Operations Overview for the ANDRILL Mcmurdo Ice Shelf Project, Antarctica T

Total Page:16

File Type:pdf, Size:1020Kb

Operations Overview for the ANDRILL Mcmurdo Ice Shelf Project, Antarctica T University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 2007 Operations Overview for the ANDRILL McMurdo Ice Shelf Project, Antarctica T. Falconer Victoria University of Wellington, [email protected] A. Pyne Victoria University of Wellington M. Olney Florida State University M. Curren Florida State University ANDRILL-MIS Science Team Follow this and additional works at: http://digitalcommons.unl.edu/andrillrespub Part of the Environmental Indicators and Impact Assessment Commons Falconer, T.; Pyne, A.; Olney, M.; Curren, M.; and ANDRILL-MIS Science Team, "Operations Overview for the ANDRILL McMurdo Ice Shelf Project, Antarctica" (2007). ANDRILL Research and Publications. 11. http://digitalcommons.unl.edu/andrillrespub/11 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Terra Antartica 2007, 14(3), 131-140 Operations Overview for the ANDRILL McMurdo Ice Shelf Project, Antarctica T. F ALCONER1*, A. PYNE1, R. LEVY2, M. OLNEY3, M. CURREN3 & THE ANDRILL-MIS SCIENCE TEAM4 1Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington - New Zealand 2ANDRILL Science Management Offi ce, University of Nebraska-Lincoln, Lincoln, NE, 68588-0341 - USA 3Antarctic Research Facility, Florida State University, Tallahassee, FL, 32303 - USA 4http://www.andrill.org/support/references/appendixc.html *Corresponding author ([email protected]) Abstract - During the austral summer of 2006, a record-setting 1 284.87 metre (m)-long rock and sediment core (ANDRILL [AND]-1B) was recovered from beneath the McMurdo Ice Shelf (MIS) in 917 m of water. A custom built drilling system comprising a UDR-1200 rig, jack-up platform, hot water drill, sea riser, and diamond-bit wireline coring string was set up on the McMurdo Ice Shelf approximately 9 kilometres (km) from Scott Base (NZ). The drilling sytem employed technology developed to handle challenging environmental conditions including an 85 m-thick ice shelf ‘platform’ that moved both laterally and vertically, strong tidal currents, and high winds. Drill site set up commenced on 18 August 2006, and the fi rst core for AND-1B was recovered on 31 October 2006. Drilling operations continued through 26 December 2006. Science operations were conducted at the drill site, in both the borehole and a purpose built laboratory (lab) complex, and at the Crary Science and Engineering Center (CSEC), McMurdo Station (USA). Drill site science operations involved downhole logging, which was carried out in the borehole casing and in parts of the open hole, fracture studies, and physical properties measurements. Core was transported from the drill site to McMurdo Station, where it was split, scanned, described, and sampled for initial characterisation. Once initial studies were completed, the core was packed into crates for shipment to the Antarctic Research Facility (ARF; core respository) at Florida State University in the United States. Coring completed: ...................26 December 2006 DRILL SITE OVERVIEW Sea riser cut: ..............................11 January 2007 Sea riser recovered: ....................12 January 2007 The ANDRILL MIS Project drilling and science operations occurred at two primary locations: the drill site and Crary Science and Engineering Laboratory, ICE SHELF THICKNESS McMurdo Station. The following provides a summary The ice shelf at the MIS Project drill site was of key operational events and data. expected to be greater than 70 m thick based on the depth of an initial hot water drill hole (HWD-1) made SUMMARY DRILLING DATA FOR AND-1B through the ice shelf in 2003 (0.1 km west of the MIS Project drill site). In addition, a hot water drill (HWD) Drill rig location (1 October 2006): test carried out in February 2006 (approximately 4.1 .................................77.8894417S, 167.0893282E km east of the MIS Project drill site) drilled through Ice-shelf thickness: ..................... ~82 metres (m) 97 m of ice and provided an estimate of maximum Freeboard: ...............................................18.9 m thickness. The ice shelf at the MIS Project drill site Firn-ice transition: .....................................