Working with Hazardous Chemicals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mechanistic Study of Methylbenzene Dealkylation in Methanol-To-Olefins
Journal of Catalysis 369 (2019) 86–94 Contents lists available at ScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat Mechanistic study of methylbenzene dealkylation in methanol-to-olefins catalysis on HSAPO-34 ⇑ Andrew Hwang, Blake A. Johnson, Aditya Bhan Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA article info abstract Article history: Methylbenzenes entrained within the cavities of silicoaluminophosphate zeotype HSAPO-34 react with Received 14 June 2018 methanol in H+-mediated dealkylation to give ethylene and propylene in methanol-to-olefins catalysis. Revised 1 August 2018 Methylbenzenes dealkylation on solid acids is proposed to occur either via the side-chain mechanism, Accepted 14 October 2018 where an exocyclic C@C undergoes successive methylation prior to CAC cleavage for olefin elimination, or the paring mechanism, where ring contraction to a bicyclohexenyl cation precedes CAC cleavage for olefin elimination. Distinct dealkylation mechanisms prescribe distinct combinations of C atoms—from Keywords: aromatic methyl, aromatic ring, and methanol/dimethyl ether—to comprise the olefin product. Site- Methanol-to-olefins specific isotope tracing that distinguishes between isotope labels in aromatic methyl and aromatic ring Methylbenzenes dealkylation Isotope tracing positions for each methylbenzene shows that tetramethylbenzene gives ethylene via the side-chain Site-specific mechanism and penta- and hexamethylbenzene give propylene via the paring mechanism. The ratio of Quantitative 13C NMR propylene selectivity to ethylene selectivity increases in methanol reactions on HSAPO-34 entrained with HSAPO-34 a distribution of methylbenzenes deliberately manipulated towards increasing fractions of penta- and Methylbenzene flash chromatography hexamethylbenzene, corroborating the conclusion that aromatic precursors and dealkylation mecha- nisms for ethylene diverge from those for propylene. -
Fullerene-Acene Chemistry
University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2007 Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene Andreas John Athans University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Athans, Andreas John, "Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene" (2007). Doctoral Dissertations. 363. https://scholars.unh.edu/dissertation/363 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. FULLERENE-ACENE CHEMISTRY: PART I: STUDIES ON THE REGIOSELECTIVE REDUCTION OF ACENES AND ACENE QUINONES; PART II: PROGRESS TOWARD THE SYNTHESIS OF LARGE ACENES AND THEIR DIELS- ALDER CHEMISTRY WITH [60]FULLERENE VOLUME 1 CHAPTERS 1-5 BY ANDREAS JOHN ATHANS B.S. University of New Hampshire, 2001 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy m Chemistry May, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3 2 6 0 5 8 6 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2015 Electronic Supplementary Information for Anodic aromatic C,C cross-coupling reaction using parallel laminar flow mode in a flow microreactor Toshihiro Arai, Hiroyuki Tateno, Koji Nakabayashi, Tsuneo Kashiwagi, and Mahito Atobe Department of Environment and System Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 2408501, Japan. *To whom the correspondence should be addressed. E-mail: [email protected] This PDF file includes: Instrumentation Materials Experimental procedure Spectroscopic data S1 1. Instrumentation Nuclear magnetic resonance (1H NMR) spectra were measured on BRUKER DRX 300 1 1 spectrometer operating at 300 MHz ( H NMR) in CDCl3. All H NMR chemical shifts were reported in ppm relative to internal references of TMS at 0.00. Preparative electrolyses were carried out with a HOKUTO DENKO HABF-501A Potentiostat/Galvanostat. GCMS analyses were performed with a Shimadzu gas chromatograph mass spectrometer GCMS-QP2010. 