Pulsenet: on the Front Lines of Foodborne Disease Surveillance

Total Page:16

File Type:pdf, Size:1020Kb

Pulsenet: on the Front Lines of Foodborne Disease Surveillance ISSUES IN BRIEF: ON THE FRONT LINES OF FOODBORNE DISEASE SURVEILLANCE APRIL 2013 PULSENET ON THE FRONT LINES OF FOODBORNE DISEASE SURVEILLANCE National Molecular Subtyping Network for Foodborne Pathogens Illnesses caused by foodborne pathogens continue to be a major burden to the health of Americans. New Centers for Disease Control and Prevention (CDC) estimates released in 2011 highlight 31 major pathogens causing nearly 9.4 million foodborne illnesses and contributing to more than 1,300 deaths in the United States annually. Salmonella ranks among the top four pathogens the early detection of the clusters which resulted in the associated with foodborne illness, causing an recall of contaminated products from the marketplace. estimated 1.0 million illnesses and a leading cause More importantly, by detecting outbreaks and finding of hospitalizations per year.1 Moreover, estimates by the gaps in our food safety systems, the food industry, Scharff suggest the economic burden due to these regulators, and the public get critical information illnesses is enormous, ranging from $51.0 billion to needed to improve the safety of our food supply. $77.7 billion annually.2 PulseNet, the National Molecular Subtyping Network Public health departments across the country continue for Foodborne Disease Surveillance is a national early to heavily invest time and resources in investigating warning detection system for outbreaks caused by multistate outbreaks. In a typical year, over 1,500 pathogens such as Shiga toxin-producing Escherichia coli local disease clusters and 250 national or multistate (STEC), Salmonella, Listeria monocytogenes, Shigella and clusters are investigated. In 2010, multistate outbreak Vibrio spp. Established in 1996 by the CDC, four public investigations resulted in the identification of health laboratories, the US Department of Agriculture diverse products contaminated with disease-causing (USDA), and Association of Public Health Laboratories microorganisms, such as shell eggs (500 million (APHL), PulseNet has since grown to over 85 laboratories recalled), alfalfa sprouts, cheese, frozen entrees, frozen consisting of local and state public health laboratories, imported mamey fruit, shredded lettuce, beef, and state agricultural laboratories, and US Food and Drug red and black pepper on salami products. In addition, Administration (FDA) and USDA food regulatory other hazards were identified as important causes laboratories. PulseNet uses DNA fingerprinting to track of human illness, such as contact with pet African and detect clusters of foodborne pathogens. Pulsed- water frogs and reptiles fed with contaminated frozen field Gel Electrophoresis (PFGE) is the standardized rodents.3 Due to the nature of these diffuse outbreaks subtyping method used by all participating PulseNet and wide distribution of cases within the United States, laboratories. The power of the network is in its ability it is likely that many of these outbreaks would have for the participants to share and compare patterns gone undetected using traditional epidemiological and to communicate findings in real-time. In 2010, and laboratory tools. In these instances, a real-time the PulseNet network detected over 1,800 clusters of laboratory surveillance network, PulseNet, was critical in foodborne pathogens. PULSENET DISEASE SURVEILLANCE APRIL 2013 1 The Association of Public Health Laboratories (APHL) control diseases domestically and abroad. In 2011, is a member based non-profit organization which APHL administered a survey to assess the capability represents local, state, agricultural, and environmental and capacity of the PulseNet network during the 2010 laboratories. APHL works to provide its membership calendar year and to determine changes in laboratory and the public health laboratory community with practices since the last PulseNet network assessment in information, resources and training to provide a solid 2008. This Issue Brief presents the survey findings. public health infrastructure that works to prevent and METHODS In May 2011, APHL conducted a survey to assess 9 local public health laboratories, 3 state agricultural member laboratories’ capacities and capabilities for or veterinary laboratories and one state chemistry conducting molecular subtyping (PFGE) through the laboratory. A similar survey