~25 m was penetrated by the HWD in late September 2006 Ice-shelf lateral movement and determined to be approximately 82 m thick. Sea (from 31 Oct 2006 to 11 Jan 2007): ......21.93 m level was initially measured in the ice hole at 19.7 Maximum ice-shelf tidal range m below the cellar fl oor, indicating the ice shelf had (uncorrected GPS data): ........................ ~1.7 m approximately 19 m of freeboard. Depth to mean seafl oor (from platform cellar fl oor): ................. 935.76 m LATERAL MOVEMENT Sea riser spud-in: ....................... 31 October 2006 Sea riser shoe set at: ........................17.18 metres The ice shelf in the area of the MIS Project drill below seafl oor (mbsf) site moves in a westerly direction at approximately PQ casing shoe (PQ3 bit) set at: ............. 238 mbsf 100 m/yr. From the sea riser spud-in date (31 October HQ core interval to: ...............................702 mbsf 2006) to the sea riser cut- off date (11 January 2007) HQ casing shoe (HQTT bit) set at: ....... 690.5 mbsf a total lateral movement of 21.93 m at 263.8 degrees NQ cored interval to: ......................1 284.87 mbsf was measured (Fig. 1). © Terra Antartica Publication 2007 132 T. Falconer et al. vicinity of the drill site. This estimate was based on tidal measurements collected approximately 10 km away from the drill site. The set-up of the rig and platform and the tide compensation equipment was designed to accommodate this amount of vertical motion while maintaining constant tension on the sea riser and subsequent casings. Robinson (2006) also estimated the tidal cycle and likely water current speed and direction beneath the ice shelf, through the water column, and at the seafl oor. GPS monitoring at the drill site also recorded tidal (vertical) movement. Measured vertical movement generally followed the tidal cycle prediction presented Fig. 1 – Distance and direction of total lateral movement of the in Robinson (2006) (Fig. 2). Note that GPS data for MIS Project Drill Site located on the McMurdo Ice Shelf. vertical movement presented here have not been corrected for barometric pressure changes or other vertical uncertainties. Modelling of stress on the sea riser took into account known ice shelf movement and maximum WATER CURRENTS water-column current models which were developed Water currents were not measured at the drill site, by Robinson & Pyne (2003) based on current as it was not possible to deploy current measurement measurements made at HWD-1 in 2003. Lateral ice- instruments through the access hole in the ice shelf. shelf movement was also taken into account during The performance of the sea riser was affected by drill site preparation as a compacted snow pad had water-column currents, which caused a slow period to be constructed a year prior to drilling during the (2-3 second) “vibration” in the riser. This vibration 2005–2006 Antarctic fi eld season. The compacted was more pronounced during the 1–2 days that surface was constructed in a position that would move followed reaming of the ice shelf hole with the hot- over the selected drilling location by the start of the water reaming tool. It is likely that reaming the access drilling season (nominally 1 October 2006). hole allowed for increased movement of the riser and Lateral movement of the drill site was monitored caused the riser to impact against the hard bottom from 18 October 2006 to 13 January 2007 using Global edge of the ice shelf hole. This vibration (probably Positional Satellite (GPS) equipment mounted on the vortex induced vibration) was not predicted during roof of the drill site lab complex. GPS equipment was the drill system design phase and was not included supplied and installed by UNAVCO. in initial stress and performance modelling for the sea riser. TIDAL MOVEMENT An estimate presented in Robinson (2006) WEATHER predicted that tidal motion would cause a 1.3 m Meteorological conditions for the region around maximum vertical movement of the ice shelf in the the drill site were summarised in the ANDRILL Fig. 2 – Diagram showing predicted and measured vertical movement of the McMurdo Ice Shelf (height above the ellipsoid) plotted with barometric pressure. Right-hand x-axis is barometric pressure (mb). Operations Overview for the ANDRILL McMurdo Ice Shelf Project 133 was aligned into the strongest winds, which were expected to come from the south. On 30 October the enclosure performed success- fully in wind gusts that reached 40 kts (74 km/h), after which the alarm points for wind monitoring were reset so that the high wind