2. Materials Acetonitrile, acetic acid, and naphthalene (1) were purchased from Kanto Chemical and used as received. Pentamethylbenzene (2), isodurene (5), mesitylene (6), 2-bromonaphthalene (8), and tetrabutylammonium tetrafluoroborate (Bu4NBF4) were purchased from Tokyo Chemical Industry and used as received. 3. Flow Microreactor Figure S1 shows construction procedure for the electrochemical two-inlet flow microreactor. The reactor was constructed from glass plates and two platinum (Pt) plates (3 cm width, 3 cm length each) (Step 1 of Figure S1). A spacer (20 m thickness double faced adhesive tape) was used to leave a rectangular channel exposed, and the two electrodes were simply sandwiched together (area of the two electrodes: 1 × 3 cm2). -
Odor Impact of Volatiles Emitted from Marijuana, Cocaine, Heroin and Their Surrogate Scents Somchai Rice Iowa State University, [email protected]
Agricultural and Biosystems Engineering Agricultural and Biosystems Engineering Publications 12-2015 Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents Somchai Rice Iowa State University, [email protected] Jacek A. Koziel Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/abe_eng_pubs Part of the Agriculture Commons, Bioresource and Agricultural Engineering Commons, and the Toxicology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ abe_eng_pubs/707. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agricultural and Biosystems Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Agricultural and Biosystems Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Odor impact of volatiles emitted from marijuana, cocaine, heroin and their surrogate scents Abstract Volatile compounds emitted into headspace from illicit street drugs have been identified, but until now odor impact of these compounds have not been reported. Data in support of identification of these compounds and their odor impact to human nose are presented. In addition, data is reported on odor detection thresholds for canines highlighting differences with human ODTs and needs to address gaps in knowledge. New data presented here include: (1) compound identification, (2) gas chromatography (GC) column retention times, (3) mass spectral data, (4) odor descriptors from 2 databases, (5) human odor detection thresholds from 2 databases, (6) calculated odor activity values, and (7) subsequent ranking of compounds by concentration and ranking of compounds by odor impact (reported as calculated odor activity values). -
United States Patent Office Patented May 5, 1964 1
3,132,189 United States Patent Office Patented May 5, 1964 1. 2 3,132,189 The process of this invention provides a process for PREPARATION OF 1,2,4,5-TETRAALKYL producing 1,2,4,5-tetraalkylbenzenes in yields of 60% BENZENES FROM PSEUDOCUMENE AND and higher which utilizes inexpensive starting materials PROPYELENE and relatively mild reaction conditions. Eugene F. Latz, Denver, Colo., assignor to Marathon Oil These and other objects and advantages will be readily Company, Findlay, Ohio, a corporation of Ohio apparent by referring to the following examples which No Drawing. Fied July 7, 1961, Ser. No. 124,320 present several modes for carrying out the invention but 2 Claims. (C. 260-67) not by way of limiting the invention to the precise details This invention relates to a process for the selective set forth. synthesis of 1,2,4,5-tetraalkylbenzenes in the presence of O Example I a moist aluminum chloride catalyst. More specifically, To about 12 grams (0.1) of pseudocumene was added this invention relates to the preparation of 1-isopropyl-2, about 1.4 grams of aluminum trichloride and about 0.5 4,5-trimethylbenzene and 1,2,4,5-tetramethylbenzene gram of water in a three-necked flask, equipped with a (durene) as the predominant products from the alkyla 15 condenser, thermometer, stirrer, and gas bubbler. The tion of pseudocumene with propylene in the presence of mixture was heated to about 85-90° C. and after reach a moist aluminum chloride catalyst. ing that temperature propylene gas was passed into the 1,2,4,5-tetraalkylbenzenes are of interest as inter solution at a rate of about 37 cc. -
