Dynamics of Infinite-Dimensional Groups and Ramsey-Type Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics of Infinite-Dimensional Groups and Ramsey-Type Phenomena \rtp-impa" i i 2005/5/12 page 1 i i Dynamics of infinite-dimensional groups and Ramsey-type phenomena Vladimir Pestov May 12, 2005 i i i i \rtp-impa" i i 2005/5/12 page 2 i i i i i i \rtp-impa" i i 2005/5/12 page i i i Contents Preface iii 0 Introduction 1 1 The Ramsey{Dvoretzky{Milman phenomenon 17 1.1 Finite oscillation stability . 17 1.2 First example: the sphere S1 . 27 1.2.1 Finite oscillation stability of S1 . 27 1.2.2 Concentration of measure on spheres . 32 1.3 Second example: finite Ramsey theorem . 41 1.4 Counter-example: ordered pairs . 47 2 The fixed point on compacta property 49 2.1 Extremely amenable groups . 49 2.2 Three main examples . 55 2.2.1 Example: the unitary group . 55 2.2.2 Example: the group Aut (Q; ) . 60 ≤ 2.2.3 Counter-example: the infinite symmetric group 62 2.3 Equivariant compactification . 63 2.4 Essential sets and the concentration property . 66 2.5 Veech theorem . 71 2.6 Big sets . 76 2.7 Invariant means . 81 3 L´evy groups 95 3.1 Unitary group with the strong topology . 95 i i i i i \rtp-impa" i i 2005/5/12 page ii i i ii CONTENTS 3.2 Group of measurable maps . 98 3.2.1 Construction and example . 98 3.2.2 Martingales . 101 3.2.3 Unitary groups of operator algebras . 110 3.3 Groups of transformations of measure spaces . 115 3.3.1 Maurey's theorem . 115 3.3.2 Group of measure-preserving transformations . 117 3.3.3 Full groups . 123 3.4 Group of isometries of the Urysohn space . 133 3.4.1 Urysohn universal metric space . 133 3.4.2 Isometry group . 143 3.4.3 Approximation by finite groups . 146 3.5 L´evy groups and spatial actions . 155 4 Minimal flows 165 4.1 Universal minimal flow . 165 4.2 Group of circle homeomorphisms . 168 4.2.1 Example . 168 4.2.2 Large extremely amenable subgroups . 169 4.3 Infinite symmetric group . 173 4.4 Maximal chains and Uspenskij's theorem . 176 4.5 Automorphism groups of Fra¨ıss´e structures . 180 4.5.1 Fra¨ıss´e theory . 180 4.5.2 Extremely amenable subgroups of S1 . 185 4.5.3 Minimal flows of automorphism groups . 191 5 Emerging developments 199 5.1 Oscillation stability and Hjorth theorem . 199 5.2 Open questions . 213 Bibliography 223 Index 239 i i i i \rtp-impa" i i 2005/5/12 page iii i i Preface This set of lecture notes is an attempt to present an account of basic ideas of a small new theory located on the crossroads of geometric functional analysis, topological groups of transformations, and combinatorics. The presentation is certainly incomplete. The lecture notes are organized on a \need-to-know" basis, and in particular I try to resist the temptation to achieve extra generality for its own sake, or else introduce concepts or results that will not be used more or less immediately. The notes have grown out of mini-courses given by me at the Nipissing University, North Bay, Canada (26{27 May 2004), at the 8i`eme at´elier sur la th´eorie des ensembles, CIRM, Luminy, France (20{24 september, 2004), and in preparation for a mini-course to be given at IMPA, Rio de Janeiro, Brazil (25{29 July 2005). Acknowledgements In this area of study, I was most influenced by conversations with Eli Glasner, Misha Gromov, and Vitali Milman, to whom I am pro- foundly grateful. Special thanks go to my co-authors Thierry Giordano, Alekos Kechris, Misha Megrelishvili, Stevo Todorcevic, and Volodja Uspen- skij, from whom I have learned much, and I am equally grateful to Pierre de la Harpe and A.M. Vershik. I want to acknowledge important remarks made by, and stimulat- ing discussions with, Joe Auslander, V. Bergelson, Peter Cameron, Michael Cowling, Ed Granirer, John Clemens, Ilijas Farah, David Fremlin, Su Gao, C. Ward Henson, Greg Hjorth, Menachem Koj- iii i i i i \rtp-impa" i i 2005/5/12 page iv i i iv PREFACE man, Julien Melleray, Ben Miller, Carlos Gustavo \Gugu" T. de A. Moreira, Christian Rosendal, Matatyahu Rubin, Slawek Solecki, and Benjy Weiss. This manuscript has much benefitted from stimulating comments and suggestions made by V.V. Uspenskij, too numerous for most of them to be acknowledged. Many useful remarks on the first version of the notes were also made by