Generalized Louvain method for community detection in large networks Pasquale De Meo∗, Emilio Ferrarax, Giacomo Fiumara∗, Alessandro Provetti∗,∗∗ ∗Dept. of Physics, Informatics Section. xDept. of Mathematics. University of Messina, Italy. ∗∗Oxford-Man Institute, University of Oxford, UK. fpdemeo, eferrara, gfiumara,
[email protected] Abstract—In this paper we present a novel strategy to a novel measure of edge centrality, in order to rank all discover the community structure of (possibly, large) networks. the edges of the network with respect to their proclivity This approach is based on the well-know concept of network to propagate information through the network itself; iii) modularity optimization. To do so, our algorithm exploits a novel measure of edge centrality, based on the κ-paths. its computational cost is low, making it feasible even for This technique allows to efficiently compute a edge ranking large network analysis; iv) it is able to produce reliable in large networks in near linear time. Once the centrality results, even if compared with those calculated by using ranking is calculated, the algorithm computes the pairwise more complex techniques, when this is possible; in fact, proximity between nodes of the network. Finally, it discovers because of the computational constraints, the adoption of the community structure adopting a strategy inspired by the well-known state-of-the-art Louvain method (henceforth, LM), some existing techniques is not viable when considering efficiently maximizing the network modularity. The experi- large networks, and their application is only limited to small ments we carried out show that our algorithm outperforms case-studies. other techniques and slightly improves results of the original This paper is organized as follows: in the next Section we LM, providing reliable results.