Bowenia Serrulata Click on Images to Enlarge

Total Page:16

File Type:pdf, Size:1020Kb

Bowenia Serrulata Click on Images to Enlarge Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Bowenia serrulata Click on images to enlarge Family Zamiaceae Scientific Name Bowenia serrulata (W.Bull) Chamb. Chamberlain, C.J. (1912) The Botanical Gazette 54 : 419. Leaves. Copyright Australian Plant Image Index (APII). Photographer: R. Hill. Common name Butchers Fern; Byfield Fern Stem Usually produces cones as a shrubby plant about 1 m tall but only the leaves are above ground level. The true stem is below the soil surface. Stem elongate to 25 cm diameter with long taproot and 5-20 short leaf- and cone-bearing branches. Leaves Cone. Copyright Australian Plant Image Index (APII). Leaves 5-30 in the crown. Compound leaf petiole to about 1 m or taller. Compound leaf spreading to 100-200 Photographer: R. Hill. cm long by 100 cm broad. Leaflet margins sharply and regularly serrate. Leaflet blades about 7-15 x 1.2-4.5 cm, lanceolate to ovate, asymmetrical particularly towards the base. Upper surface of the compound leaf rhachis (both primary and secondary) with a ridge down the middle and a groove or channel on each side. Venation longitudinal and parallel without a midrib. Leaflets about 30-200 or more per compound leaf. Flowers Male cones pedunculate and raised slightly above ground level, female sessile. Male cones: sporophylls in a cone about 5-7 x 2.5-3 cm, produced at the base of the plant just above ground level, peduncle about 70 mm long; anthers or pollen sacs (microsporangia) about 50-70, sessile, borne on the underside of each cone scale +/- at random. Female cones: megasporophylls in a sessile cone about 10 x 10 cm; ovules borne on the underside of the cone scales, two ovules per cone scale. Outer surface of each cone scale clothed in numerous short hair-like dark brown glands. Fruit Seeds produced in a globular cone about 10 x 10 cm. Seeds about 32 x 18 mm. Cones raised slightly above ground level. Seedlings Features not available. Distribution and Ecology Endemic to Queensland, occurs in CEQ. Altitudinal range from near sea level to 700 m. Grows as an understory shrub in undisturbed areas, in open forest or wet sclerophyll forest but occasionally found in rain forest. Natural History & Notes Description adapted from Flora of Australia Vol. 48. Leaf material poisonous to sheep and cattle causing death and or staggers. Everist (1974). This easily grown plant has been in cultivation for many years. It makes an attractive potted plant for indoor use. Herb (herbaceous or woody, under 1 m tall) X Shrub (woody or herbaceous, 1-6 m tall) X Synonyms Bowenia spectabilis var. serrulata W.Bull, A Retail List of New Beautiful & Rare Plants offered by William Bull : v, 4(1878), Type: the plate, W. Bull, Catal. t. 5 (1878); illustrated from a cultivated plant. Bowenia spectabilis var. serrulata Andre, L'Illustration Horticole 26 : 184(1879), Type: originaire des memes contrees,. Bowenia spectabilis var. serrata F.M.Bailey, A Synopsis of the Queensland Flora : 501(1883), Type: Queensland, Rockhampton. [Given by F.M.Bailey, Queensland Fl. 5 (1902) 1507 as Maryvale, Rockhampton, A. Thozet.]. Bowenia spectabilis var. serrulata Anon., Illustrirte Garten-Zeitung 23: 99(1879), Type: Sie stammt von Queensland (Australien) verlangt das temperirte Haus und wurde von Bull in den Handel gebracht. RFK Code 3392 CC-BY Australian Tropical Herbarium unless otherwise indicated in the images..
Recommended publications
  • Bowenia Serrulata (W
    ResearchOnline@JCU This file is part of the following reference: Wilson, Gary Whittaker (2004) The Biology and Systematics of Bowenia Hook ex. Hook f. (Stangeriaceae: Bowenioideae). Masters (Research) thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/1270/ If you believe that this work constitutes a copyright infringement, please contact [email protected] and quote http://eprints.jcu.edu.au/1270/ The Biology and Systematics of Bowenia Hook ex. Hook f. (Stangeriaceae: Bowenioideae) Thesis submitted by Gary Whittaker Wilson B. App. Sc. (Biol); GDT (2º Science). (Central Queensland University) in March 2004 for the degree of Master of Science in the Department of Tropical Plant Science, James Cook University of North Queensland STATEMENT OF ACCESS I, the undersigned, the author of this thesis, understand that James Cook University of North Queensland will make it available for use within the University Library and by microfilm or other photographic means, and allow access to users in other approved libraries. All users consulting this thesis will have to sign the following statement: ‘In consulting this thesis I agree not to copy or closely paraphrase it in whole or in part without the written consent of the author, and to make proper written acknowledgment for any assistance which I have obtained from it.’ ………………………….. ……………… Gary Whittaker Wilson Date DECLARATION I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text.