T. Giordano, E. Glasner, X. Dom´ınguez, I. Farah, A. Kechris, J. Melleray, V.D. Milman, C. Rosendal, and A.M. Vershik. As always, the author bears full responsibility for the remaining errors and omissions, which are certainly there; the hope is that none of them is too serious. The reader is warmly welcomed to send me comments at <[email protected]>. During the past nine years that I have been working, on and off, in this area, the research support was provided by: two Marsden Fund grants of the Royal Society of New Zealand (1998{2001, 2001{03), Victoria University of Wellington research development grant (1999), University of Ottawa internal grants (2002{04, 2004{ ), and NSERC discovery grant (2003{ ). The Fields institute has supported the workshop \Interactions between concentration phenomenon, trans- formation groups, and Ramsey theory" (University of Ottawa, 20-22 October 2003). Vladimir Pestov Gloucester, Ontario, 12 May 2005 i i i i \rtp-impa" i i 2005/5/12 page 1 i i Chapter 0 Introduction The “infinite-dimensional groups" in the title of this set of lecture notes refer to a vast collection of concrete groups of automorphisms of various mathematical objects. Examples include unitary groups of Hilbert spaces and, more generally, operator algebras, the infi- nite symmetric group, groups of homeomorphisms, groups of au- tomorphisms of measure spaces, isometry groups of various metric spaces, etc. Typically such groups are supporting additional struc- tures, such as a natural topology, or sometimes the structure of an infinite-dimensional Lie group. In fact, it appears that those ad- ditional structures are often encoded in the algebraic structure of the groups in question. The full extent of this phenomenon is still unknown, but, for instance, a recent astonishing result by Kechris and Rosendal [100] states that there is only one non-trivial separable group topology on the infinite symmetric group S1. It could also well be that there are relevant structures on those groups that have not yet been formulated explicitely. Those infinite-dimensional groups are being studied from a num- ber of different viewpoints in various parts of mathematics: most no- tably, representation theory [135, 128], logic and descriptive set the- ory [11, 91], infinite-dimensional Lie theory [85, 136], theory of topo- logical groups of transformations [5, 186] and abstract harmonic anal- ysis [17, 37], as well as from a purely group theoretic viewpoint [9, 18] and from that of set-theoretic topology [164]. Together, those studies 1 i i i i \rtp-impa" i i 2005/5/12 page 2 i i 2 [CAP. 0: INTRODUCTION mark a new chapter in the theory of groups of transformations, a post Gleason{Yamabe{Montgomery{Zippin development [126]. The present set of lecture notes outlines an approach to the study of infinite-dimensional groups based on the ideas originating in geo- metric functional analysis, and exploring an interplay between the dynamical properties of those groups, combinatorial Ramsey-type theorems, and geometry of high-dimensional structures (asymptotic geometric analysis). The theory in question is a result of several developments, some of which have happened independently of, and in parallel to, each other, so it is a \partially ordered set." On the other hand, each time those developments have been absorbed into the theory and put into connection to each other, so the set is, hopefully, \directed." It is not clear how far back in time one needs to go towards the beginnings. For example, one of the three components of the theory | the phenomenon of concentration of measure, the subject of study of the modern-day asymptotic geometric analysis | was explicitely described and studied in the 1922 book by Paul L´evy [103] for spheres. On the other hand, another major manifestation of the phenomenon { the Law of Large Numbers { was stated by Emile´ Borel in the modern form back in 1904, see a discussion in [120]. And according to Gromov [76], the concentration of measure was first extensively used by Maxwell in his studies of statistical physics (Maxwell{Boltzmann distribution law, 1866). We will take as the point of departure for interactions between geometry of high-dimensional structures, topological transformation groups, and combinatoric the