alert only showed when wind speed reached 40 kts (74 km/h). DRILLING OPERATIONS Projected and actual drilling operations schedule and timeline are presented in fi gures 5 and 6, respectively. SETUP Between 18 and 24 August 2006, the fi rst set of ANDRILL drill site equipment was towed to the drill site Fig. 3 – The ANDRILL drill rig and platform showing the PVC mast using a New Zealand Antarctic Programme Caterpillar enclosure, the drillers’ dog box, and cat walk. D4 from Scott Base, the ANDRILL Caterpillar D6, and two ANDRILL Hagglunds. On 13 September, three United States Antarctic Program (USAP) Caterpillar Comprehensive Environmental Evaluation (Huston Challengers from McMurdo Station towed 26 modifi ed et al. 2006). The main meteorological concern for shipping containers to the drill site. On 18 September, the drilling operation phase of the MIS Project was a team of four ANDRILL personnel began to set up drill wind speed and its potential effect on stability of the site equipment. Persistent windy conditions occurred soft shell mast enclosure (Fig.
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) for ANDRILL Mcmurdo Sound Portfolio Madrid, 9/20 De Junio 2003
    XXVI ATCM Working Paper WP-002-NZ Agenda Item: IV CEP 4a NEW ZEALAND Original: English DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) FOR ANDRILL McMurdo Sound Portfolio Madrid, 9/20 de junio 2003 ANDRILL - The McMurdo Sound Portfolio An international research effort with the participation of Germany, Italy, New Zealand, the United Kingdom and the United States of America. DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION (CEE) FOR ANDRILL McMurdo Sound Portfolio Antarctica New Zealand Private Bag 4745, Christchurch Administration Building International Antarctic Centre 38 Orchard Road, Christchurch January 22, 2003 2 CONTENTS 1. NON-TECHNICAL SUMMARY.....................................................................................11 2. INTRODUCTION...........................................................................................................13 2.1 What is ANDRILL?...............................................................................................13 2.2 The CEE process.................................................................................................15 2.2.1 What is a CEE and why is it needed?....................................................15 2.2.2 Process for preparing the Draft CEE .....................................................15 3. DESCRIPTION OF PROPOSED ACTIVITES ..............................................................17 2.1 Purpose and Need...............................................................................................17 3.1.1 Scientific justification..............................................................................17
    [Show full text]
  • Immediate Scientific Report of the Ross Sea Iceberg Project 1987-88
    SCIENCE AND RESEARCH INTERNAL REPORT 9 IMMEDIATE SCIENTIFIC REPORT OF THE ROSS SEA ICEBERG PROJECT 1987-88 by J.R. Keys and A.D.W. Fowler* This is an unpublished report and must not be cited or reproduced in whole or part without permission from the Director, Science and Research. It should be cited as Science and Research Internal Report No.9 (unpublished). Science and Research Directorate, Department of Conservation, P.O. Box 10 420 Wellington, New Zealand April 1988 *Division of Information Technology, DSIR, Lower Hutt. 1 Frontispiece. NOAA 9 infrared satellite image of the 160 km long mega-giant iceberg B-9 on 9 November, four weeks after separating from the eastern front of Ross Ice Shelf. The image was digitized by US Navy scientists at McMurdo Station, paid for by the US National Science Foundation and supplied by the Antarctic Research Center at Scripps Institute. Several other bergs up to 20 km long that calved at the same time can be seen between B-9 and the ice shelf. These bergs have since drifted as far west as Ross Island (approx 600 km) whereas B-9 has moved only 215 km by 13 April, generally in a west-north-west direction. 2 CONTENTS Frontispiece 1 Contents page 2 SUMMARY 3 INTRODUCTION 4 PROPOSED PROGRAMME 5 ITINERARY 6 SCIENTIFIC ACHIEVEMENTS RNZAF C-130 iceberg monitoring flight 6 SPOT satellite image and concurrent aerial Photography 8 Ground-based fieldwork 9 B-9 iceberg 11 CONCLUSION 13 FUTURE RESEARCH 13 PUBLICATIONS 14 Acknowledgenents 14 References 14 FIGURES 15 TABLES 20 3 1.
