Innovative Learning Environments in STEM Higher Education
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of Co-Located Play on Social Presence and Game Experience in a VR Game
The Impact of Co-Located Play on Social Presence and Game Experience in a VR Game Marcello A. Gómez Maureira LIACS, Leiden University Niels Bohrweg 1, Leiden, The Netherlands [email protected] Fons Verbeek LIACS, Leiden University Niels Bohrweg 1, Leiden, The Netherlands [email protected] ABSTRACT This exploratory case study looks at the scenario of virtual reality (VR) gaming in a so- cial setting. We raise the question whether game experience and social presence (measured through a questionnaire) are impacted by physically separating players versus co-located play. We asked 34 participants to play a two-player VR game using head mounted displays in which they shared a virtual environment. We compared two conditions: 1) playing in the same physical space, allowing direct communication between players and 2) playing in separated rooms, with communication via intercom. Our results indicate no differences between the two testing conditions. Based on this, we conclude that current VR technology can facilitate a multi-user game experience, played from separate locations, that is experi- enced as if it were played co-located. We see the outcome of the study as an encouragement for designers to involve social elements in online, multi-user VR games. Keywords virtual reality games, social gaming, multiplayer gaming, head mounted displays, player incorporation INTRODUCTION Digital games have spearheaded a wide range of technological advances, frequently fo- cusing on advancing visual aesthetics and novel interfaces as a way to immerse people in experiences that designers have crafted for them. One of the most recent trends in digital game technology is the use of virtual reality (VR) devices. -
Vuzix Corporation Annual Report 2021
Vuzix Corporation Annual Report 2021 Form 10-K (NASDAQ:VUZI) Published: March 15th, 2021 PDF generated by stocklight.com UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K ☑ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended December 31, 2020 ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Commission file number: 001-35955 Vuzix Corporation ( Exact name of registrant as specified in its charter ) Delaware 04-3392453 (State of incorporation) (I.R.S. employer identification no.) 25 Hendrix Road West Henrietta, New York 14586 (Address of principal executive office) (Zip code) (585) 359-5900 (Registrant’s telephone number including area code) Securities registered pursuant to Section 12(b) of the Act: Title of each class: Trading Symbol(s) Name of each exchange on which registered Common Stock, par value $0.001 VUZI Nasdaq Capital Market Securities registered pursuant to Section 12(g) of the Act: None. Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes ◻ No þ Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Exchange Act. Yes ◻ No þ Indicate by check mark whether the registrant: (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. -
Samsung Announces New Windows-Based Virtual-Reality Headset at Microsoft Event 4 October 2017, by Matt Day, the Seattle Times
Samsung announces new Windows-based virtual-reality headset at Microsoft event 4 October 2017, by Matt Day, The Seattle Times Samsung is joining Microsoft's virtual reality push, Microsoft also said that it had acquired AltspaceVR, announcing an immersive headset that pairs with a California virtual reality software startup that was Windows computers. building social and communications tools until it ran into funding problems earlier this year. The Korean electronics giant unveiled its Samsung HMD Odyssey at a Microsoft event in San ©2017 The Seattle Times Francisco recently. It will sell for $499. Distributed by Tribune Content Agency, LLC. The device joins Windows-based immersive headsets built by Lenovo, HP, Acer and Dell, and aimed for release later this year. Microsoft is among the companies seeking a slice of the emerging market for modern head-mounted devices. High-end headsets, like Facebook-owned Oculus's Rift and the HTC Vive, require powerful Windows PCs to run. Others, including the Samsung Gear VR and Google's Daydream, are aimed at the wider audience of people who use smartphones. Microsoft's vision, for now, is tied to the PC, and specifically new features in the Windows operating system designed to make it easier to build and display immersive environments. The company also has its own hardware, but that hasn't been on display recently. Microsoft's HoloLens was a trailblazer when it was unveiled in 2015. The headset, whose visor shows computer-generated images projected onto objects in the wearer's environment without obscuring the view of the real world completely, was subsequently offered for sale to developers and businesses. -
Virtual Reality Headsets