was conducted in 2009 PulseNet network for the 2010 calendar year. The survey to assess activities for the 2008 calendar year. Some was sent to 68 public health, agriculture, chemistry comparisons are included in this report for questions and veterinary laboratories-which included 54 state that were largely unchanged between 2008 and 2010. and territorial public health laboratories, 9 local public The survey was administered through SPSS mrInterview health laboratories, 4 state agricultural or veterinary (version 4.5), a web-based repository and survey tool. laboratories and one state chemistry laboratory. Of those Descriptive analyses were conducted, and responses surveyed, APHL received 60 responses —comprised of 47 were grouped into three main categories: surveillance, state and territorial public health laboratories, cluster detection and laboratory workflow. PULSENET SURVEILLANCE Overall, PulseNet laboratories are Figure 1. Comparison of Isolates from Clinical and Non-human Sources PFGE Subtyped in 2008 maintaining their capabilities and capacity and 2010, by Pathogen to perform PFGE testing within the network. During 2010, a total of 51,785 clinical 120% and non-clinical isolates (Shiga toxin- 100% producing E. coli (STEC), L. monocytogenes, Salmonella, Shigella, Campylobacter, and 80% Vibrio spp.) were PFGE subtyped by PulseNet 60% % isolates from clinical and non- laboratories, which is an increase of human sources PFGE subtyped 7% since 2008. Overall, the number of 40% (2008) laboratories providing PFGE subtyping % isolates from clinical and non- human sources PFGE subtyped remained relatively constant since 2008 20% (2010) with the exception of Campylobacter, which 0% increased from 24 laboratories in 2008 to 33 laboratories in 2010. Collectively, over S. Typhi Shigella 13,300 PFGE gels were processed by member E coli 0157 S. Enteritidis Campylobacter STEC non-0157 S. Typhimurium laboratories in 2010. L. monocytogenes All other Salmonella Secondary enzyme testing increases the discriminatory power of the subtyping enzyme; whereas, only 14% of Salmonella isolates method and can be useful during an outbreak were routinely subtyped with a secondary enzyme. investigation. In 2010, secondary enzyme testing in Moreover, approximately 66% of Salmonella isolates public health laboratories varied markedly among were only subtyped with a secondary enzyme when a pathogens. Among STEC and L. monocytogenes, over cluster or multistate outbreak had been detected and 87% of clinical isolates received into the public health 79% when second enzyme testing was requested by laboratories were routinely subtyped with a secondary epidemiologists. 2 APHL PUBLIC HEALTH LABORATORY ISSUES IN BRIEF Although the majority of laboratories Figure 2. Number of Clinical Isolates PFGE Subtyped by Pathogen in 2008 and 2010 have the capability to perform secondary enzyme testing, such additional routine 30,000 testing on large volume of isolates 25,000 can strain already scarce resources. However, requesting secondary enzyme 20,000 testing during an outbreak investigation 15,000 may delay the response time of an Total # of clinical isolates PFGE 10,000 subtyped (2008) investigation and subsequent recall of a product from the market. Only 10 5,000 Total # of clinical isolates PFGE subtyped (2010) laboratories (17%) reported being able 0 to respond immediately to requests for second enzyme testing. Twenty-three Vibrio S. Typhi Shigella laboratories (38%) reported responding to E coli 0157 S. Enteritidis STEC non-0157S. Typhimurium Campylobacter secondary enzyme requests within 5 days. L. monocytogenes All other Salmonella During 2010, public health departments reported a total of 85,438 clinical cases of Although PFGE has utility in detecting clusters of Shiga toxin-producing E. coli (STEC), L. monocytogenes, foodborne pathogens, newer methods, such as Multiple- Salmonella, Shigella, Campylobacter, and Vibrio spp. Of locus Variable-number tandem repeat Analysis (MLVA), reported cases, public health laboratories received an have proven to be useful in confirming clusters for E. coli estimated 68,663 (80%) clinical isolates for laboratory O157 and Salmonella.4-5 Laboratories within the PulseNet testing. Of these, 50,226 (73%) of isolates were network assist with evaluation and implementation PFGE subtyped. Among specific pathogens, most L. of new molecular subtyping tools, such as MLVA. monocytogenes (97%) isolates which were received in Twelve of the 59 laboratories (20%) reported performing the public health laboratories were PFGE subtyped subtyping methods other than PFGE. Eight laboratories followed by O157 STEC (95%) and non-0157 STEC (88%), (13%) performed MLVA testing and the remaining 4 and all Salmonella spp. (79%). Lower percentages were laboratories performed a third method MLST (Multiple- found among Vibrio cholerae (55%), Shigella (48%), and Locus Sequence Testing) or other methods. This was Campylobacter (27%) isolates. The number of laboratories an increase from 2008, in which 12% of laboratories which received isolates from non-human sources (i.e., reported performing subtyping methods other than food) for PFGE subtyping remained relatively constant, PFGE on
Recommended publications
  • In Silico Characteristics for Re-Emerging Possibility of Vibrio Cholerae Genotypes in Iran
    ORIGINAL ARTICLE In silico characteristics for re-emerging possibility of Vibrio cholerae genotypes in Iran M. Hajia1 and Amir Sohrabi2 1) Department of Molecular Biology, Research Center of Health Reference Laboratory, Ministry of Health and Medical Education, Tehran, Iran and 2) Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden Abstract Epidemic cholera has been registered several times within recent years in Iran. The dominant genotype was Ogawa until 2011, but this gradually changed to Inaba. However, in 2015, the re-appearance of a previous Ogawa genotype was detected by the Iranian CDC. This raised worries because no evidence was found for its origin abroad. The aim of the present study was to identify clearly the source of this outbreak. Pulsed field gel electrophoresis (PFGE) was used to compare the recently detected Vibrio cholerae strains with those isolated from 2011 to 2015. We selected one strain per PFGE pattern, and compared the distinct patterns. BIONUMERICS software was applied, which enables interpretation of phenotypic and genotypic differences. In total, we studied 33 V. cholerae Ogawa strains. Analysis showed that strains could be discriminated on the basis of annual clusters but with a similarity of more than 80%. The highest homology was observed among those isolated each year from 2011 to 2014. In contrast, strains isolated in 2015 also exhibited close correlation with each other but were located in distinct clusters. The analysis also proved genetic variations among some strains. All 2015 strains showed differences with regard to previous genotypes despite some similarities. The new genotypes were probably imported into Iran from neighbouring countries such as Iraq by travellers or contaminated food sources since 2015.
    [Show full text]
  • Pulsenet: Depicting Red-Colored Salmonella Bacteria Invading a Mustard- Colored, Ruffled Immune Cell
    AS-630-W AGEXTENSIONRICULTURE (Above) A digitally colorized scanning electron micrograph PulseNet: depicting red-colored salmonella bacteria invading a mustard- colored, ruffled immune cell. Using Technology to Track Foodborne Illnesses Every year, salmonella bacteria are estimated to cause 1 million illnesses in the United States, Nearly everyone has seen headlines or heard United States by epidemiologists to quickly with 19,000 hospitalizations news reports announcing a large food recall identify foodborne illness outbreaks across and 380 deaths. (Courtesy of the — or, worse, a widespread foodborne illness the country and effectively stop such illnesses National Institute of Allergy and outbreak. One in six Americans suffer from from spreading. Infectious Diseases) a foodborne illness each year. Anyone can be affected. Have you ever wondered how these What constitutes a foodborne outbreaks are discovered? A great deal of illness outbreak epidemiological investigation, some that is notably high-tech, goes into identifying the First, let’s define terms. A foodborne illness cause of foodborne illnesses that can affect is any infection resulting from consumption Anne M. Marshall unrelated individuals in different states, even of food that has been contaminated in different regions. Here, we will describe one some manner. Foodborne illnesses are most Paul D. Ebner very powerful tool, PulseNet, used in the often associated with viruses and bacteria, and their symptoms can range from mild discomfort to diarrhea and vomiting to, Epidemiology: The science of Purdue Animal Sciences in rare cases, death. A foodborne illness determining the who, what, where, when, www.ag.purdue.edu/ANSC outbreak is when two or more individuals and how of the spread of disease.
