S-Adenosyl-L-Methionine(Same)
Total Page:16
File Type:pdf, Size:1020Kb
SAMe Description: S-Adenosyl-L-methionine (SAMe )is a ramification of L-methionine, which is a biological compound involved in methyl group transfers. It is present in all living cells and is a very important active substance in the human body. Transmethylation, transulfuration and aminopropylation are the metabolic pathways that use SAMe. It is the precursor of cysteine, taurine, glutathione and coenzyme A. Most SAMe is produced and consumed in the liver and synthesized endogenously from adenosine triphosphate ( ATP ) and methionine by methionine adenosyltransferase. Registered Index: CAS :29908-03-0 EINECS :249-946-8 Structural Formula: Chemical name: S-Adenosyl-L-methionine (SAMe ) Molecular formula: C15 H22 N6O5S Molecular weight: 398.44 Source: It is produced by the fermentation of yeast. Quality Standard: Quality Standard: Product name SAM-e Tosylate Disulfate SAM-e butanedisulfonate Appearance White crystal powder, hygroscopic White crystal powder, hygroscopic pH 1.0 ~2.0 3.0 ~4.0 Dry content (HPLC ) ≥95.0% ≥95.0% Ademetionine ion (HPLC) 48.0% ~52.0% 49.0% ~53.0% (S.S )isomer (HPLC) ≥75.0% ≥60% Water content ≤2.5% ≤2.5% Heavy metal content ≤10ppm ≤10ppm Total plate count ≤100 cfu/g ≤100 cfu/g Function: Joint Strength SAM-e supports the production of healthy connective tissue through transsulfuration. In this process, critical components of connective tissue, including glucosamine and the chondroitin sulfates, are sulfated by SAM-e. Brain Metabolism SAM-e methylation reactions are involved in the synthesis of neurotransmitters such as L-dopa, dopamine and related hormones, epinephrine and phosphatidylcholine (a component of Lecithin). Longevity Methylation of DNA appears to be important in the suppression of errors in DNA replication. Demethylation of DNA is considered a contributor to the aging process. Proper methylation through substances such as SAM-e positively influence longevity. Liver SAM-e metabolism supports the synthesis of glutathione (GSH) and glutathione-dependent enzymes (glutathione peroxidase and glutathione-S-transferase), which are substances important for liver function. .