VIRTUAL REALITY HEADSETS LILY CHIANG VR HISTORY • Many companies (Virtuality, Sega, Atari, Sony) jumped on the VR hype in the 1990s; but commercialization flopped because both hardware and software failed to deliver on the promised VR vision. • Any use of the VR devices in the 2000s was limited to the military, aviation, and medical industry for simulation and training. • VR hype resurged after Oculus successful KickStarter campaign; subsequently acquired by Facebook for $2.4 bn. • Investments rushed into the VR industry as major tech firms such as Google, Samsung, and Microsoft and prominent VC firms bet big on the VR revolution. LIST OF VIRTUAL REALITY HEADSET FIRMS Company Name Entered Exited Disposition Company Name Entered Exited Disposition Company Name Entered Exited Disposition LEEP Optics 1979 1998 Bankrupt Meta Altergaze 2014 Ongoing VPL Research 1984 1990 Bankrupt SpaceGlasses 2012 Ongoing Archos VR 2014 Ongoing Division Group Sulon Cortex 2012 Ongoing AirVr 2014 Ongoing LTD 1989 1999 Acquired Epson Moverio Sega VR 1991 1994 Bankrupt BT-200 2012 Ongoing 360Specs 2014 Ongoing Virtuality 1991 1997 Acquired i2i iPal 2012 Ongoing Microsoft VictorMaxx 1992 1998 Bankrupt Star VR 2013 Ongoing Hololens Systems 2015 Ongoing Durovis Dive 2013 Ongoing Razr OSVR 2015 Ongoing Atari Jaguar VR 1993 1996 Discontinued Vrizzmo 2013 Ongoing Virtual I-O 1993 1997 Bankrupt Cmoar 2015 Ongoing CastAR 2013 Ongoing eMagin 1993 Ongoing Dior Eyes VR 2015 Ongoing VRAse 2013 Ongoing Virtual Boy 1994 1995 Discontinued Yay3d VR 2013 Ongoing Impression Pi -
Bachelorarbeit
Bachelorarbeit Rúben Miguel Carvalho Mano The benefits of Virtual Reality in Education Fakultät Technik und Informatik Faculty of Computer Science and Engineering Department Informatik Department Computer Science Rúben Miguel Carvalho Mano The benefits of Virtual Reality in Education Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung im Studiengang Bachelor of Science Technische Informatik am Department Informatik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg Betreuender Prüfer: Prof. Dr. Kai von Luck Zweitgutachter: Prof. Dr. Philipp Jenke Eingereicht am: 12 Januar 2019 Rúben Miguel Carvalho Mano The benefits of Virtual Reality in Education Keywords Virtual Reality, Virtual, Reality, Education, Benefits, Case Study Kurzzusammenfassung In dieser Arbeit geht es um eine Fallstudie, die die Vorteile von Virtual Reality in der Lehre erläutern soll. Nachdem ein Überblick über das Thema Virtual Reality geschaffen und eine Beschreibung und ein Vergleich verschiedener „Head-Mounted Displays“ gegeben wurde, konnte ein für die Studie passendes Modell ausgewählt werden. Dies war wichtig, da sonst im großen Feld der Virtual Reality der Leser schnell den Überblick verlieren kann. Die Bedeutung von Virtual Reality in der Lehre ist stetig wachsend. Dies liegt an den Lernmöglichkeiten, die diese sichere und vorteilhafte Technik mit sich bringt. Ein Spiel wurde entwickelt und von verschiedenen Personen unterschiedlichen Alters und Tätigkeitsfelder getestet. Rückschlüsse aus ihren Erfahrungen lassen folgern, dass Virtual Reality ein Feld ist, dass sich noch weiter zu entwickeln hat und es ethische und deontische Probleme hat, die man sorgfältig analysieren muss. Jedoch werden mit dem technischen Fortschritt die Resultate, die aus dieser Studie hervorgehen, es ermöglichen noch tiefer zu forschen und die Ergebnisse in der realen Welt anzuwenden. -
Getting Real with the Library
Getting Real with the Library Samuel Putnam, Sara Gonzalez Marston Science Library University of Florida Outline What is Augmented Reality (AR) & Virtual Reality (VR)? What can you do with AR/VR? How to Create AR/VR AR/VR in the Library Find Resources What is Augmented and Virtual Reality? Paul Milgram ; Haruo Takemura ; Akira Utsumi ; Fumio Kishino; Augmented reality: a class of displays on the reality- virtuality continuum. Proc. SPIE 2351, Telemanipulator and Telepresence Technologies, 282 (December 21, 1995) What is Virtual Reality? A computer-generated simulation of a lifelike environment that can be interacted with in a seemingly real or physical way by a person, esp. by means of responsive hardware such as a visor with screen or gloves with sensors. "virtual reality, n". OED Online 2017. Web. 16 May 2017. Head mounted display, U.S. Patent Number 8,605,008 VR in the 90s By Dr. Waldern/Virtuality Group - Dr. Jonathan D. Waldern, Attribution, https://commons.wikimedia.org/w/index.php?curid=32899409 By Dr. Waldern/Virtuality Group - Dr. Jonathan D. Waldern, By Dr. Waldern/Virtuality Group - Dr. Jonathan D. Waldern, Attribution, Attribution, https://commons.wikimedia.org/w/index.php?curid=32525338 https://commons.wikimedia.org/w/index.php?curid=32525505 1 2 3 VR with a Phone 1. Google Daydream View 2. Google Cardboard 3. Samsung Gear VR Oculus Rift ● Popular VR system: headset, hand controllers, headset tracker ($598) ● Headset has speakers -> immersive environment ● Requires a powerful PC for full VR OSVR Headset ● Open Source ● “Plug in, Play Everything” ● Discounts for Developers and Academics ● Requires a powerful PC for full VR Augmented Reality The use of technology which allows the perception of the physical world to be enhanced or modified by computer-generated stimuli perceived with the aid of special equipment. -
