Antibody–Drug Conjugates (Adcs) for Personalized Treatment of Solid Tumors: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Antibody–Drug Conjugates (Adcs) for Personalized Treatment of Solid Tumors: a Review Adv Ther DOI 10.1007/s12325-017-0519-6 REVIEW Antibody–Drug Conjugates (ADCs) for Personalized Treatment of Solid Tumors: A Review John M. Lambert . Charles Q. Morris Received: January 5, 2017 Ó The Author(s) 2017. This article is an open access publication ABSTRACT ADCs have advanced into pivotal clinical trials for treating various solid tumors—platinum-re- Attaching a cytotoxic ‘‘payload’’ to an antibody sistant ovarian cancer, mesothelioma, to form an antibody–drug conjugate (ADC) triple-negative breast cancer, glioblastoma, and provides a mechanism for selective delivery of small cell lung cancer. The level of target the cytotoxic agent to cancer cells via the expression is a key parameter in predicting the specific binding of the antibody to cancer-se- likelihood of patient benefit for all these ADCs, lective cell surface molecules. The first ADC to as well as for the approved compound, ado- receive marketing authorization was gem- trastuzumab emtansine. The development of a tuzumab ozogamicin, which comprises an patient selection strategy linked to target anti-CD33 antibody conjugated to a highly expression on the tumor is thus critically potent DNA-targeting antibiotic, calicheamicin, important for identifying the population approved in 2000 for treating acute myeloid appropriate for receiving treatment. leukemia. It was withdrawn from the US market in 2010 following an unsuccessful confirmatory trial. The development of two classes of highly Keywords: ADC; Antibody–drug conjugate; potent microtubule-disrupting agents, may- Auristatin; Calicheamicin; Cancer therapy; tansinoids and auristatins, as payloads for ADCs Maytansine; Monoclonal antibodies; Payload; resulted in approval of brentuximab vedotin in Oncology; Targeted drug delivery 2011 for treating Hodgkin lymphoma and anaplastic large cell lymphoma, and approval of ado-trastuzumab emtansine in 2013 for treating INTRODUCTION HER2-positive breast cancer. Their success stimulated much research into the ADC Chemotherapy with cytotoxic compounds has approach, with [60 ADCs currently in clinical been the mainstay of systemic cancer treatment evaluation, mostly targeting solid tumors. Five for half a century [1, 2]. Over many years, ‘‘op- timal’’ combinations of different cytotoxic Enhanced content To view enhanced content for this agents having different cell-killing mechanisms article go to http://www.medengine.com/Redeem/ were developed to maximize the antitumor B408F06057E3FAAD. activity [2]. However, these treatments are generally only partially effective in solid & J. M. Lambert ( ) Á C. Q. Morris tumors, in part because the maximal achievable ImmunoGen, Inc., Waltham, MA, USA e-mail: [email protected] doses are limited by systemic toxicity, and as a Adv Ther result long-term remissions are rarely seen in [5, 8], and derivatives of the potent antimitotic patients with metastatic disease. Medicinal microtubule-disrupting agents, dolastatin 10 chemists and oncologists have long sought (auristatins) [6, 9] and maytansine [7, 10, 11], ways to increase the delivery of cytotoxic the chemical structures of which are shown in chemicals to cancer cells for increased efficacy, Fig. 1a. The two tubulin-acting agents were while minimizing exposure of normal healthy evaluated in phase I and phase II clinical trials tissue [3]. The invention of monoclonal anti- and showed minimal activity at their recom- bodies [4] offered the possibility of exploiting mended phase II doses of 2.0 mg/m2 (may- their specific binding properties as a mechanism tansine) and 0.4 mg/m2 (dolastatin 10) when for the selective delivery of a cytotoxic agent to each was given once every 3 weeks [12–15]. cancer cells upon chemical conjugation of a Gastrointestinal and central neurologic toxici- cytotoxic effector to a tumor-binding antibody ties were dose-limiting for maytansine [12, 13], to create an antibody–drug conjugate (ADC). while myelosuppression was dose-limiting for This article is a review based on previously dolastatin 10 [14, 15]. conducted studies and does not involve any The third vital component of an ADC is the new studies of human or animal subjects per- linker that forms a chemical connection formed by either of the authors. between the payload