBS, head and entrails (heart, liver) were excised and used for genotyping. The remaining embryonic tissues were sliced, incubated in Trypsin/EDTA solution (15 min at 37°C; Sigma), further dissociated and cultured in Iscove's Modified Dulbecco's Medium [(IMDM); purchased from Sigma)] supplemented with 10% fetal bovine serum (FBS), penicillin/streptomycin (100 UI), 2 mM L-glutamine and 1× non-essential amino acids (all chemicals were from Gibco). Cells were electroporated in buffer (125 mM KCl, 15 mM NaCl, 3 mM glucose, 25 mM Hepes pH 7.4, 1.2 mM MgCl2) supplemented with 0.66 % (w/v) ethylene glycol (PEG) 4000 in 4 mm gap cuvettes using an ECM 830 electroporator (BTX; settings: 240V, 30 ms). Luciferase assay and NF-kB pathway activation The luciferase assay was performed according to the supplier’s protocol using Dual-Glo Luciferase Assay System (Promega). To activate the NF-ĸB pathway, cells were stimulated overnight with 20 ng/ml TNFα (stock 100 µg/ml; Peprotech), 20 ng/ml lymphotoxin (LTα; stock 10 µg/ml; Invivogen) or 100 ng/ml Pam3csk4 (stock 100 µg/ml, Invivogen). PCR primers used for ddPCR The first primer is in forward and the second primer in reverse orientation: β-ACTIN, 5’- CTAGGCGGACTATGAC-3’, 5’- GACTTGGGAGAGGACT-3’; SIRT1, 5’- CTCCAGGCAGATGCCATAAC-3’, 5’- TGCCCTTGGTTAAAATTTGG-3’; TLR2, 5’- CCTCCAATCAGGCTTCTCTG-3’, 5’- TGGAGGTTCACACACCTCTG-3’. Antibodies used for IHC and Western blotting IHC: anti-β-catenin (mouse monoclonal, EM-22, Exbio), anti-chromogranin A (rabbit polyclonal, ab15160, Abcam), anti-lysozyme (rabbit polyclonal, A0099, Dako), anti-p21 (mouse monoclonal, SXM30, BD Pharmingen), anti-p53 (rabbit polyclonal, NCL-p53-CM5p, Novocastra), anti-PCNA (rabbit polyclonal, ab18197, Abcam), anti-Tlr2 (goat polyclonal, sc-16237, Santa Cruz). -
Circadian Clock-Controlled Drug Metabolism: Implications For
DMD Fast Forward. Published on February 29, 2020 as DOI: 10.1124/dmd.120.090472 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 90472 Title Page Circadian clock-controlled drug metabolism: Implications for chronotherapeutics Danyi Lu, Mengjing Zhao, Min Chen, Baojian Wu Downloaded from Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China (D.L., M.Z., M.C., dmd.aspetjournals.org B.W.). International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of at ASPET Journals on September 30, 2021 Pharmacy, Jinan University, Guangzhou, 510632, China (B.W.) 1 DMD Fast Forward. Published on February 29, 2020 as DOI: 10.1124/dmd.120.090472 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 90472 Running Title Page Running Title: Metabolism-based chronotherapeutics Address correspondence to: Baojian Wu, Ph.D College of Pharmacy, Jinan University, Guangzhou 510632, China E-mail: [email protected] Downloaded from Number of Text Page: 44 Number of Tables: 3 Number of Figures: 9 Number of References: 108 dmd.aspetjournals.org Number of Words in Abstract 200 Total Number of Words 6109 (excluding references) at ASPET Journals on September 30, 2021 Non-standard abbreviations AF, activation function; APAP, acetaminophen; Bcrp, breast cancer resistance protein; -
A Dual Role for REV-ERB Alpha in Th17 Cell Mediated Immune Response
UNIVERSITY OF CALIFORNIA, SAN DIEGO A Dual Role for REV-ERB alpha in Th17 Cell Mediated Immune Response A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biology by Fang-Chen Chang Committee in charge: Professor Ye Zheng, Chair Professor Jack Bui Professor Christopher K. Glass Professor Lifan Lu Professor Clodagh O’Shea Professor Elina Zuniga 2016 Copyright Fang-Chen Chang, 2016 All rights reserved The dissertation of Fang-Chen Chang is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION To my parents, for the opportunities they afforded me, and their unwavering support. And to Edmond, who spent many beautiful weekend afternoons waiting in the Salk parking lot. iv EPIGRAPH First, there is a mountain, then there is no mountain, then there is. —Traditional Buddhist saying, via Donovan (1967) v TABLE OF CONTENTS SIGNATURE PAGE .............................................................................................. iii DEDICATION ........................................................................................................ iv EPIGRAPH ............................................................................................................ v TABLE OF CONTENTS ........................................................................................ vi LIST OF FIGURES .............................................................................................