    [Show full text]
  • Living and Working at USAP Facilities
    Chapter 6: Living and Working at USAP Facilities CHAPTER 6: Living and Working at USAP Facilities McMurdo Station is the largest station in Antarctica and the southermost point to which a ship can sail. This photo faces south, with sea ice in front of the station, Observation Hill to the left (with White Island behind it), Minna Bluff and Black Island in the distance to the right, and the McMurdo Ice Shelf in between. Photo by Elaine Hood. USAP participants are required to put safety and environmental protection first while living and working in Antarctica. Extra individual responsibility for personal behavior is also expected. This chapter contains general information that applies to all Antarctic locations, as well as information specific to each station and research vessel. WORK REQUIREMENT At Antarctic stations and field camps, the work week is 54 hours (nine hours per day, Monday through Saturday). Aboard the research vessels, the work week is 84 hours (12 hours per day, Monday through Sunday). At times, everyone may be expected to work more hours, assist others in the performance of their duties, and/or assume community-related job responsibilities, such as washing dishes or cleaning the bathrooms. Due to the challenges of working in Antarctica, no guarantee can be made regarding the duties, location, or duration of work. The objective is to support science, maintain the station, and ensure the well-being of all station personnel. SAFETY The USAP is committed to safe work practices and safe work environments. There is no operation, activity, or research worth the loss of life or limb, no matter how important the future discovery may be, and all proactive safety measures shall be taken to ensure the protection of participants.
    [Show full text]
  • Flnitflrclid
    flNiTflRClID A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) A New Zealand geochemist, Dr W. F. Giggenbach, descends into the inner crater of Mt Erebus on December 23 last year in an unsuccessful attempt to take gas samples. Behind him in the lava lake of the volcano where the temperature is 1000deg Celsius. On his rucksack he carries titanium gas sampling rods. Photo by Colin Monteath VOl. 8, NO. 1 1 . Wellington, New Zealand, as a magazine. o6pt61*11061% I 979I ' . SOUTH SANDWICH Is SOUTH GEORGIA f S O U T H O R K N E Y I s x \ *#****t ■ /o Orcadas arg \ - aanae s» Novolazarevskaya ussr XJ FALKLAND Is /*Signyl.uK ,,'\ V\60-W / -'' \ Syowa japan SOUTH AMERICA /'' /^ y Borga 7 s a "Molodezhnaya A SOUTH , .a /WEDDELL T\USSR SHETLAND DRONNING MAUD LAND ENOERBY \] / Halley Bay^ ununn n mMUU / I s 'SEA uk'v? COATS Ld LAND JJ Druzhnaya ^General Belgrano arg ANTARCTIC %V USSR *» -» /\ ^ Mawson MAC ROBERTSON LANO\ '■ aust /PENINSULA,' "*■ (see map below) /Sohral arg _ ■ = Davis aust /_Siple — USA Amundsen-Scott / queen MARY LAND gMirny [ELLSWORTH u s a / ; t h u s s i " LANO K / ° V o s t o k u s s r / k . MARIE BYRD > LAND WILKES LAND Scott kOSS|nzk SEA I ,*$V /VICTORIA TERRE ' •|Py»/ LAND AOEilE ,y Leningradskaya X' USSR,''' \ 1 3 -------"';BALLENYIs ANTARCTIC PENINSULA ^ v . : 1 Teniente Matienzo arg 2 Esperanza arc 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg 6 Vicecomodoro Marambio arg ' ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Presidents Frei chile * ? 500 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Management Plan for Antarctic Specially Managed Area (ASPA) No