and the antibody. The linker should be sufficiently stable in circulation to allow the payload to remain attached to the THE KEY COMPONENTS antibody while in circulation as it distributes OF AN ADC into tissues (including solid tumor tissue), yet should allow efficient release of an active All three component parts of an ADC, the cell-killing agent once the ADC is taken up into antibody, the cytotoxic agent, and the linker the cancer cells [5]. Linkers can be characterized that joins them, are critical elements in its as either cleavable, where a chemical bond (or design. The antibody moiety should be specific bonds) between the payload and the attach- for a cell surface target molecule that is selec- ment site on the antibody (usually an amino tively expressed on cancer cells, or overex- acid) can be cleaved intracellularly [16–18], or pressed on cancer cells relative to normal cells as non-cleavable, where the final active [5]. The payload of an ADC must be highly metabolite released within the cell includes the cytotoxic so that it can kill tumor cells at the payload and all elements of the linker still intracellular concentrations achievable follow- attached to an amino acid residue of the anti- ing distribution of the ADC into solid tumor body, typically a lysine or a cysteine residue, tissue, and because only a limited number of following complete proteolytic degradation of payloads can be linked to an antibody molecule the ADC within the lysosome of the cell (typically an average of 3–4 payloads per anti- [19–21]. body) without severely compromising its bio- The design goal for an ADC is to harness the physical and pharmacokinetic properties [5–7]. potent tumor cell-killing action of the payload Indeed, the breakthrough in ADC research that to an antibody, while retaining the favorable eventually led to the creation of approved and in vivo pharmacokinetic and biodistribution marketed products came with the realization properties of the immunoglobulin, as well as that the cytotoxic agents suitable for ADC any intrinsic biologic or immunologic activity it approaches need to have potency in the pico- may have [5–7, 21, 22]. Much of the selection of molar range to be able to be delivered in suffi- the optimal antibody, the ideal linker–payload cient quantity to enough cancer cells to effect a chemistry, and the optimal number of payload therapeutic benefit [5–7]. The cytotoxic com- molecules linked per antibody molecule, are pounds used in approved and marketed ADCs determined empirically, with a focus on maxi- are derivatives of calicheamicin, a class of mizing the therapeutic index of the ADC [5, 22]. highly cytotoxic enediyne antibiotics which kill A summary of the chemistry, biochemistry, and cells by causing DNA double-strand breaks preclinical evaluation leading to the selection of Adv Ther Fig. 1 a Chemical structures of the cytotoxic payloads adapted for use in approved and marketed ADCs. b Schematic representations of the structure of ado-trastuzumab emtansine (T-DM1) the ADC design that became ado-trastuzumab restricted in their distribution, meaning that emtansine (T-DM1), the first ADC to receive full healthy non-hematopoietic tissue and pluripo- approval for a solid tumor indication (vide tent hematopoietic stem cells are not targeted infra), has been reviewed elsewhere [7], and by the ADC. The first ADC to receive marketing serves as an exemplar for the work involved in approval from the US Food and Drug Adminis- ADC optimization prior to declaring a candi- tration (FDA) was gemtuzumab ozogamicin date for clinical evaluation. (MylotargÒ), an ADC created by conjugation of calicheamicin to an anti-CD33 antibody via an acid–labile linkage [23, 24]. CD33 is a marker of normal and malignant cells of the myeloid lin- THE FIRST ADC APPROVALS WERE eage. Based on a single arm phase II trial, the FOR TREATING HEMATOLOGIC ADC received accelerated approval in 2000 as a MALIGNANCIES single agent (dosing 9 mg/m2 on days 1 and 15) for treating patients with acute myeloid leuke- The first ADC therapeutics to reach the market mia (AML) in first relapse, and who are at least were developed in hematologic malignancies, 60 years old. The overall response rate (ORR) where target antigens are generally well-char- was 26% in these patients, including a subset acterized, lineage-specific cell surface molecules having incomplete platelet recovery [23, 24], that are uniformly expressed and thought to