Referee's Comment in Italic Font; Author's Response in Blue Without
Referee’s Comment in Italic Font; Author’s response in Blue without Italic Font. 1-page 31153, In title and in many places throughout article it would be more accurate to say “monocyclic aromatic hydrocarbons” instead of the more general “aromatic hydrocarbons” to make clear that the focus of this study was benzene and substituted benzene compounds. Agree. We will change all “aromatic hydrocarbons” to “monocyclic aromatic hydrocarbons”. 2-page 31154, line 2, The wording “determines the SOA formation” is unclear. Does it refer to SOA yield? composition? Both? The “SOA formation” means both the SOA yield and SOA chemical composition. We will insert “(SOA yield and chemical composition)” after “determines the SOA formation”. 3-page 31154, line 16, Unclear what is meant by “less oxidized per mass/carbon.” “less oxidized per mass/carbon” corresponds to two parameters which are used to compare the SOA formation difference in different aromatic hydrocarbons in this paper. “oxidized per mass” refers to SOA yield which determines SOA formation potential on a mass basis.“oxidized per carbon” refers to SOA chemical composition (e.g. OSc, O/C and H/C) which determines SOA formation potential on a mole or carbon number basis. To clarify the meaning of “less oxidized per mass/carbon”, we will add “on a basis of SOA yield or chemical composition” after “less oxidized per mass/carbon”. 4-page 31155, line 13, Define what is meant by “methyl group branching” Good point. We will replace “methyl group branching ratio” with “the increase of branched structure”. 5-page 31158, line 14, How are the yield values found in this study different from those in previous studies? Higher or lower? The differences in absolute values of SOA yield in previous studies and this studies depend on the photooxidation conditions. -
A Process for Separating Ethylbenzene from Feedstream Containing Meta-Xylene Using a Zeolite Adsorbent
Europâisches Patentamt 0105 698 ® European Patent Office @ Publication number: B1 Office européen des brevets © EUROPEAN PATENT SPECIFICATION (§) Dateof publication of patent spécification: 18.03.87 (D Intel.4: C 07 C 15/073, C 07 C 7/13 (D Application number: 83305799.5 (§) Date offiling: 28.09.83 (§) A process for separating ethylbenzene from feedstream containing meta-xylene using a zeolite adsorbent. (§) Priority: 28.09.82 US 426242 ® Proprietor: Exxon Research and Engineering Company P.O. Box 390 180 Park Avenue Date of publication of application: Florham Park New Jersey 07932 (US) 18.04.84 Bulletin 84/16 ® Inventor: Barthomeuf, Denise Marie (S) Publication of the grant of the patent: 217 Prospect Avenue 18.03.87 Bulletin 87/12 Cranford New Jersey 07016 (US) Inventor: Hulme, Roger 1017 Clark Street (S) Designated Contracting States: Linden New Jersey 07036 (US) BE CH DE FR GB IT Ll LU NL SE @) Représentative: Somers, Harold Arnold et al (§) Références cited: ESSO Engineering (Europe) Ltd. Patents & GB-A-1 307264 Licences Apex Tower High Street GB-A-1 488 616 New Malden Surrey KT3 4DJ (GB) GB-A-1 550 391 US-A-3734 974 OÙ US-A-3 795711 US-A-3 864416 00 CHEMICAL ABSTRACTS, vol. 88, no. 3, January <0 16, 1978, page 584, abstract no. 22327f COLUMBUS,OHIO (US) 10 O Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall CL be filed in a written reasoned statement. -
Supplement of Role of Methyl Group Number on SOA Formation from Monocyclic Aromatic Hydrocarbons Photooxidation Under Low-Nox Conditions