    [Show full text]
  • Chemical Element Concentrations of Cycad Leaves: Do We Know Enough?
    horticulturae Review Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Benjamin E. Deloso 1 , Murukesan V. Krishnapillai 2 , Ulysses F. Ferreras 3, Anders J. Lindström 4, Michael Calonje 5 and Thomas E. Marler 6,* 1 College of Natural and Applied Sciences, University of Guam, Mangilao, GU 96923, USA; [email protected] 2 Cooperative Research and Extension, Yap Campus, College of Micronesia-FSM, Colonia, Yap 96943, Micronesia; [email protected] 3 Philippine Native Plants Conservation Society Inc., Ninoy Aquino Parks and Wildlife Center, Quezon City 1101, Philippines; [email protected] 4 Plant Collections Department, Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250, Thailand; [email protected] 5 Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL 33156, USA; [email protected] 6 Western Pacific Tropical Research Center, University of Guam, Mangilao, GU 96923, USA * Correspondence: [email protected] Received: 13 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: The literature containing which chemical elements are found in cycad leaves was reviewed to determine the range in values of concentrations reported for essential and beneficial elements. We found 46 of the 358 described cycad species had at least one element reported to date. The only genus that was missing from the data was Microcycas. Many of the species reports contained concentrations of one to several macronutrients and no other elements. The cycad leaves contained greater nitrogen and phosphorus concentrations than the reported means for plants throughout the world. Magnesium was identified as the macronutrient that has been least studied.
    [Show full text]
  • Bowenia Spectabilis Hook
    Australian Tropical Rainforest Plants - Online edition Bowenia spectabilis Hook. ex Hook.f. Family: Zamiaceae Hooker, J.D. (1863) Curtis's Botanical Magazine 89 : t5398. Type: the plate, Bot. Mag. t. 5398 (1863); illustrated from a cultivated plant. Common name: Zamia Fern Stem Usually produces cones as a shrubby plant about 1 m tall but only the leaves are above ground level. The true stem is below the soil surface. Stem elongate to 10 cm diameter with long taproot and 1-5 short leaf- and cone-bearing branches. Leaves Leaves 1-7 in the crown. Compound leaf petiole to about 1.2 m or taller. Compound leaf spreading to 100-200 cm long by 100 cm broad. Leaflet margins entire, with a few lacerations, or sometimes regularly serrate. Leaflet blades about 7-15 x 1.2-4.5 cm, lanceolate to ovate, asymmetrical Section of leaf and part of fruiting particularly towards the base. Upper surface of the compound leaf rhachis (both primary and cone. © CSIRO secondary) with a ridge down the middle and a groove or channel on each side. Venation longitudinal and parallel without a midrib. Leaflets about 30-200 or more per compound leaf. Flowers Male cones pedunculate and raised slightly above ground level, female sessile. Male cones: sporophylls in a cone about 5-7 x 2.5-3 cm, produced at the base of the plant just above ground level, peduncle about 70 mm long; anthers or pollen sacs (microsporangia) about 50-70, sessile, borne on the underside of each cone scale +/- at random. Female cones: megasporophylls in a sessile cone about 10 x 10 cm; ovules borne on the underside of the cone scales, two ovules per Cones and petiole bases.
    [Show full text]
  • Anatomy of the Seedling of Bowenia Spectabilis, Hook. F
    Anatomy of the Seedling of Bowenia spectabilis, Hook. f. BY H. H. W. PEARSON, B.A. 'Frank Smart' Student at GoimilU and Caius College, Cambridge, and Assistant Curator of the University Herbarium. With Plates XXVII and XXVm. HE genus Boweiiia was first described in the Botanical T Magazine in 1863, from plants sent to Kew from Rockingham Bay, in that year1. The particular interest of the plant from a phylogenetic point of view is centred in its bipinnate leaf, a character which is not found in other Cycads. ' With the exception of Stangeria paradoxa, no more remarkable Cycadaceous plant has been discovered than the subject of our present plate, and like that plant it differs from every other member of its Order in the nature of its leaves, which present remarkable analogies with those of Ferns; whereas, however, the anomalous character of Stangeria is affected by the venation of the pinnules, which so exactly simulated those of a Lomaria, that two authors had (unknown to one another) referred it to that genus, the resemblance in the case of Bowenia is in some respects 1 Curtis's Botanical Magazine, (3) VoU Jtix, Tab. 5398. London, 1863. [Annals of Botany, VoL XIL No. XXVUL December, i8g8.] 476 Pearson.—Anatomy of the Seedling of carried further, inasmuch as the leaf is not simply pinnate as in Stangeria and other Cycadeae, but decompound, like a Marattia V The similarity between the leaves of Boivenia and the coal-measure fronds of Neuropteris and AletJiopteris has been considered by Stur as evidence in favour of the Cycadean affinities of the latter genera '2.