    Management Plan for Antarctic Specially Managed Area (ASPA) No. 137 NORTHWEST WHITE ISLAND, McMURDO SOUND (167° 20' E, 78° 00' S) 1 Description of values to be protected An area of 150 km2 of coastal shelf ice on the northwest side of White Island was originally designated by Recommendation XIII-8 (1985, SSSI No. 18) after a proposal by the United States of America on the grounds that this locality contains an unusual breeding population of Weddell seals (Leptonychotes weddellii) which is the most southerly known, and which has been physically isolated from other populations by advance of the McMurdo Ice Shelf and Ross Ice Shelf. The original boundaries have been adjusted in the current plan in light of recent data recording the spatial distribution of the seals on the ice shelves. In the south, the boundary of the Area has been shifted north and east to exclude the region north of White Strait where no observations of the seals have been recorded. In the north, the Area has been extended to encompass an additional part of the Ross Ice Shelf in order to ensure inclusion of more of the region within which the seals may be found. The Area is now approximately 130 km2. The colony appears unable to relocate to another area because of its distance from the open ocean of McMurdo Sound, and as such is highly vulnerable to any human impacts that might occur in the vicinity. Year-round studies have detected no evidence of immigration or emigration of seals from the population, which appears to have grown to around 25 to 30 animals from a population of around 11 in the 1960s.
    [Show full text]
  • Andrill Mcmurdo Ice Shelf Project
    ANDRILL MCMURDO ICE SHELF PROJECT SCIENTIFIC PROSPECTUS image courtesy Josh Landis and the National Science Foundation ANDRILL CONTRIBUTION 4 ANDRILL ISBN: 0-9723550-1-4 Additional copies of this report and other information regarding ANDRILL are available from: ANDRILL Science Management Office 126 Bessey Hall University of Nebraska – Lincoln Lincoln, NE 68588-0341 Phone: 1 + (402) 472-6723 Fax: 1 + (402) 472-6724 Please visit our website at http://andrill.org ANDRILL McMurdo Ice Shelf Project Scientific Prospectus TABLE OF CONTENTS: 1. SUMMARY 1 2. THE ANDRILL PROGRAM: BACKGROUND AND OVERVIEW 2 2.1 The McMurdo Sound Portfolio of Stratigraphic Drilling Objectives 3 3. McMURDO ICE SHELF PROJECT 4 3.1 Introduction 4 3.2 Regional Tectonic and Stratigraphic Setting 6 3.3 Site Survey and a Stratigraphic Interpretation of Target Interval 7 3.3.1 Seismic Stratigraphy 7 3.3.2 Seismic Stratigraphic Interpretation and Age Relationships: A Prognosis for ANDRILL Drilling 8 3.3.3 Faulting and Deformation 9 3.3.4 Bathymetry 9 3.3.5 Oceanography 10 3.3.6 Seafloor and Shallow Sub-seafloor Stratigraphy 10 3.4 Towards a Glacial-Interglacial Depositional Model 11 3.5 Chronostratigraphy 12 4. SCIENTIFIC OBJECTIVES 12 4.1 Overview 12 4.2 Key Climatic Questions to be Addressed 13 5. THE SCIENCE TEAM 14 6. ACKNOWLEDGEMENTS 15 7. REFERENCES 15 Co-Chief Scientists - - Tim Naish1,2 and Ross Powell3 1Institute of Geological and Nuclear Sciences P. O. Box 303068, Lower Hutt, New Zealand. 2Antarctic Research Centre, Victoria University of Wellington P. O. Box 600, Wellington, New Zealand e-mail: [email protected] phone: 64-4-570-4767 3Department of Geology and Environmental Geosciences 312 Davis Hall, Normal Rd, Northern Illinois University De Kalb, IL 60115-2854, U.S.A.