Supplement of Atmos. Chem. Phys., 16, 2255–2272, 2016 http://www.atmos-chem-phys.net/16/2255/2016/ doi:10.5194/acp-16-2255-2016-supplement © Author(s) 2016. CC Attribution 3.0 License. Supplement of Role of methyl group number on SOA formation from monocyclic aromatic hydrocarbons photooxidation under low-NOx conditions L. Li et al. Correspondence to: D. R. Cocker III ([email protected]) The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence. 1 Table S1 Aromatic hydrocarbon physical properties and rate constant a b c d Compound Vapor Pressure Boiling Point kOH SAPRC-kOH Benzene 75 80 0.139 0.122 Toluene 21 111 0.563 0.558 m-Xylene 9 139 2.31 2.31 1,2,4-trimethylbenzene 2.1 170 3.25 3.25 1,2,4,5-tetramethylbenzene 5.28E-1 193 5.55 4.10 Pentamethylbenzene 3.48E-02* 232 10.3 7.63 Hexamethylbenzene 8.60E-04 265 11.3 11.3 2 Note: a) vapor pressures are referred to Chemispider in unit mmHg at 25 °C; b) boiling points are referred to 3 Chemispider in unit °C; c) OH reaction rate constants are refer to Calvert, et al, 2002; Atkinson and Arey, 2003; 4 Aschmann, et al, 2013 in unit 10-11 cm3 molecule−1 s−1 at 25 °C. d) OH reaction rate constants used in SAPRC-11 5 model in unit 10-11 cm3 molecule−1 s−1 at 25 °C ; * Experimental vapor pressure measured at 20°C, An estimated 6 vapor pressure at 25°C is 3.56e-2 according to Chemispider. -
United States Patent Office Patented Use 1, 1965 1
3,187,057 United States Patent Office Patented use 1, 1965 1. 2 3,187,057 substituents attached to the benzene ring may be ethyl TRECHL{ROMETHYL POLYMETHYL SENZENES groupings. The alkyl substituent may be an n-propyl-, Hugo H. Peter, The Hague, Netherlands, and Meivern C. isobutyl-, or tertiary butyl substituent, but with these Hoff, Highland, Ind., assignors to Standard Oil Com larger alkyl substituents only one such substituent may be pany, Chicago, Ill., a corporation of adiana present in the polyalkylbenzene in order to be useable in No Drawing. Filed May 19, 1958, Ser. No. 735,961 the process of this invention. To illustrate, 1,3-dimethyl 10 Claims. (CI. 260-651) 5-tertiary butyl benzene may be used in the reaction, but 1,3,5-tri tertiary butylbenzene is not useable in the proc This invention relates to reactions between polyalkyl ess. It is important that polyalkylbenzenes which contain benzenes and carbon tetrachloride and particularly con O their alkyl substituents in the 1,3,5-, 1,2,4,5-, 1,2,3,5-, or cerns a method for forming trichloromethyl polyalkyl in the 1,2,3,4,5-positions in the benzene nucleus be used. benzenes. The benzylic chlorines on the intermediate trichloro Prior workers have attempted to prepare trichloro methyl aromatic are far more reactive than the compet methylbenzene by reacting benzene with carbon tetrachlo ing halogens on the carbon tetrachloride. The polyalkyl ride in the presence of aluminum chloride. The reaction 5 benzenes which are substituted in the above defined posi did not stop at the desired stage, but instead continued tions provide steric protection and shelter the reactive and produced dichlorodiarylmethane and chlorotriary trichloromethyl grouping in such fashion as to prevent methane. -
"Hydrocarbons," In: Ullmann's Encyclopedia of Industrial Chemistry
Article No : a13_227 Hydrocarbons KARL GRIESBAUM, Universit€at Karlsruhe (TH), Karlsruhe, Federal Republic of Germany ARNO BEHR, Henkel KGaA, Dusseldorf,€ Federal Republic of Germany DIETER BIEDENKAPP, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany HEINZ-WERNER VOGES, Huls€ Aktiengesellschaft, Marl, Federal Republic of Germany DOROTHEA GARBE, Haarmann & Reimer GmbH, Holzminden, Federal Republic of Germany CHRISTIAN PAETZ, Bayer AG, Leverkusen, Federal Republic of Germany GERD COLLIN, Ruttgerswerke€ AG, Duisburg, Federal Republic of Germany DIETER MAYER, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany HARTMUT Ho€KE, Ruttgerswerke€ AG, Castrop-Rauxel, Federal Republic of Germany 1. Saturated Hydrocarbons ............ 134 3.7. Cumene ......................... 