    [Show full text]
  • (OUV) of the Wet Tropics of Queensland World Heritage Area
    Handout 2 Natural Heritage Criteria and the Attributes of Outstanding Universal Value (OUV) of the Wet Tropics of Queensland World Heritage Area The notes that follow were derived by deconstructing the original 1988 nomination document to identify the specific themes and attributes which have been recognised as contributing to the Outstanding Universal Value of the Wet Tropics. The notes also provide brief statements of justification for the specific examples provided in the nomination documentation. Steve Goosem, December 2012 Natural Heritage Criteria: (1) Outstanding examples representing the major stages in the earth’s evolutionary history Values: refers to the surviving taxa that are representative of eight ‘stages’ in the evolutionary history of the earth. Relict species and lineages are the elements of this World Heritage value. Attribute of OUV (a) The Age of the Pteridophytes Significance One of the most significant evolutionary events on this planet was the adaptation in the Palaeozoic Era of plants to life on the land. The earliest known (plant) forms were from the Silurian Period more than 400 million years ago. These were spore-producing plants which reached their greatest development 100 million years later during the Carboniferous Period. This stage of the earth’s evolutionary history, involving the proliferation of club mosses (lycopods) and ferns is commonly described as the Age of the Pteridophytes. The range of primitive relict genera representative of the major and most ancient evolutionary groups of pteridophytes occurring in the Wet Tropics is equalled only in the more extensive New Guinea rainforests that were once continuous with those of the listed area.
    [Show full text]
  • Changing Perspectives in Australian Archaeology, Part X
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Asmussen, Brit, 2011. Changing perspectives in Australian archaeology, part X. "There is likewise a nut…" a comparative ethnobotany of Aboriginal processing methods and consumption of Australian Bowenia, Cycas, Macrozamia and Lepidozamia species. Technical Reports of the Australian Museum, Online 23(10): 147–163. doi:10.3853/j.1835-4211.23.2011.1575 ISSN 1835-4211 (online) Published online by the Australian Museum, Sydney nature culture discover Australian Museum science is freely accessible online at http://publications.australianmuseum.net.au 6 College Street, Sydney NSW 2010, Australia Changing Perspectives in Australian Archaeology edited by Jim Specht and Robin Torrence photo by carl bento · 2009 Papers in Honour of Val Attenbrow Technical Reports of the Australian Museum, Online 23 (2011) ISSN 1835-4211 Changing Perspectives in Australian Archaeology edited by Jim Specht and Robin Torrence Specht & Torrence Preface ........................................................................ 1 I White Regional archaeology in Australia ............................... 3 II Sullivan, Hughes & Barham Abydos Plains—equivocal archaeology ........................ 7 III Irish Hidden in plain view ................................................ 31 IV Douglass & Holdaway Quantifying cortex proportions ................................ 45 V Frankel & Stern Stone artefact production and use ............................. 59 VI Hiscock Point production at Jimede 2 .................................... 73 VII
    [Show full text]
  • Zamiaceae, Cycadales) and Evolution in Cycadales
    The complete chloroplast genome of Microcycas calocoma (Miq.) A. DC. (Zamiaceae, Cycadales) and evolution in Cycadales Aimee Caye G. Chang1,2,3, Qiang Lai1, Tao Chen2, Tieyao Tu1, Yunhua Wang2, Esperanza Maribel G. Agoo4, Jun Duan1 and Nan Li2 1 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China 2 Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China 3 University of Chinese Academy of Sciences, Beijing, China 4 Department of Biology, De La Salle University, Manila, Philippines ABSTRACT Cycadales is an extant group of seed plants occurring in subtropical and tropical regions comprising putatively three families and 10 genera. At least one complete plastid genome sequence has been reported for all of the 10 genera except Microcycas, making it an ideal plant group to conduct comprehensive plastome comparisons at the genus level. This article reports for the first time the plastid genome of Microcycas calocoma. The plastid genome has a length of 165,688 bp with 134 annotated genes including 86 protein-coding genes, 47 non-coding RNA genes (39 tRNA and eight rRNA) and one pseudogene. Using global sequence variation analysis, the results showed that all cycad genomes share highly similar genomic profiles indicating significant slow evolution and little variation. However, identity matrices coinciding with the inverted repeat regions showed fewer similarities indicating that higher polymorphic events occur at those sites. Conserved non-coding regions also appear to be more divergent whereas variations in the exons were less discernible indicating that the latter comprises more conserved sequences. Submitted 5 September 2019 Phylogenetic analysis using 81 concatenated protein-coding genes of chloroplast (cp) Accepted 27 November 2019 genomes, obtained using maximum likelihood and Bayesian inference with high Published 13 January 2020 support values (>70% ML and = 1.0 BPP), confirms that Microcycas is closest to Corresponding authors Zamia and forms a monophyletic clade with Ceratozamia and Stangeria.