    [Show full text]
  • Pulsenet Timeline
    PulseNet is a national laboratory network that connects foodborne illness cases to detect outbreaks. PulseNet uses DNA fingerprinting, or patterns of bacteria making people sick, to detect thousands of local and multistate outbreaks. Since the network began in 1996, PulseNet has improved our food safety systems through identifying outbreaks early. This allows investigators to find the source, alert the public sooner, and identify gaps in our food safety systems that would not otherwise be recognized. E. coli O157:H7 is first recognized as a significant human pathogen. 1984 Pulsed-field gel electrophoresis (PFGE), the current gold standard for DNA fingerprinting, is developed by Schwartz and Cantor. 1993 E. coli O157:H7 causes a major outbreak in the Western US states. 1994 CDC and several state health laboratories demonstrate the utility of 1995 PFGE for detecting and investigating » The concept of PulseNet takes outbreaks of foodborne disease. shape in discussions between CDC, the Association of Public Health Laboratories (APHL), state public 1996 health laboratories and federal » CDC launches PulseNet with partners. the APHL, federal partners, and the original area public health » CDC provides $150,000 to PulseNet laboratories in Massachusetts, to conduct an initial project Minnesota, Texas, and Washington. demonstrating its effectiveness. » The first PulseNet training for standardized PFGE and analysis 1997 of patterns is organized at CDC. » PulseNet detects an outbreak of The area laboratories and the U.S. E. coli O157:H7 in Colorado linked to Department of Agriculture Food frozen ground beef from a Nebraska Safety and Inspection Service processing plant. Twenty-five million (USDA) laboratories attend. pounds of potentially contaminated ground beef are recalled.
    [Show full text]
  • Pulsenet International
    Food and Agriculture Organization of the United Nations International Food Safety Authorities Network (INFOSAN) 18 November 2009 INFOSAN Information Note No. 4/2009 – PulseNet International PulseNet International SUMMARY NOTES • To address the growing concern of responding to foodborne disease (FBD) threats, other emerging infectious diseases, or acts of bioterrorism in a timely and effective manner, the PulseNet International network was established. • PulseNet International is a network of networks dedicated to detecting and tracing foodborne infections worldwide. There are currently six independent networks within PulseNet International, with a total of 81 Member countries. • PulseNet International can contribute to increased efficient information flow between laboratories and food safety officials to quicker identify food safety events and the establishment of an effective global early warning system through its laboratory network. • PulseNet International and INFOSAN are working to improve information sharing between the two networks to strengthen FBD surveillance and control globally. Introduction Due to increased global trade, more outbreaks are occurring in different regions of the world than where the implicated food was produced. As a result, a greater number of dispersed outbreaks can be traced back to sources in food exporting countries with no outbreak related cases. For example, in 2007, an international outbreak of Salmonella Senftenberg was detected in both the United States of America (USA) and Europe by pulsed field gel electrophoresis (PFGE) analysis performed according to the PulseNet Salmonella protocol. The information shared by researchers in Europe and the USA through their respective PulseNet networks determined the infection was associated with the consumption of fresh basil imported from Israel1 The rate of international travel has risen simultaneously with global trade, compounding the opportunity for foodborne diseases to spread globally.
    [Show full text]
  • Case 1:16-Cv-00141-KPF Document 49 Filed 06/17/16 Page 1 of 127
    Case 1:16-cv-00141-KPF Document 49 Filed 06/17/16 Page 1 of 127 UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF NEW YORK x SUSIE ONG, Individually and on Behalf of All : Civil Action No. 1:16-cv-00141-KPF Others Similarly Situated, : : CLASS ACTION Plaintiff, : : AMENDED COMPLAINT FOR vs. : VIOLATIONS OF THE FEDERAL : SECURITIES LAWS CHIPOTLE MEXICAN GRILL, INC., M. : STEVEN ELLS, MONTGOMERY F. : DEMAND FOR JURY TRIAL MORAN and JOHN R. HARTUNG, : : Defendants. : x Case 1:16-cv-00141-KPF Document 49 Filed 06/17/16 Page 2 of 127 TABLE OF CONTENTS Page NATURE OF THE ACTION ..........................................................................................................1 JURISDICTION AND VENUE ......................................................................................................6 