Dvoretzky theorem [38, 39], regarded in light of later results by Vitali Milman. As Aryeh Dvoretzky remarks in his 1959 Proc. Nat. Acad. Sci. USA note [38], \this result, or various weaker variations, have often been conjectured. However, the only explicit statement of this conjecture in print known to the author is in a recent paper by Alexandre Grothendieck" [80]. Interestingly, Grothendieck's paper was published (in the Bol. Soc. Mat. S~ao Paulo) during the period when he was a visiting professor at the Universidade de S~ao Paulo, Brazil (1953{54). i i i i \rtp-impa" i i 2005/5/12 page 3 i i 3 Theorem 0.0.1 (Dvoretzky theorem, 1959). For every " > 0, each n-dimensional normed space X contains a subspace E of dimen- sion dim E = k c"2 log n, which is Euclidean to within ": ≥ d (E; `2(k)) 1 + ": BM ≤ Here dBM is the multiplicative Banach{Mazur distance between two isomorphic normed spaces: d (E; F ) = inf T T −1 : T is an isomorphism : BM fk k · g (In geometric functional analysis, isomorphic normed space are those isomorphic as topological vector spaces, that is, topologically isomor- phic.) The geometric meaning of the Banach-Mazur distance is clear from the following figure.
Recommended publications
  • OBJ (Application/Pdf)
    ON METRIC SPACES AND UNIFORMITIES A THESIS SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE BY JOHN H. HARRIS DEPARTMENT OF MATHEMATICS ATLANTA, GEORGIA Ml 1966 RrU \ ~ 35 ACKNCMLEDGI*ENTS The most lucid presentation in English, to my knowledge, of the concept of a uniform space is found in John Kelly's classic, "General Topology". This text was trost influential in my choice and arrangement of materials for this thesis. I would also like to acknowledge and thank my instructors for their assistance and suggestions. A special thanks is extended to my parents without whose inspiration and encouragement this thesis would not have been possible. ii CONTENTS Page ACKNOWLEDGMENTS ii INTRODUCTION I Chapter I. Uniform Spaces « 3 1.1 Uniformities and The Uniform Topology 1.2 Uniform Continuity 1.3 The Metrization Theorem 1*JU Compactness II. Uniform Spaces and Topological Groups ... 23 III, Selected Problems ••..,.•.••...2? APPENDIX , . 31 INDEX OF SPECIAL SYMBOLS 3h BIBLIOGRAPHY 36 INTRODUCTION One of the major advantages of the theory of topology is that it lends itself readily to intuitive interpretation. This is especially true of metric spaces because of their close connection with the real number system and because of our intuitive concept of distance associated with that system. However, if we should attempt to generalize metric spaces, and we have, our intuition would often fail us for we would also have to generalize our already intuitive concept of distance. In this thesis, I shall attempt to present in a lucid and in an intuition appealing fashion, the generalized theory of metric spaces,“i.e., the theory of uniform spaces.
    [Show full text]
  • Wiener Measures on Certain Banach Spaces Over Non-Archimedean Local fields Compositio Mathematica, Tome 93, No 1 (1994), P
    COMPOSITIO MATHEMATICA TAKAKAZU SATOH Wiener measures on certain Banach spaces over non-archimedean local fields Compositio Mathematica, tome 93, no 1 (1994), p. 81-108 <http://www.numdam.org/item?id=CM_1994__93_1_81_0> © Foundation Compositio Mathematica, 1994, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ 81 © 1994 Kluwer Academic Publishers. Printed in the Netherlands. Wiener measures on certain Banach spaces over non-Archimedean local fields TAKAKAZU SATOH Department of Mathematics, Faculty of Science, Saitama University, 255 Shimo-ookubo, Urawu, Saitama, 338, Japan Received 8 June 1993; accepted in final form 29 July 1993 Dedicated to Proffessor Hideo Shimizu on his 60th birthday 1. Introduction The integral representation is a fundamental tool to study analytic proper- ties of the zeta function. For example, the Euler p-factor of the Riemann zeta function is where dx is a Haar measure of Q, and p/( p - 1) is a normalizing constant so that measure of the unit group is 1. What is necessary to generalize such integrals to a completion of a ring finitely generated over Zp? For example, let T be an indeterminate. The two dimensional local field Qp«T» is an infinite dimensional Qp-vector space.