be while side effects included delayed hematopoi- more accessible to antibodies circulating in etic recovery and hepatic veno-occlusive disease plasma, relative to those present on solid [24, 25]. Approval was conditioned on execu- tumors [22]. Such antigens are usually highly tion of randomized clinical trials to confirm Adv Ther patient benefit [24]. In 2010, the ADC was A second ADC using the calicheamicin pay- withdrawn from the US market (although it is load, inotuzumab ozogamicin, which targets still marketed in Japan), following an unsuc- the B cell antigen CD22 has completed a phase cessful confirmatory phase III trial which com- III trial (INO-VATE ALL) in relapsed or refrac- pared the effect of adding a single dose of 6 mg/ tory acute lymphoblastic leukemia [32–34]. The m2 to standard remission induction therapy in results show that treatment with the
Recommended publications
  • Depatuxizumab Mafodotin (ABT-414)
    Published OnlineFirst May 5, 2020; DOI: 10.1158/1535-7163.MCT-19-0609 MOLECULAR CANCER THERAPEUTICS | CANCER BIOLOGY AND TRANSLATIONAL STUDIES Depatuxizumab Mafodotin (ABT-414)-induced Glioblastoma Cell Death Requires EGFR Overexpression, but not EGFRY1068 Phosphorylation Caroline von Achenbach1, Manuela Silginer1, Vincent Blot2, William A. Weiss3, and Michael Weller1 ABSTRACT ◥ Glioblastomas commonly (40%) exhibit epidermal growth factor Exposure to ABT-414 in vivo eliminated EGFRvIII-expressing receptor EGFR amplification; half of these tumors carry the EGFR- tumor cells, and recurrent tumors were devoid of EGFRvIII vIII deletion variant characterized by an in-frame deletion of exons expression. There is no bystander killing of cells devoid of EGFR 2–7, resulting in constitutive EGFR activation. Although EGFR expression. Surprisingly, either exposure to EGF or to EGFR tyrosine kinase inhibitors had only modest effects in glioblastoma, tyrosin kinase inhibitors reduce EGFR protein levels and are thus novel therapeutic agents targeting amplified EGFR or EGFRvIII not strategies to promote ABT-414–induced cell killing. Further- continue to be developed. more, glioma cells overexpressing kinase-dead EGFR or EGFR- Depatuxizumab mafodotin (ABT-414) is an EGFR-targeting vIII retain binding of mAb 806 and sensitivity to ABT-414, antibody–drug conjugate consisting of the mAb 806 and a toxic allowing to dissociate EGFR phosphorylation from the emer- payload, monomethyl auristatin F. Because glioma cell lines and gence of the “active” EGFR conformation required for ABT-414 patient-derived glioma-initiating cell models expressed too little binding. EGFR in vitro to be ABT-414–sensitive, we generated glioma The combination of EGFR-targeting antibody–drug conju- sublines overexpressing EGFR or EGFRvIII to explore determinants gates with EGFR tyrosine kinase inhibitors carries a high risk of ABT-414–induced cell death.
    [Show full text]
  • 02-09-2017 06:01:33Pm Esmo.Org Type
    08-09-2017 10:00 - 11:30 Type: Special Session Palma Title: Medical oncology as a contributor to global policy: How to improve national cancer Auditorium plans Chair(s): G. Curigliano, IT; L. Stevens, US 10:00 - 10:05 Introduction L. Stevens, Rio De Janeiro, BR 10:05 - 10:20 Overview of NCCP, including forming the multi-disciplinary and multi-sectoral partnership A. Ilbawi, Geneva, CH 10:20 - 10:35 Example from Central Asia Leadership Forum D. Kaidarova, Almaty, KZ 10:35 - 10:50 Example from Central Europe J. Jassem, Gdańsk, PL 10:50 - 11:05 Example from Eastern Europe S. Krasny, Minsk, BY 11:05 - 11:30 Interactive Q&A G. Curigliano, Milan, IT Last update: 02-09-2017 06:01:33pm esmo.org 12:00 - 13:30 Type: Opening session Madrid Auditorium Title: Opening session and Award lectures Chair(s): F. Ciardiello, IT 12:00 - 12:10 ESMO Presidential Address F. Ciardiello, Naples, IT 12:10 - 12:15 EACR Presidential Address A. Berns, Amsterdam, NL 12:15 - 12:20 Welcome to Madrid M. Martin Jimenez, Madrid, ES 12:20 - 12:25 ESMO 2017 Scientific Address A. Sobrero, Genova, IT 12:25 - 12:30 EACR 2017 Scientific Address R. Marais, Manchester, GB 12:30 - 12:32 Presentation of the ESMO Award by C. Zielinski, Vienna, AT 12:32 - 12:47 ESMO Award lecture - Oncology: The importance of teamwork M. Martin Jimenez, Madrid, ES 12:47 - 12:49 Presentation of the ESMO Translational Research Award by C. Zielinski, Vienna, AT 12:49 - 13:04 ESMO Translational Research Award lecture: Monitoring and targeting colorectal cancer evolution A.