PARTIES .........................................................................................................................................7 CLASS ACTION ALLEGATIONS ..............................................................................................11 PLAINTIFFS’ ALLEGATIONS ARE SUPPORTED BY INFORMATION PROVIDED BY FORMER EMPLOYEES ........................................................................................................13 SUBSTANTIVE ALLEGATIONS ...............................................................................................14 Chipotle and Its Focus on “Food With Integrity” ..............................................................14 Chipotle Failed to Adequately Disclose Critical Changes
    [Show full text]
  • Pulsenet: a Critical Food Safety Surveillance System Association of Public Health Laboratories April 2010
    ISSUES IN BRIEF PULSENET: A CRITICAL FOOD SAFETY SURVEILLANCE SYSTEM ASSOCIatION OF PUBLIC HEALTH LABORatORIES APRIL 2010 PULSENET A CRITICAL FOOD SAFETY SURVEILLANCE SYSTEM Public health laboratorians are critical to the detection and prevention of foodborne illnesses. Through a national laboratory-based foodborne disease surveillance network known as PulseNet, public health and agricultural laboratories have detected high-profile outbreaks such as those from imported produce, peanut butter and peanut butter-containing products and raw cookie dough.1-3 In 2008 alone, PulseNet laboratorians DNA fingerprinting. Established detected more than 1,500 local clusters in 1996 by the Centers for Disease of foodborne illnesses and increased Control and Prevention (CDC), four the number of foodborne bacterial public health laboratories, the US isolates tested. Additional resources and Department of Agriculture (USDA) support are needed for public health and the Association of Public Health laboratories to test and investigate all Laboratories (APHL), PulseNet has since cases of foodborne illness. It is critical grown to more than 70 laboratories for the nation to recognize the impact nationwide, including state and that public health and agricultural local public health laboratories, state laboratories have on the overall agricultural laboratories and regulatory foodborne disease surveillance system laboratories within the US Food and to ensure a safer food supply. Drug Administration (FDA) and USDA. Molecular subtyping and computer The PulseNet network links public analysis are performed to generate health laboratories nationwide, and analyze the DNA fingerprint monitoring pathogens such as Shiga- patterns. These patterns generated toxin producing Escherichia coli or from isolates of ill persons and/or food STEC (including E.
    [Show full text]
  • Blank CDC Letterhead for Outgoing Correspondence
    Centers for Disease Control and Prevention ________________________________________________________________________________ National Center for Emerging and Zoonotic Infectious Diseases 1600 Clifton Rd., MS E-93 Atlanta GA 30329 April 15, 2016, 2016 Mr. Bryant “Corky” Messner, Esq. 1430 Wynkoop Street Suite 300 Denver, CO 80202 Dear. Mr. Messner, This is in response to your letter, dated December 21, 2015 from Messner Reeves, LLP. In your letter you express concern that certain web updates related to multistate outbreaks of Shiga toxin- producing Escherichia coli O26 (STEC O26) infections linked to Chipotle Mexican Grill restaurants (http://www.cdc.gov/ecoli/2015/o26-11-15/index.html) do not include “the most accurate information available” and that they “actually misinform the public.” You also raise concerns that these web updates “…do not conform with CDC guidelines, and Office of Management and Budget (“OMB”) and Department of Health and Human Services (“HHS”) regulations concerning dissemination of information to the public.” Background The Centers for Disease Control and Prevention (CDC) is the lead federal agency for protecting the health and safety of people at home and abroad, providing credible information to enhance health decisions and promoting health through strong partnerships. CDC follows guidance as specified in OMB Guidelines for Ensuring and Maximizing the Quality, Objectivity, and Integrity of Information Disseminated by Federal Agencies (see http://www.whitehouse.gov/sites/default/files/omb/fedreg/reproducible2.pdf and http://aspe.hhs.gov/infoquality/Guidelines/cdcinfo2.shtml). CDC also follows the Transparency and Open Government Memorandum for Heads of Executive Departments and Agencies, which requires us to take appropriate action, consistent with law and policy, to disclose information rapidly in forms that the public can readily find and use (https://www.whitehouse.gov/the_press_office/TransparencyandOpenGovernment).