    [Show full text]
  • Mixtures of Gaussian Cylinder Set Measures and Abstract Wiener Spaces As Models for Detection Annales De L’I
    ANNALES DE L’I. H. P., SECTION B A. F. GUALTIEROTTI Mixtures of gaussian cylinder set measures and abstract Wiener spaces as models for detection Annales de l’I. H. P., section B, tome 13, no 4 (1977), p. 333-356 <http://www.numdam.org/item?id=AIHPB_1977__13_4_333_0> © Gauthier-Villars, 1977, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi- tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti- lisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Pincaré, Section B : Vol. XIII, nO 4, 1977, p. 333-356. Calcul des Probabilités et Statistique. Mixtures of Gaussian cylinder set measures and abstract Wiener spaces as models for detection A. F. GUALTIEROTTI Dept. Mathematiques, ~cole Polytechnique Fédérale, 1007 Lausanne, Suisse 0. INTRODUCTION AND ABSTRACT Let H be a real and separable Hilbert space. Consider on H a measurable family of weak covariance operators { Re, 0 > 0 } and, on !?+ : = ]0, oo [, a probability distribution F. With each Re is associated a weak Gaussian distribution Jlo. The weak distribution p is then defined by Jl can be studied, as we show below, within the theory of abstract Wiener spaces. The motivation for considering such measures comes from statistical communication theory. There, signals of finite energy are often modelled as random variables, normally distributed, with values in a L2-space.
    [Show full text]
  • Arxiv:0810.1295V3 [Math.GR] 13 Jan 2011 Hc Sijciebtntsretv.Wt Hstriooya Hand, Sa at by Terminology Rephrased Set Be This a May with That Sets M Infinite Surjective
    EXPANSIVE ACTIONS ON UNIFORM SPACES AND SURJUNCTIVE MAPS TULLIO CECCHERINI-SILBERSTEIN AND MICHEL COORNAERT Abstract. We present a uniform version of a result of M. Gromov on the surjunctivity of maps commuting with expansive group ac- tions and discuss several applications. We prove in particular that for any group Γ and any field K, the space of Γ-marked groups G such that the group algebra K[G] is stably finite is compact. 1. Introduction A map f from a set X into itself is said to be surjunctive if it is surjective or not injective [Gro]. Thus, a non-surjunctive map is a map which is injective but not surjective. With this terminology at hand, Dedekind’s characterization of infinite sets may be rephrased by saying that a set X is infinite if and only if it admits a non-surjunctive map f : X → X. Similarly, elementary linear algebra tells us that a vector space is infinite-dimensional if and only if it admits a non-surjunctive endomorphism. In fact, it turns out that the absence of non-surjunctive endomorphisms for a given mathematical object X often reflects some “finiteness” property of X. The word surjunctive was created by W. Gottschalk [Got] who intro- duced the notion of a surjunctive group. Let G be a group. Given a set A, consider the set AG equipped with the prodiscrete topology, that is, with the product topology obtained by taking the discrete topology on each factor A of AG. There is a natural action of G on AG obtained by shifting coordinates via left multiplication in G (see Section 5).