    [Show full text]
  • Deciphering Molecular Mechanisms and Prioritizing Therapeutic Targets in Cardio-Oncology
    Figure 1. This is a pilot view to explore the potential of EpiGraphDB to inform us about proteins that are linked to the pathophysiology of cancer and cardiovascular disease (CVD). For each cancer type (pink diamonds), we searched for cancer related proteins (light blue circles) that interact with other proteins identified as protein quantitative trait loci (pQTLs) for CVD (red diamonds for pathologies, orange triangles for risk factors). These pQTLs can be acting in cis (solid lines) or trans-acting (dotted lines). Proteins can interact either directly, a protein-protein interaction (dotted blue edges), or through the participation in the same pathway (red parallel lines). Shared pathways are represented with blue hexagons. We also queried which of these proteins are targeted by existing drugs. We found that the cancer drug cetuximab (yellow circle) inhibits EGFR. Other potential drugs are depicted in light brown hexagonal meta-nodes that are detailed below. Deciphering molecular mechanisms and prioritizing therapeutic targets in cardio-oncology Pau Erola1,2, Benjamin Elsworth1,2, Yi Liu2, Valeriia Haberland2 and Tom R Gaunt1,2,3 1 CRUK Integrative Cancer Epidemiology Programme; 2 MRC Integrative Epidemiology Unit, University of Bristol; 3 The Alan Turing Institute Cancer and cardiovascular disease (CVD) make by far the immense What is EpiGraphDB? contribution to the totality of human disease burden, and although mortality EpiGraphDB is an analytical platform and graph database that aims to is declining the number of those living with the disease shows little address the necessity of innovative and scalable approaches to harness evidence of change (Bhatnagar et al., Heart, 2016).
    [Show full text]
  • Advances in Epidermal Growth Factor Receptor Specific Immunotherapy: Lessons to Be Learned from Armed Antibodies
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 38), pp: 3531-3557 Review Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies Fleury Augustin Nsole Biteghe1,*, Neelakshi Mungra2,*, Nyangone Ekome Toung Chalomie4, Jean De La Croix Ndong5, Jean Engohang-Ndong6, Guillaume Vignaux7, Eden Padayachee8, Krupa Naran2,* and Stefan Barth2,3,* 1Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA 2Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa 3South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa 4Sun Yat-Sen University, Zhongshan Medical School, Guangzhou, China 5Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA 6Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA 7Arctic Slope Regional Corporation Federal, Beltsville, MD, USA 8Department of Physiology, University of Kentucky, Lexington, KY, USA *These authors contributed equally to this work Correspondence to: Stefan Barth, email: [email protected] Keywords: epidermal growth factor receptor (EGFR); recombinant immunotoxins (ITs); targeted human cytolytic fusion proteins (hCFPs); recombinant antibody-drug conjugates (rADCs); recombinant antibody photoimmunoconjugates (rAPCs) Received: May 30, 2020 Accepted: August 11, 2020 Published: September 22, 2020 Copyright: © 2020 Biteghe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy
    cancers Review Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy Laura Boyero 1 , Amparo Sánchez-Gastaldo 2, Miriam Alonso 2, 1 1,2,3, , 1,2, , José Francisco Noguera-Uclés , Sonia Molina-Pinelo * y and Reyes Bernabé-Caro * y 1 Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; [email protected] (L.B.); [email protected] (J.F.N.-U.) 2 Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; [email protected] (A.S.-G.); [email protected] (M.A.) 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain * Correspondence: [email protected] (S.M.-P.); [email protected] (R.B.-C.) These authors contributed equally to this work. y Received: 16 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Simple Summary: Immuno-oncology has redefined the treatment of lung cancer, with the ultimate goal being the reactivation of the anti-tumor immune response. This has led to the development of several therapeutic strategies focused in this direction. However, a high percentage of lung cancer patients do not respond to these therapies or their responses are transient. Here, we summarized the impact of immunotherapy on lung cancer patients in the latest clinical trials conducted on this disease. As well as the mechanisms of primary and acquired resistance to immunotherapy in this disease. Abstract: After several decades without maintained responses or long-term survival of patients with lung cancer, novel therapies have emerged as a hopeful milestone in this research field.
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]
  • Antibody–Drug Conjugates: the Last Decade
    pharmaceuticals Review Antibody–Drug Conjugates: The Last Decade Nicolas Joubert 1,* , Alain Beck 2 , Charles Dumontet 3,4 and Caroline Denevault-Sabourin 1 1 GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France; [email protected] 2 Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France; [email protected] 3 Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France; [email protected] 4 Hospices Civils de Lyon, 69000 Lyon, France * Correspondence: [email protected] Received: 17 August 2020; Accepted: 10 September 2020; Published: 14 September 2020 Abstract: An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of. Keywords: antibody–drug conjugate; ADC; bioconjugation; linker; payload; cancer; resistance; combination therapies 1.