    [Show full text]
  • Pulsed-Field Gel Electrophoresis (PFGE) a Review of the “Gold
    Infection, Genetics and Evolution 74 (2019) 103935 Contents lists available at ScienceDirect Infection, Genetics and Evolution journal homepage: www.elsevier.com/locate/meegid Review Pulsed-field gel electrophoresis (PFGE): A review of the “gold standard” for bacteria typing and current alternatives T ⁎ Hui-min Neoha, , Xin-Ee Tanb, Hassriana Fazilla Sapric, Toh Leong Tand a UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Malaysia b Department of Infection and Immunity, School of Medicine, Jichi Medical University, Japan c Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia d Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia ARTICLE INFO ABSTRACT Keywords: Pulsed-field gel electrophoresis (PFGE) is considered the “gold standard” for bacteria typing. The method in- Pulsed-field gel electrophoresis (PFGE) volves enzyme restriction of bacteria DNA, separation of the restricted DNA bands using a pulsed-field elec- Bacteria typing trophoresis chamber, followed by clonal assignment of bacteria based on PFGE banding patterns. Various PFGE protocols have been developed for typing different bacteria, leading it to be one of the most widely used methods for phylogenetic studies, food safety surveillance, infection control and outbreak investigations. On the other hand, as PFGE is lengthy and labourious, several PCR-based typing methods can be used as alternatives for research purposes. Recently, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and whole genome sequencing (WGS) have also been proposed for bacteria typing. In fact, as WGS provides more information, such as antimicrobial resistance and virulence of the tested bacteria in com- parison to PFGE, more and more laboratories are currently transitioning from PFGE to WGS for bacteria typing.
    [Show full text]
  • Molecular Surveillance of Shiga Toxigenic Escherichia Coli O157 by Pulsenet USA
    1926 Journal of Food Protection, Vol. 68, No. 9, 2005, Pages 1926±1931 Copyright Q, International Association for Food Protection General Interest Molecular Surveillance of Shiga Toxigenic Escherichia coli O157 by PulseNet USA PETER GERNER-SMIDT,1* JENNIFER KINCAID,1 KRISTY KUBOTA,1 KELLEY HISE,1 SUSAN B. HUNTER,1 MARY-ANN FAIR,1 DAWN NORTON,1 ANN WOO-MING,2 TERRY KURZYNSKI,3 MARK J. SOTIR,1,4 MARCUS HEAD,5 KRISTIN HOLT,5 AND BALA SWAMINATHAN1 1Centers for Disease Control and Prevention, National Center of Infectious Diseases, Division of Bacterial and Mycotic Diseases, Foodborne and Diarrheal Diseases Branch, Mail Stop C03, 1600 Clifton Road N.E., Atlanta, Georgia 30333; 2Colorado Department of Health and Environment, Laboratory Services Division, 8100 Lowery Boulevard, Denver, Colorado 80220; 3Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, Wisconsin 53706; 4Wisconsin Division of Public Health, P.O. Box 2659, Madison, Wisconsin 53701; and 5U.S. Department of Agriculture, Food Safety and Inspection Service, 950 College Road, Athens, Georgia 30605, USA MS 04-539: Received 30 November 2004/Accepted 1 June 2005 ABSTRACT PulseNet USA is the national molecular subtyping network system for foodborne disease surveillance. Sixty-four public health and food regulatory laboratories participate in PulseNet USA and routinely perform pulsed-®eld gel electrophoresis of Shiga toxigenic Escherichia coli isolated from humans, food, water, and the environment on a real-time basis. Clusters of infection are detected in three ways within this system: through rapidly alerting the participants in the electronic communication forum, the PulseNet Web conference; through cluster analysis by the database administrators at the coordinating center at the Centers for Disease Control and Prevention of the patterns uploaded to the central server by the participants; and by matching pro®les of strains from nonhuman sources with recent human uploads to the national server.
    [Show full text]
  • Pulsenet: 20 Years of Making Food Safer to Eat
    PulseNet: 20 years of making food safer to eat CENTRAL PILLAR OF US FOOD SAFETY SYSTEM PulseNet PulseNet is a national network of laboratories that solves outbreaks of foodborne by the numbers: disease. PulseNet scientists detect outbreaks—large and small—by connecting the dots between cases of similar illness that are happening anywhere in the country. 1 billion PulseNet investigations have brought about lasting changes in food industry Pounds of contaminated food recalled practices and new regulations that have made our food safer. since PulseNet was launched $507 million HOW Saved each year (medical costs and lost PulseNet works productivity) with quick outbreak detection 1 million DNA fingerprinting DNA fingerprints of foodborne bacteria 1 technology identifies the in the PulseNet USA database bacteria making people sick 89,000 Database managers check the Record number of DNA fingerprints of 2 national databases for more-than- bacteria submitted to PulseNet in 2015 expected numbers of matching DNA fingerprints, or clusters, from anywhere in the US 1,500 Clusters of illness from Salmonella, E. coli, Alert state and local health and Listeria infections annually identified 3 departments about a by PulseNet member labs possible outbreak 280 PulseNet scientists work with Multistate clusters of illness caused 4 FDA and USDA/FSIS* officials, by Salmonella, E. coli, and Listeria infections epidemiologists, and environmental identified by PulseNet each year health specialists to identify the contaminated food 83 Federal, regional, state, and local 5 Public alerted of the outbreak laboratories in the PulseNet network 40 Manufacturer may voluntarily Clusters of human illnesses tracked weekly 6 recall the contaminated food *FDA (US Food and Drug Administration) USDA/FSIS (US Department of Agriculture/Food Safety and Inspection Service) “APHL is proud of its long-standing connection The story of PulseNet to PulseNet, from the first In the beginning..