    [Show full text]
  • Change of Variables in Infinite-Dimensional Space
    Change of variables in infinite-dimensional space Denis Bell Denis Bell Change of variables in infinite-dimensional space Change of variables formula in R Let φ be a continuously differentiable function on [a; b] and f an integrable function. Then Z φ(b) Z b f (y)dy = f (φ(x))φ0(x)dx: φ(a) a Denis Bell Change of variables in infinite-dimensional space Higher dimensional version Let φ : B 7! φ(B) be a diffeomorphism between open subsets of Rn. Then the change of variables theorem reads Z Z f (y)dy = (f ◦ φ)(x)Jφ(x)dx: φ(B) B where @φj Jφ = det @xi is the Jacobian of the transformation φ. Denis Bell Change of variables in infinite-dimensional space Set f ≡ 1 in the change of variables formula. Then Z Z dy = Jφ(x)dx φ(B) B i.e. Z λ(φ(B)) = Jφ(x)dx: B where λ denotes the Lebesgue measure (volume). Denis Bell Change of variables in infinite-dimensional space Version for Gaussian measure in Rn − 1 jjxjj2 Take f (x) = e 2 in the change of variables formula and write φ(x) = x + K(x). Then we obtain Z Z − 1 jjyjj2 <K(x);x>− 1 jK(x)j2 − 1 jjxjj2 e 2 dy = e 2 Jφ(x)e 2 dx: φ(B) B − 1 jxj2 So, denoting by γ the Gaussian measure dγ = e 2 dx, we have Z <K(x);x>− 1 jjKx)jj2 γ(φ(B)) = e 2 Jφ(x)dγ: B Denis Bell Change of variables in infinite-dimensional space Infinite-dimesnsions There is no analogue of the Lebesgue measure in an infinite-dimensional vector space.
    [Show full text]
  • On Bitopological Spaces Marcus John Saegrove Iowa State University
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital Repository @ Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 On bitopological spaces Marcus John Saegrove Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons Recommended Citation Saegrove, Marcus John, "On bitopological spaces " (1971). Retrospective Theses and Dissertations. 4914. https://lib.dr.iastate.edu/rtd/4914 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 71-26,888 SAEGROVE, Marcus John, 1944- ON BITOPOLOGICAL SPACES. Iowa State University, Ph.D., 1971 Mathematics University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEOi MICROFILMED EXACTLY AS RECEIVED On bitopological spaces by Marcus John Saegrove A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Mathematics Approved : Signature was redacted for privacy. In Charge oàMajor Work Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1971 PLEASE NOTE: Some pages have indistinct print. Filmed as received. UNIVERSITY MICROFILMS. ii TABLE OF CONTENTS Page I. INTRODUCTION 1 II. SEPARATION PROPERTIES 4 III. AN INTERNAL CHARACTERIZATION OF PAIRWISE COMPLETE REGULARITY l8 IV. PRODUCTS AND BICOMPACTIFICATIONS 26 V.
    [Show full text]
  • The Singular Moving Points Are What Is Left of the Moving Points
    BOOK REVIEWS 695 points. Those which are not singular, are regular. The regular moving points are the union of disjoint annuli; the singular moving points are what is left of the moving points. The description of the flow then is given in terms of the regular moving points, where it can be completely described in terms of simple "patches"-certain standard annular flows; the fixed points-where it is, of course, fixed; and the singular moving points-where life gets complicated. To develop the theory for singular moving points, the author first considers a very special case: the case of flows in a multiply-connected region of the plane where every orbit is aperiodic and has all its endpoints in the boundary. These he calls Kaplan-Mar kus flows, after the two who first began develop­ ment of the theory of such flows. Complete success in describing such flows has eluded the author and his coworkers except, to some extent, where the set of singular fixed points has only finitely many components. The later is, however, basic, and so for many cases, another patch in the quilt yields to description. After this, the author explores various ways to combine such flows with regular flows and develop further theory. Flows without stagnation points can be described rather completely. For flows with a finite number of stagnation points, or whose set of stagnation points has countable closure, a considerable amount is known, though the information is not as complete as for the no stagnation point case. In all cases where a description is possible, it is the set of regular moving points that supplies the main body of information.