    [Show full text]
  • Antibodies for the Treatment of Brain Metastases, a Dream Or a Reality?
    pharmaceutics Review Antibodies for the Treatment of Brain Metastases, a Dream or a Reality? Marco Cavaco, Diana Gaspar, Miguel ARB Castanho * and Vera Neves * Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal * Correspondence: [email protected] (M.A.R.B.C.); [email protected] (V.N.) Received: 19 November 2019; Accepted: 28 December 2019; Published: 13 January 2020 Abstract: The incidence of brain metastases (BM) in cancer patients is increasing. After diagnosis, overall survival (OS) is poor, elicited by the lack of an effective treatment. Monoclonal antibody (mAb)-based therapy has achieved remarkable success in treating both hematologic and non-central-nervous system (CNS) tumors due to their inherent targeting specificity. However, the use of mAbs in the treatment of CNS tumors is restricted by the blood–brain barrier (BBB) that hinders the delivery of either small-molecules drugs (sMDs) or therapeutic proteins (TPs). To overcome this limitation, active research is focused on the development of strategies to deliver TPs and increase their concentration in the brain. Yet, their molecular weight and hydrophilic nature turn this task into a challenge. The use of BBB peptide shuttles is an elegant strategy. They explore either receptor-mediated transcytosis (RMT) or adsorptive-mediated transcytosis (AMT) to cross the BBB. The latter is preferable since it avoids enzymatic degradation, receptor saturation, and competition with natural receptor substrates, which reduces adverse events. Therefore, the combination of mAbs properties (e.g., selectivity and long half-life) with BBB peptide shuttles (e.g., BBB translocation and delivery into the brain) turns the therapeutic conjugate in a valid approach to safely overcome the BBB and efficiently eliminate metastatic brain cells.
    [Show full text]
  • Cphi Annual Report 2018
    Part 4. The rise of the integrated CDMO and ‘ADCs the intersection of small and large’ CPhI Annual Industry Report 2018: Expert Contribution 52 CPhI Worldwide, October 2018, Madrid | Produced by Defacto PANEL MEMBER Vivek Sharma, CEO Piramal Pharma Solutions. ADCs growth driven by lack of inhouse facilities, oncology and integrated CDMOs Summary of trends forecast: the next 1-3 years • Novel payloads that target tumour-initiating cells on • Outsourcing of ADC manufacturing will continue to third generation ADCs in phase iii will come to market in rise past 70% of overall manufacturing, with increased the next couple of years co-development – driven by increased biotechs and • ADCs market forecast estimated to expand at nearly smaller companies in the pipeline needing specialist 20% CAGR until 2030 with 17 new drugs in late stage development expertise and facilities. development, and double digit approvals of ADCs over • Longer term (circa 5-years) the expansion of ADCs into next 3-years. therapeutic areas other than oncology will be the next evolution – bioconjugation in infectious disease is one potential area Abstract The past decade has seen significant advances in new and cancer cells. A strategy that combines the powerful cancer treatments through the development of highly cell-killing ability of potent cytotoxic agents with target selective small molecules that target a specific abnormality specificity would represent a potentially new paradigm in responsible for the disease. Traditional cytotoxic agents cancer treatment. Antibody Drug Conjugate (ADC) is such were another approach to treat cancer; however, unlike an approach, wherein the antibody component provides target-specific approaches, they suffered from adverse specificity for a tumour target antigen and the drug confers effects stemming from nonspecific killing of both healthy the cytotoxicity.