Evaluating Performance Benefits of Head Tracking in Modern Video
Evaluating Performance Benefits of Head Tracking in Modern Video Games Arun Kulshreshth Joseph J. LaViola Jr. Department of EECS Department of EECS University of Central Florida University of Central Florida 4000 Central Florida Blvd 4000 Central Florida Blvd Orlando, FL 32816, USA Orlando, FL 32816, USA [email protected] [email protected] ABSTRACT PlayStation Move, TrackIR 5) that support 3D spatial in- teraction have been implemented and made available to con- We present a study that investigates user performance ben- sumers. Head tracking is one example of an interaction tech- efits of using head tracking in modern video games. We nique, commonly used in the virtual and augmented reality explored four di↵erent carefully chosen commercial games communities [2, 7, 9], that has potential to be a useful ap- with tasks which can potentially benefit from head tracking. proach for controlling certain gaming tasks. Recent work on For each game, quantitative and qualitative measures were head tracking and video games has shown some potential taken to determine if users performed better and learned for this type of gaming interface. For example, Sko et al. faster in the experimental group (with head tracking) than [10] proposed a taxonomy of head gestures for first person in the control group (without head tracking). A game ex- shooter (FPS) games and showed that some of their tech- pertise pre-questionnaire was used to classify participants niques (peering, zooming, iron-sighting and spinning) are into casual and expert categories to analyze a possible im- useful in games. In addition, previous studies [13, 14] have pact on performance di↵erences. -
Innovation in Shared Virtual Spaces for Mental Health Therapy
Innovation in Shared Virtual Spaces for Mental Health Therapy Jake Backer Advisor: Professor Soussan Djamasbi Worcester Polytechnic Institute May 23, 2021 This report represents the work of one or more WPI undergraduate students submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports on the web without editorial or peer review. 1 Contents 1 Abstract 3 2 Introduction 4 3 Background 5 3.1 Mental Health . .5 3.2 Telehealth . .5 3.3 Augmented Reality (AR) . .6 3.4 AR Therapy . .7 3.5 Avatars . .7 4 Designing the Application 8 4.1 Infrastructure . .8 4.1.1 Networking . .9 4.1.2 Movement . 11 4.1.3 Audio Communication . 12 4.1.4 Immersive Experience . 14 4.1.5 Telemetry . 15 5 User Studies 17 5.1 Results . 17 5.2 Discussion and Future User Studies . 19 6 Contribution and Future Work 21 References 24 2 1 Abstract Rates of mental health disorders among adolescents and younger adults are on the rise with the lack of widespread access remaining a critical issue. It has been shown that teletherapy, defined as therapy delivered remotely with the use of a phone or computer system, may be a viable option to replace in-person therapy in situations where in-person therapy is not possible. Sponsored by the User Experience and Decision Making (UXDM) lab at WPI, this IQP is part of a larger project to address the need for mental health therapy in situations where patients do not have access to traditional in-person care. -
New Realities Risks in the Virtual World 2
Emerging Risk Report 2018 Technology New realities Risks in the virtual world 2 Lloyd’s disclaimer About the author This report has been co-produced by Lloyd's and Amelia Kallman is a leading London futurist, speaker, Amelia Kallman for general information purposes only. and author. As an innovation and technology While care has been taken in gathering the data and communicator, Amelia regularly writes, consults, and preparing the report Lloyd's does not make any speaks on the impact of new technologies on the future representations or warranties as to its accuracy or of business and our lives. She is an expert on the completeness and expressly excludes to the maximum emerging risks of The New Realities (VR-AR-MR), and extent permitted by law all those that might otherwise also specialises in the future of retail. be implied. Coming from a theatrical background, Amelia started Lloyd's accepts no responsibility or liability for any loss her tech career by chance in 2013 at a creative or damage of any nature occasioned to any person as a technology agency where she worked her way up to result of acting or refraining from acting as a result of, or become their Global Head of Innovation. She opened, in reliance on, any statement, fact, figure or expression operated and curated innovation lounges in both of opinion or belief contained in this report. This report London and Dubai, working with start-ups and corporate does not constitute advice of any kind. clients to develop connections and future-proof strategies. Today she continues to discover and bring © Lloyd’s 2018 attention to cutting-edge start-ups, regularly curating All rights reserved events for WIRED UK. -
Bachelorscriptie De Waarde Van Virtual Reality in Het Toekomstige Ontwerpproces