    [Show full text]
  • On Superpositional Filtrations
    Munich Personal RePEc Archive On superpositional filtrations Strati, Francesco 20 August 2012 Online at https://mpra.ub.uni-muenchen.de/40879/ MPRA Paper No. 40879, posted 29 Aug 2012 04:19 UTC On superpositional filtrations Francesco Strati Department of Statistics, University of Messina Messina, Italy E-mail: [email protected] Abstract In this present work I shall define the basic notions of superpositional filtrations. Given a superposition integral I shall find a general measure theory by means of cylinder sets and then I shall define the properties of the sfiltration for a general process X. n §1. We denote by Sn ≡ S(R ) the Schwartz space endowed with a natural topology (Sτ ) which stems from the seminorm α β ||ϕ||α,β ≡ sup |x D ϕ(x)| < ∞. x∈Rn ′ ′ Rn We call this kind of space S-space, and it is a Fr´echet space [FrB]. We denote by Sn ≡S ( ) the space of tempered distributions. It is the topological dual of the topological vector space (Sn, Sτ ) [FrT]. A locally integrable function can be a tempered distribution if, for some constants a and C |f(x)|dx ≤ aGC , G → ∞ Z|x|≤G and thus |f(x)ϕ(x)|dx < ∞, ∀ϕ ∈S′. Rn Z Therefore we can say that Rn f(x)ϕ(x)dx is a tempered distribution [FrT]. ′ ′ We know that the superpositionR integral [FrB] runs through S -spaces, rather given a ∈ Sm Rn ′ ′ Rm ′ and a summable v ∈S( , S ), the superposition integral of v on Sm( ) is the element of Sn defined by lim (αk ◦ vˆ)= av = a ◦ vˆ k→+∞ Rm Z 2010 Mathematics Subject Classification: Primary 28C05, 28C15 ; Secondary 28A05.
    [Show full text]
  • Extremely Amenable Groups and Banach Representations
    Extremely Amenable Groups and Banach Representations A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Javier Ronquillo Rivera May 2018 © 2018 Javier Ronquillo Rivera. All Rights Reserved. 2 This dissertation titled Extremely Amenable Groups and Banach Representations by JAVIER RONQUILLO RIVERA has been approved for the Department of Mathematics and the College of Arts and Sciences by Vladimir Uspenskiy Professor of Mathematics Robert Frank Dean, College of Arts and Sciences 3 Abstract RONQUILLO RIVERA, JAVIER, Ph.D., May 2018, Mathematics Extremely Amenable Groups and Banach Representations (125 pp.) Director of Dissertation: Vladimir Uspenskiy A long-standing open problem in the theory of topological groups is as follows: [Glasner-Pestov problem] Let X be compact and Homeo(X) be endowed with the compact-open topology. If G ⊂ Homeo(X) is an abelian group, such that X has no G-fixed points, does G admit a non-trivial continuous character? In this dissertation we discuss some reformulations of this problem and its connections to other mathematical objects such as extremely amenable groups. When G is the closure of the group generated by a single map T ∈ Homeo(X) (with respect to the compact-open topology) and the action of G on X is minimal, the existence of non-trivial continuous characters of G is linked to the existence of equicontinuous factors of (X, T ). In this dissertation we present some connections between weakly mixing dynamical systems, continuous characters on groups, and the space of maximal chains of subcontinua of a given compact space.
    [Show full text]
  • ON UNIFORM TOPOLOGY and ITS APPLICATIONS 1. Introduction The
    TWMS J. Pure Appl. Math., V.6, N.2, 2015, pp.165-179 ON UNIFORM TOPOLOGY AND ITS APPLICATIONS ALTAY A. BORUBAEV1, ASYLBEK A. CHEKEEV2 Abstract. This paper is a review and an extended version of the report made by A.A. Borubaev at the V World Congress of the Turkic world. It contains results on some classes of uniform spaces and uniformly continuous mappings and absolutes, generalizations of metrics, normed, uniform unitary spaces, topological and uniform groups, its completions, its spectral characterizations. Keywords: uniform space, uniformly continuous mapping, multiscalar product, multimetrics, multinorm, topological group, uniform group, completion. AMS Subject Classi¯cation: 54C05, 54C10, 54C30, 54C35, 54C45, 54C50. 1. Introduction The main notions relevant to the uniform topology gradually revealed in the theory of Real Analysis. Historically the ¯rst notions in the theory of uniform spaces clearly can be consid- ered the notion of what subsequently was called as "Cauchy sequence" (1827) and the notion of uniformly continuous function which appeared in the last half of the XIX's century. French mathematician M. Frechet devised [20] (1906) a notion of "metric space" which is a special kind of "uniform space". The theory of metric spaces was deeply developed by the German mathematician F. Hausdor® [24] (1914) and especially due to the fundamental papers of the Polish mathematician S. Banach [6] (1920). With the notion of nonmetrizable spaces appeared idea of creating some natural structure expressing the idea of uniformity and in the ¯rst turn the notion of completeness and uniformly continuous function and constructing research instru- ment to generalize the metric approach.