    [Show full text]
  • Marine-Derived Anticancer Agents: Clinical Benefits, Innovative
    marine drugs Review Marine-Derived Anticancer Agents: Clinical Benefits, Innovative Mechanisms, and New Targets Renato B. Pereira 1 , Nikolai M. Evdokimov 2, Florence Lefranc 3, Patrícia Valentão 1 , Alexander Kornienko 4, David M. Pereira 1 , Paula B. Andrade 1,* and Nelson G. M. Gomes 1,* 1 REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n◦ 228, 4050-313 Porto, Portugal; [email protected] (R.B.P.); valentao@ff.up.pt (P.V.); dpereira@ff.up.pt (D.M.P.) 2 Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA; [email protected] 3 Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, 808 Route de Lennik, 1070 Brussels, Belgium; fl[email protected] 4 Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA; [email protected] * Correspondence: pandrade@ff.up.pt (P.B.A.); ngomes@ff.up.pt (N.G.M.G.); Tel.: +351-22-042-8654 (P.B.A.); +351-122-042-8500 (N.G.M.G.) Received: 15 May 2019; Accepted: 30 May 2019; Published: 2 June 2019 Abstract: The role of the marine environment in the development of anticancer drugs has been widely reviewed, particularly in recent years. However, the innovation in terms of clinical benefits has not been duly emphasized, although there are important breakthroughs associated with the use of marine-derived anticancer agents that have altered the current paradigm in chemotherapy. In addition, the discovery and development of marine drugs has been extremely rewarding with significant scientific gains, such as the discovery of new anticancer mechanisms of action as well as novel molecular targets.
    [Show full text]
  • Loncastuximab Tesirine), a Novel Pyrrolobenzodiazepine-Based Antibody–Drug Conjugate, in Relapsed/ Refractory B-Cell Non-Hodgkin Lymphoma Brad S
    Published OnlineFirst November 4, 2019; DOI: 10.1158/1078-0432.CCR-19-0711 Clinical Trials: Targeted Therapy Clinical Cancer Research A Phase I Study of ADCT-402 (Loncastuximab Tesirine), a Novel Pyrrolobenzodiazepine-Based Antibody–Drug Conjugate, in Relapsed/ Refractory B-Cell Non-Hodgkin Lymphoma Brad S. Kahl1, Mehdi Hamadani2, John Radford3, Carmelo Carlo-Stella4, Paolo Caimi5, Erin Reid6, Jay M. Feingold7, Kirit M. Ardeshna8, Melhem Solh9, Leonard T. Heffner10, David Ungar7, Shui He7, Joseph Boni7, Karin Havenith11, and Owen A. O'Connor12 Abstract Purpose: ADCT-402 (loncastuximab tesirine) is an anti- 200 mg/kg. Treatment-emergent adverse events (TEAEs) were body–drug conjugate comprising a CD19-targeting antibody experienced by 87/88 (98.9%) patients. Most common TEAEs and pyrrolobenzodiazepine dimers. A first-in-human study (20% of patients) were hematologic abnormalities, fatigue, evaluated the safety and preliminary clinical activity of lon- edema, liver test abnormalities, nausea, rash, and dyspnea. castuximab tesirine in patients with B-cell non-Hodgkin lym- Grade 3 TEAEs (5% of patients) included hematologic phoma (NHL). abnormalities, liver test abnormalities, fatigue, and dyspnea. Experimental Design: A multicenter, phase I, dose- Overall response rate at doses 120 mg/kg was 59.4% (41 of 69 escalation and dose-expansion study enrolled patients ages patients; 40.6% complete response; 18.8% partial response). 18 years with relapsed/refractory (R/R) B-cell NHL. Patients Median duration of response, progression-free survival, and received loncastuximab tesirine every 3 weeks at doses overall survival (all doses) were 4.8, 5.5, and 11.6 months, assigned by a 3þ3 dose-escalation design.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances" WHO/EMP/RHT/TSN/2013.1
    INN Working Document 18.435 31/05/2018 Addendum1 to "The use of stems in the selection of International Nonproprietary names (INN) for pharmaceutical substances" WHO/EMP/RHT/TSN/2013.1 Programme on International Nonproprietary Names (INN) Technologies Standards and Norms (TSN) Regulation of Medicines and other health technologies (RHT) World Health Organization, Geneva © World Health Organization 2018 - All rights reserved. The contents of this document may not be reviewed, abstracted, quoted, referenced, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means, without explicit prior authorization of the WHO INN Programme. This document contains the collective views of the INN Expert Group and does not necessarily represent the decisions or the stated policy of the World Health Organization. Addendum1 to "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" - WHO/EMP/RHT/TSN/2013.1 1 This addendum is a cumulative list of all new stems selected by the INN Expert Group since the publication of "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" 2013. ------------------------------------------------------------------------------------------------------------ -apt- aptamers, classical and mirror ones (a) avacincaptad pegol (113), egaptivon pegol (111), emapticap pegol (108), lexaptepid pegol (108), olaptesed pegol (109), pegaptanib (88) (b) -vaptan stem: balovaptan (116), conivaptan
    [Show full text]