    [Show full text]
  • Chapter I: History and Trends
    CHAPTER I: HISTORY AND TRENDS June 2017 1-1 Foodborne Illness Investigation and Control Manual Chapter I Foodborne illness in the U.S. is a major cause of personal distress, social disruption, preventable death and avoidable economic burden. The Centers for Disease Control and Prevention (CDC) estimates that each year, roughly 1 in 6 Americans (48 million people) get sick, 128,000 are hospitalized, and 3,000 die of foodborne disease. These numbers are much less than reported in the first edition of this manual published in 1997, but the economic impact remains staggering. While it is difficult to put a price tag on the economic loss to industry, estimates are at $152 billion in the U.S. alone. (1) A. Background on Foodborne Illness The microbiologic hazards associated with food and food preparation are receiving increasing public attention. They are causing increasing concern, not only among consumers, but also among those involved in all facets of food production and distribution. Historically, most foods were produced and consumed locally. Modern production and distribution of foods, however, have become highly complex, and involve global distribution of many kinds of fresh and processed food products. One has to merely browse the aisles of the local grocery store to witness the tremendous influx of food products from throughout the world. While the benefits of the availability of such a variety of foods are many, the potential for the transmission of foodborne pathogens to large populations, spread over large geographic areas, also increases. "In 2015, CDC monitored between 17 and 40 potential food poisoning or related clusters each week, and investigated more than 195 multistate clusters.
    [Show full text]
  • Standard Operating Procedure for Pulsenet Pfge of Escherichia Coli O157:H7, Escherichia Coli Non-O157 (Stec), Salmonella Serotyp
    Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri Purpose To describe the One-Day (24-26 hour) Standardized Laboratory Protocol for Molecular Subtyping of E. coli O157:H7, E. coli Non-O157 (STEC), Salmonella, Shigella sonnei and Shigella flexneri by Pulsed-field Gel Electrophoresis (PFGE). Scope To provide the PulseNet participants with a standardized procedure for performing PFGE of E. coli O157:H7, E. coli Non- O157 (STEC), Salmonella, Shigella sonnei and Shigella flexneri, thus ensuring inter-laboratory comparability of the generated results. Definitions and Terms 1. PFGE: Pulsed-field Gel Electrophoresis 2. DNA: Deoxyribonucleic acid 3. CDC: Centers for Disease Control and Prevention 4. CLRW: Clinical Laboratory Reagent Water 5. TE: Tris-EDTA 6. EDTA: Ethylenediaminetetraacetic Acid 7. TBE: Tris borate-EDTA 8. HIA: Heart Infusion Agar Biosafety Warning Escherichia coli O157:H7, Salmonella serotypes, Shigella sonnei, and Shigella flexneri are human pathogens and can cause serious disease. It has been reported that less than 100 cells of E. coli O157:H7 may cause infection. Shigella species also have a low infectious dose and are demonstrated hazards to laboratory personnel. Always use Biosafety Level 2 practices (at a minimum) and extreme caution when transferring and handling strains of these genera. Work in a biological safety cabinet when handling large amounts of cells. Disinfect or dispose of all plasticware and glassware that come in contact with the cultures in a safe manner. Please read all instructions carefully before starting protocol. It is recommended to plate cultures, prepare cell suspensions, and cast plugs in a Class II Biosafety Cabinet (BSC), if available.
    [Show full text]