    [Show full text]
  • Expansive Actions with Specification on Uniform Spaces, Topological Entropy, and the Myhill Property
    EXPANSIVE ACTIONS WITH SPECIFICATION ON UNIFORM SPACES, TOPOLOGICAL ENTROPY, AND THE MYHILL PROPERTY TULLIO CECCHERINI-SILBERSTEIN AND MICHEL COORNAERT Abstract. We prove that every expansive continuous action with the weak specification property of an amenable group G on a compact Hausdorff space X has the Myhill property, i.e., every pre-injective continuous self-mapping of X commuting with the action of G on X is surjective. This extends a result previously obtained by Hanfeng Li in the case when X is metrizable. Contents 1. Introduction 2 2. Background material 4 2.1. General notation 4 2.2. Subsets of X × X 4 2.3. Uniform spaces 5 2.4. Ultrauniform spaces 6 2.5. Actions 7 2.6. Covers 7 2.7. Shift spaces 8 2.8. Amenable groups 8 3. Expansiveness 9 4. Topological entropy 10 4.1. Topological entropy 10 4.2. (F, U)-separated subsets, (F, U)-spanning subsets, and (F, U)-covers 12 4.3. Uniformapproachestotopologicalentropy 14 4.4. Topological entropy and expansiveness 17 5. Homoclinicity 19 6. Weak specification 20 arXiv:1905.02740v3 [math.DS] 6 Mar 2020 7. Proof of the main result 25 References 31 Date: March 9, 2020. 2010 Mathematics Subject Classification. 54E15, 37B05, 37B10, 37B15, 37B40, 43A07, 68Q80. Key words and phrases. uniform space, uniformly continuous action, expansiveness, specification, amenable group, entropy, homoclinicity, strongly irreducible subshift, cellular automaton. 1 2 TULLIO CECCHERINI-SILBERSTEIN AND MICHEL COORNAERT 1. Introduction A topological dynamical system is a pair (X,G), where X is a topological space and G is a group acting continuously on X.
    [Show full text]
  • Arxiv:1905.02109V1 [Math.FA] 6 May 2019 Hl N14,F On( John F
    SCIENCE CHINA Mathematics CrossMark . ARTICLES . doi: Infinite dimensional Cauchy-Kowalevski and Holmgren type theorems Jiayang YU1 & Xu ZHANG 2,∗ 1 School of Mathematics, Sichuan University, Chengdu 610064, P. R. China; 2 School of Mathematics, Sichuan University, Chengdu 610064, P. R. China Email: [email protected], zhang [email protected] Abstract The aim of this paper is to show Cauchy-Kowalevski and Holmgren type theorems with infinite number of variables. We adopt von Koch and Hilbert’s definition of analyticity of functions as monomial expansions. Our Cauchy-Kowalevski type theorem is derived by modifying the classical method of majorants. Based on this result, by employing some tools from abstract Wiener spaces, we establish our Holmgren type theorem. Keywords Cauchy-Kowalevski theorem, Holmgren theorem, monomial expansions, abstract Wiener space, divergence theorem, method of majorants MSC(2010) Primary 35A10, 26E15, 46G20; Secondary 46G20, 46G05, 58B99. Citation: Jiayang Yu, Xu Zhang. Infinite dimensional Cauchy-Kowalevski and Holmgren type theorems. Sci China Math, 2019, 60, doi: 1 Introduction The classical Cauchy-Kowalevski theorem asserts the local existence and uniqueness of analytic solutions to quite general partial differential equations with analytic coefficients and initial data in the finite dimensional Euclidean space n (for any given n ). In 1842, A. L. Cauchy first proved this theorem arXiv:1905.02109v1 [math.FA] 6 May 2019 R N ∈ for the second order case; while in 1875, S. Kowalevski proved the general result. Both of them used the method of majorants. Because of its fundamental importance, there exists continued interest to generalize and/or improve this theorem (See [2,10,24,26–29,31–33,35] and the references cited therin).
    [Show full text]