    [Show full text]
  • Toxicology for Australian Veterinarians
    282 Macrozamia miquelii leaf showing the distinctive features of the genus. Note the lack of midribs in the pinnae (leaflets) and the pigmented/pale patches at the base of the pinnae. [RAM Photo] Mature female cones of Macrozamia miquelii before break-up and dispersal of the orange- coloured seeds. [RAM Photo] 283 Macrozamia moorei mature plant in natural habitat - the largest species of this genus. [RAM Photo] Cultivated mature female specimen of Macrozamia lucida, a medium-sized example of this genus. Note the mature female cone containing red seeds. [RAM Photo] 284 Mature plant of Macrozamia heteromera in natural habitat, an example of a small member of this genus [RAM Photo] Lepidozamia spp. (tropics, subtropics - Q, NSW) 2 species, both in Australia (Hill 1995, 1998; Jones 1993; Hill & Osborne 2001) Lepidozamia peroffskyana Regel contains hepatotoxins (Gobé & Pound 1985) but is not known to have caused neurotoxicity; distributed in south- eastern Qld and north-eastern NSW from the ranges north-west of Brisbane to the Manning River district; cultivated Lepidozamia hopei (W.Hill) Regel is not recorded as toxic; distributed in rainforest and wet sclerophyll forest in north-eastern Qld from Rockingham Bay to the Bloomfield River; cultivated Family Stangeriaceae Bowenia spp. (tropics – Q) 2 species, both in Australia (Hill 1995, 1998; Jones 1993; Hill & Osborne 2001) Bowenia serrulata (W.Bull) Chamb. (Byfield fern [sic]) (Hall & McGavin 1968, Seawright et al. 1998b) - distributed in central coastal Qld around Byfield, north-east of Rockhampton; cultivated Bowenia spectabilis Hook. Ex Hook.f. (zamia fern [sic]) - distributed in and around rainforests in north-eastern Qld on the coast and ranges from Cardwell to Cooktown with a population in the McIlwraith Range on Cape York Peninsula.
    [Show full text]
  • Gymnosperms from the Middle Triassic of Antarctica: the First Structurally Preserved Cycad Pollen Cone
    Int. J. Plant Sci. 164(6):1007–1020. 2003. ᭧ 2003 by The University of Chicago. All rights reserved. 1058-5893/2003/16406-0016$15.00 GYMNOSPERMS FROM THE MIDDLE TRIASSIC OF ANTARCTICA: THE FIRST STRUCTURALLY PRESERVED CYCAD POLLEN CONE Sharon D. Klavins,* Edith L. Taylor,* Michael Krings,† and Thomas N. Taylor* *Department of Ecology and Evolutionary Biology and Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045-7534, U.S.A.; and †Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie, Funktionseinheit Pala¨ontologie, Richard-Wagner-Strasse 10, 80333 Munich, Germany The first permineralized cycad pollen cone is described from the lower Middle Triassic of Antarctica. The cone is characterized by helically arranged, wedge-shaped microsporophylls, each with five or more spinelike projections extending from the rhomboid distal face. The vascular cylinder is dissected and produces paired traces to each microsporophyll. Three vascular bundles enter the base of the microsporophyll and divide to produce at least five vascular strands in the sporophyll lamina. Pollen sacs occur in two radial clusters near the lateral margins on the abaxial surface of the microsporophyll. Each cluster bears up to eight elongate pollen sacs that are fused for approximately half their length and display longitudinal dehiscence. Pollen sacs are sessile and attached to a vascularized, receptacle-like pad of tissue that is raised from the surface of the microsporophyll. Pollen is ovoid, psilate, and monosulcate. Although the affinities of this cone with the Cycadales are obvious, the complement of characters in the fossil is unique and thus does not permit assignment to an extant family.