    [Show full text]
  • NORTH-WEST WHITE ISLAND, Mcmurdo SOUND
    MEASURE 9 - ANNEX Management Plan for Antarctic Specially Protected Area No 137 NORTH-WEST WHITE ISLAND, McMURDO SOUND 1. Description of values to be protected An area of 150km2 of coastal shelf ice on the north-west side of White Island was originally designated by Recommendation XIII-8 (1985, SSSI No 18) after a proposal by the United States of America on the grounds that this locality contains an unusual breeding population of Weddell seals (Leptonychotes weddellii) which is the most southerly known, and which has been physically isolated from other populations by advance of the McMurdo Ice Shelf and Ross Ice Shelf (Map 1). The original boundaries were adjusted in 2002 (Measure 1) in light of new data recording the spatial distribution of the seals on the ice shelves. In the south, the boundary of the Area was shifted north and east to exclude the region north of White Strait where no observations of the seals have been recorded. In the north, the Area was extended to encompass an additional part of the Ross Ice Shelf in order to ensure inclusion of more of the region within which the seals may be found. In 2008, the Management Plan was updated to include recent census data on the seal colony, which led to revision of the boundary to include part of the Ross Ice Shelf in the north-east where seals have been observed. The Area is now approximately 142km2. Additional guidance on aircraft overflight and access has also been included. The Weddell seal colony appears unable to relocate to another area because of its distance from the open ocean of McMurdo Sound, and as such it is highly vulnerable to any human impacts that might occur in the vicinity.
    [Show full text]
  • Background to the ANDRILL Mcmurdo Ice Shelf Project (Antarctica) and Initial Science Volume
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 2007 Background to the ANDRILL McMurdo Ice Shelf Project (Antarctica) and Initial Science Volume T. R. Naish Victoria University of Wellington, [email protected] R. D. Powell Northern Illinois University, [email protected] R. H. Levy University of Nebraska–Lincoln, [email protected] ANDRILL-MIS Science Team Follow this and additional works at: https://digitalcommons.unl.edu/andrillrespub Part of the Environmental Indicators and Impact Assessment Commons Naish, T. R.; Powell, R. D.; Levy, R. H.; and ANDRILL-MIS Science Team, "Background to the ANDRILL McMurdo Ice Shelf Project (Antarctica) and Initial Science Volume" (2007). ANDRILL Research and Publications. 29. https://digitalcommons.unl.edu/andrillrespub/29 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Terra Antartica 2007, 14(3), 121-130 Background to the ANDRILL McMurdo Ice Shelf Project (Antarctica) and Initial Science Volume T. N AISH1,2*, R. POWELL3, R. LEVY4 & THE ANDRILL-MIS SCIENCE TEAM5 1Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington - New Zealand 2Geological and Nuclear (GNS) Science, PO Box 30368, Lower Hutt - New Zealand 3Department of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL, 60115-2854 - USA 4ANDRILL Science Management Offi ce, University of Nebraska-Lincoln, Lincoln, NE 68588-0341 - USA 5 http://www.andrill.org/support/references/appendixc.html *Corresponding author ([email protected]) INTRODUCTION TO THE VOLUME (Horgan et al.
    [Show full text]
  • Liquid Conductivity of a 44-Meter Firn Core, Mcmurdo Ice Shelf
    throughout the first 13 meters. The conductivity profile con- Liquid conductivity of a 44-meter firn tains many sharp peaks which seem to correlate with the deu- core, McMurdo Ice Shelf terium profile. The seasonal fluctuations were apparently pres- ent throughout the core, as was determined by examining selected deep sections which were sampled at intervals of 10 per JULIE M. PALAIS year. The sharpness of the conductivity peaks as compared to the smoothness of the deuterium variations is consistent with Institute of Polar Studies findings of Herron and Langway (1979) who observed sharp The Ohio State University sodium peaks and more sinusoidal oxygen isotope peaks in the Columbus, Ohio 43210 cores they studied. The similarity of the conductivity profile to that of sodium suggests that the conductivity profile might be R. DELMAS and M. BRIAT interpreted as evidence of seasonal influxes of marine im- purities during periods of open water and intensified cyclonic Laboratoire tie Glactolou storms. Detailed examination of some of the conductivity peaks Grenoble, France shows that they are actually associated with high concentrations of sodium and sulfate. In some cases, sulfate is in excess of J. JOUZEL stoichiometric sodium sulfate. Some of this excess sulfate could be of volcanic origin (i.e., a local background) or may be derived CEN Saclay from marine biogenic sources. Gif-sur-Yvette, France Preliminary observations of the dust layer at 18.51-18.61 meters suggest that it is primarily windblown dust and weathered fragments from locally exposed bedrock. Glass During the 1978-1979 austral summer several firn cores were shards are present although not abundant in this layer.
