The Spindle Assembly Checkpoint Review
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 22, R966–R980, November 20, 2012 ª2012 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.cub.2012.10.006 The Spindle Assembly Checkpoint Review Pablo Lara-Gonzalez1,2, Frederick G. Westhorpe1,2, point in the cell cycle can result in daughters with deviations and Stephen S. Taylor1,* from the normal karyotype, which in turn can result in a loss of fitness or, in the case of multicellular organisms, various diseases [2]. During mitosis and meiosis, the spindle assembly check- The solution to this challenge is sister chromatid cohesion, point acts to maintain genome stability by delaying cell mediated by cohesin, a multimeric protein ring structure that division until accurate chromosome segregation can encircles the replicated sister chromatids [3]. Following DNA be guaranteed. Accuracy requires that chromosomes replication in S phase, original and new chromatids are held become correctly attached to the microtubule spindle together by cohesin, thus maintaining their identity as apparatus via their kinetochores. When not correctly sisters. Cohesion is maintained throughout the rest of S attached to the spindle, kinetochores activate the spindle phase, G2 and into early mitosis where the chromosomes assembly checkpoint network, which in turn blocks cell align at the centre of the cell on the microtubule spindle cycle progression. Once all kinetochores become stably apparatus. At anaphase onset, the cohesin ring is opened, attached to the spindle, the checkpoint is inactivated, chromatid cohesion is lost and the sisters separate, allowing which alleviates the cell cycle block and thus allows chro- spindle forces to pull them to opposite sides of the cell (Fig- mosome segregation and cell division to proceed.
[Show full text]