    [Show full text]
  • Cycads and Their Associated Species in Queensland Travel Scholarship Report
    Cycads and their associated species in Queensland Travel Scholarship Report The author with Lepidozamia hopei at Cape Tribulation, Queensland Felix Merklinger Diploma Course 45 July 2009 1 Preface The second year of the three-year diploma course at Kew offers the opportunity to apply for a travel scholarship. This is the chance for a student to study a chosen plant or group of plants in their natural habitat. Since working in the Palm House at Kew as a member of staff, I have developed a passion for the order Cycadales. Kew has an extensive collection of cycads; mainly the South African Encephalartos, which are well represented in the living collections of the Palm and Temperate House. I am especially interested in the genus Cycas and their insect pollinators, and am planning to study this relationship intensively throughout my future career. Australia was chosen as the destination for my first trip to look at cycads in the wild. This continent has some of the most ancient relicts of flora and fauna to be found anywhere in the world. Australia is home of all three families within the Cycadales and also has a number of weevils involved in their pollination. This, therefore, is the perfect country to be starting my studies. Additionally, the Australian species of cycads at Kew are not as well represented as the African species – the Australian cycads can be notoriously difficult to grow in cultivation and, of course, the import and export regulations from and into Australia are rather tight. 2 This trip provided a great opportunity to study the native flora of a country, combining this chance with a passion for insect-plant interactions, accumulating knowledge and experience for a possible future career and gathering horticultural understanding of an ancient group of plants which is in need of long-term conservation.
    [Show full text]
  • • Nomination of Wet Tropical Rainforests of North-East Australia
    Nomination of WET TROPICAL RAINFORESTS OF NORTH-EAST AUSTRALIA by the Government of Australia for inclusion in the WORLD HERITAGE LIST Prepared by Department of the Arts, Sport, the Environment, Tourism and Territories December 19~7 UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION CONVENTION CONCERNING THE PROTECTION OF THE WORLD CULTURAL AND NATURAL HERITAGE WORLD HERITAGE LIST Nomination Form Under the terms of the Convention concerning the Protection of the World Cultural and Natural Heritage, adopted by the General Conference of Unesco in 1972, the Intergovernmental Committee for the Protection of the World Cultural and Natural Heritage, called "the World Heritage Committee" shall establish under the title of "World Heritage List", a list of properties forming part of the cultural and natural heritage which it considers as having outstanding universal value in terms of such criteria it shall have established. The purpose of this form is to enable State Parties to submit to the World Heritage . Committee nominations of properties situated in their territory and suitable for inclusion in the World Heritage List. Notes to assist in completing each page of the form are provided opposite the page to be completed. Please type entries in the spaces available. Additional information may be provided on pages attached to the form. It should be noted that the World Heritage Committee will retain all supporting documentation (maps, plans, photographic material, etc.) submitted with the nomination form. The form completed in English or French should be sent in three copies to: The Secretariat World Heritage Committee Division of Cultural Heritage Unesco 7 Place de Fontenoy 757000 Paris J J J .
    [Show full text]
  • The Ecology and Evolution of Cycads and Their Symbionts
    The Ecology and Evolution of Cycads and Their Symbionts The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Salzman, Shayla. 2019. The Ecology and Evolution of Cycads and Their Symbionts. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42013055 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The ecology and evolution of cycads and their symbionts ADISSERTATIONPRESENTED BY SHAYLA SALZMAN TO THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF BIOLOGY HARVARD UNIVERSITY CAMBRIDGE,MASSACHUSETTS AUGUST 2019 c 2019 – SHAYLA SALZMAN ALL RIGHTS RESERVED. Thesis advisors: Professors Naomi E. Pierce & Robin Hopkins Shayla Salzman The ecology and evolution of cycads and their symbionts ABSTRACT Interactions among species are responsible for generating much of the biodiversity that we see today, yet coevolved associations with high species specificity are rare in nature and have sometimes been considered to be evolutionary dead ends. The plant order Cycadales is among the most ancient lineages of seed plants, and the tissues of all species are highly toxic. Cycads exhibit many specialized interactions, making them ideal for analyzing the causes and consequences of symbiotic relationships. In Chapter 1, I characterize the pollination mutualism between Zamia furfuracea cycads and their Rhopalotria furfuracea weevil pollinators.
    [Show full text]