Bachelorscriptie De waarde van virtual reality in het toekomstige ontwerpproces Auteurs Student T. de Haas 568847 Student R. Versloot 566305 Afstudeerbegeleiders Bedrijfsbegeleider 1e begeleider ir. J. Janssen ABT ir. T. van Dooren 2e begeleider ing. M.A.A. van Muijden MSc Onderwijsinstelling Hogeschool van Arnhem en Nijmegen Afstudeerbedrijf ABT 29 mei 2018, Velp Bachelorscriptie De waarde van virtual reality in het toekomstige ontwerpproces Auteurs Student T. de Haas Studentnummer 568847 Opleiding Bouwkunde Afstudeerrichting Architectuur Student R. Versloot Studentnummer 566305 Opleiding Bouwkunde Afstudeerrichting Architectuur 29 mei 2018, Velp Voorwoord Bij dezen willen wij graag ABT bedanken voor het bieden van de ruimte en ondersteuning in het bepalen van de richting Dit is de scriptie: De waarde van virtual reality in het van het afstudeeronderzoek. toekomstige ontwerpproces. Het onderzoek is gedaan in het kader van het afstuderen aan de opleiding bouwkunde Nadrukkelijk willen wij graag de bedrijfsbegeleider T. van aan de Hogeschool van Arnhem en Nijmegen en is Dooren bedanken voor het mede mogelijk maken van de uitgevoerd in opdracht van ABT. Dit is een multidisciplinair afstudeerplaats binnen ABT en de prettige samenwerking ingenieursbureau met een breed scala aan projecten, zoals: die van het begin tot eind van het afstuderen heeft terminals, rechtbanken, musea en woon/werk complexen. plaatsgevonden. Wij hebben vaak de gelegenheid gekregen om te sparren, wat tot veel waardevolle input voor de scriptie Van februari tot en met mei zijn wij, Reinder Versloot en Timmo heeft geleid. de Haas, bezig geweest met het opstellen, onderzoeken en uitschrijven van de scriptie. Daarnaast willen wij graag de respondenten van de interviews bedanken. -
Virtual Reality for Telecommuting
Virtual Reality for Telecommuting Yaying Zhang Abstract Microsoft Vancouver The COVID-19 outbreak resulted in a large scale [email protected] prevention action of quarantine, which made many Figure 1: Floating emojis in people and companies unable to conduct normal work AltspaceVR [1]. Brennan Jones activities for weeks. This triggered vast discussions in Department of Computer the improvement of telecommuting technologies. Science Although telecommuting is beneficial, it is currently not University of Calgary widely accepted, especially in traditional industries like [email protected] farming, retail, and manufacturing. One reason is that it cannot completely replace the experience of working locally yet. One key requirement is for technologies to provide a “feeling of presence,” so that remote users feel as if they are there with colleagues, and to be able to manipulate machines remotely as easy as (or better than) when they are on-site. This is a major challenge Figure 2: In AltspaceVR [1] 101 Events, a host teaches the that virtual reality (VR) can play a role in solving. This audience how to use AltspaceVR’s paper discusses current VR technologies for connecting functionalities with slides and humans to humans and humans to things in microphone speech. telecommuting, as well as the gaps and potential directions VR practitioners can work toward addressing. Introduction In late 2019 and early 2020, a novel coronavirus outbreak, COVID-19, struck Wuhan, China around Lunar New Year, when hundreds of millions of people were travelling for family gatherings. Infections rose Copyright is held by the author/owner(s). sharply from tens to hundreds to thousands. -
A Review of Extended Reality (XR) Technologies for Manufacturing Training
technologies Article A Review of Extended Reality (XR) Technologies for Manufacturing Training Sanika Doolani * , Callen Wessels, Varun Kanal, Christos Sevastopoulos, Ashish Jaiswal and Harish Nambiappan and Fillia Makedon * Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA; [email protected] (C.W.); [email protected] (V.K.); [email protected] (C.S.); [email protected] (A.J.); [email protected] (H.N.) * Correspondence: [email protected] (S.D.); [email protected] (F.M.) Received: 30 October 2020; Accepted: 5 December 2020; Published: 10 December 2020 Abstract: Recently, the use of extended reality (XR) systems has been on the rise, to tackle various domains such as training, education, safety, etc. With the recent advances in augmented reality (AR), virtual reality (VR) and mixed reality (MR) technologies and ease of availability of high-end, commercially available hardware, the manufacturing industry has seen a rise in the use of advanced XR technologies to train its workforce. While several research publications exist on applications of XR in manufacturing training, a comprehensive review of recent works and applications is lacking to present a clear progress in using such advance technologies. To this end, we present a review of the current state-of-the-art of use of XR technologies in training personnel in the field of manufacturing. First, we put forth the need of XR in manufacturing. We then present several key application domains where XR is being currently applied, notably in maintenance training and in performing assembly task.