    [Show full text]
  • Oceanography and Sedimentation Beneath The
    ISSN 0375 8192 ANTARCTIC RESEARCH CENTRE Antarctic Data Series No 25 OCEANOGRAPHY AND SEDIMENTATION BENEATH THE MCMURDO ICE SHELF IN WINDLESS BIGHT, ANTARCTICA 2005 (Revised August 2007) P.J. Barrett1, L. Carter1, D. Damiani2, G.B. Dunbar1, E. Dunker3, G. Giorgetti2, M.A. Harper1, R.M. McKay1, F. Niessen3, U. Nixdorf3, A.R. Pyne1, C. Riesselmann4, N. Robinson5, C. Hollis6 and P. Strong6 1 Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington, NZ. 2 Dipartimento di Scienze della Terra, Università di Siena, 8 via Laterina, Siena 52100, Italy. 3 Alfred Wegener Institut fur Polar- und Meerforschung, Columbusstrasse, Bremerhaven, Germany. 4 Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 90425, USA. 5 National Institute of Water and Atmospheric Research, PO Box 14-901, Kilbirnie, Wellington, NZ. 6 Institute of Geological and Nuclear Sciences, PO Box 30-368, Lower Hutt, NZ. in association with the Antarctic Data Series No. 25 A Publication of the Antarctic Research Centre: Victoria University of Wellington PO Box 600, Wellington, New Zealand This publication is available in pdf format at our http site. http://www.victoria.ac.nz/antarctic/ Cover image: Field Camp at Windless Bight with Mt Erebus on the right. Contents Contents ....................................................................................................................................................... i Figures ........................................................................................................................................................iii
    [Show full text]
  • Calving and Rifting on the Mcmurdo Ice Shelf, Antarctica
    Annals of Glaciology 58(75pt1) 2017 doi: 10.1017/aog.2017.12 78 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Calving and rifting on the McMurdo Ice Shelf, Antarctica Alison F. BANWELL,1 Ian C. WILLIS,1 Grant J. MACDONALD,2 Becky GOODSELL,3 David P. MAYER,2,4 Anthony POWELL,3 Douglas R. MACAYEAL2 1Scott Polar Research Institute, The University of Cambridge, Cambridge, UK E-mail: [email protected] 2Department of the Geophysical Sciences, The University of Chicago, Chicago, IL, USA 3Antarctica New Zealand, Christchurch, New Zealand 4United States Geological Survey, Astrogeology Science Center, Flagstaff, AZ, USA ABSTRACT. On 2 March 2016, several small en échelon tabular icebergs calved from the seaward front of the McMurdo Ice Shelf, and a previously inactive rift widened and propagated by ∼3 km, ∼25% of its previous length, setting the stage for the future calving of a ∼14 km2 iceberg. Within 24 h of these events, all remaining land-fast sea ice that had been stabilizing the ice shelf broke-up. The events were witnessed by time-lapse cameras at nearby Scott Base, and put into context using nearby seismic and automatic weather station data, satellite imagery and subsequent ground observation. Although the exact trigger of calving and rifting cannot be identified definitively, seismic records reveal superimposed sets of both long-period (>10 s) sea swell propagating into McMurdo Sound from storm sources beyond Antarctica, and high-energy, locally-sourced, short-period (<10 s) sea swell, in the 4 days before the fast ice break-up and associated ice-shelf calving and rifting.
    [Show full text]