163 1.1. Physical Properties ................ 134 3.8. Diisopropylbenzenes ............... 164 1.2. Chemical Properties ............... 134 3.9. Cymenes; C4- and C5-Alkylaromatic 1.3. Production ....................... 134 Compounds ...................... 165 1.3.1. From Natural Gas and Petroleum . .... 135 3.10. Monoalkylbenzenes with Alkyl Groups 1.3.2. From Coal and Coal-Derived Products . 138 >C10 ........................... 166 1.3.3. By Synthesis and by Conversion of other 3.11. Diphenylmethane .................. 167 Hydrocarbons . .................. 139 4. Biphenyls and Polyphenyls .......... 168 1.4. Uses ............................ 140 4.1. Biphenyl......................... 168 1.5. Individual Saturated Hydrocarbons ... 142 4.2. Terphenyls...................... -
Calculation of the Isobaric Heat Capacities of the Liquid and Solid Phase of Organic Compounds at and Around 298.15 K Based on Their “True” Molecular Volume
molecules Article Calculation of the Isobaric Heat Capacities of the Liquid and Solid Phase of Organic Compounds at and around 298.15 K Based on Their “True” Molecular Volume Rudolf Naef Department of Chemistry, University of Basel, 4003 Basel, Switzerland; [email protected]; Tel.: +41-61-9119273 Received: 28 March 2019; Accepted: 20 April 2019; Published: 24 April 2019 Abstract: A universally applicable method for the prediction of the isobaric heat capacities of the liquid and solid phase of molecules at 298.15 K is presented, derived from their “true” volume. The molecules’ “true” volume in A3 is calculated on the basis of their geometry-optimized structure and the Van-der-Waals radii of their constituting atoms by means of a fast numerical algorithm. Good linear correlations of the “true” volume of a large number of compounds encompassing all classes and sizes with their experimental liquid and solid heat capacities over a large range have been found, although noticeably distorted by intermolecular hydrogen-bond effects. To account for these effects, the total amount of 1303 compounds with known experimental liquid heat capacities has been subdivided into three subsets consisting of 1102 hydroxy-group-free compounds, 164 monoalcohols/monoacids, and 36 polyalcohols/polyacids. The standard deviations for Cp(liq,298) were 20.7 J/mol/K for the OH-free compunds, 22.91 J/mol/K for the monoalcohols/monoacids and 16.03 J/mol/K for the polyols/polyacids. Analogously, 797 compounds with known solid heat capacities have been separated into a subset of 555 OH-free compounds, 123 monoalcohols/monoacids and 119 polyols/polyacids. -
New Initiating Systems for Cationic Polymerization of Plant-Derived Monomers: Gacl3/Alkylbenzene-Induced Controlled Cationic Polymerization of Β-Pinene
Polymer Journal (2015) 47, 152–157 & 2015 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/15 www.nature.com/pj ORIGINAL ARTICLE New initiating systems for cationic polymerization of plant-derived monomers: GaCl3/alkylbenzene-induced controlled cationic polymerization of β-pinene Yukari Karasawa, Madoka Kimura, Arihiro Kanazawa, Shokyoku Kanaoka and Sadahito Aoshima An initiating system composed of GaCl3 and an alkylbenzene was demonstrated to be highly effective for the controlled cationic polymerization of a plant-derived monomer, β-pinene. Alkylbenzenes such as pentamethylbenzene and hexamethylbenzene were shown to function as suitable additives for the polymerization of β-pinene, an alkene monomer with low reactivity, although the alkylbenzenes are much less basic than conventional additives such as esters and ethers for base-assisting living cationic polymerization. For example, when two equivalents of hexamethylbenzene were added to GaCl3 in conjunction with 2-chloro- 2,4,4-trimethylpentane as an initiator, cationic polymerization of β-pinene successfully proceeded in a living manner at –78 °C. Successful control over the reaction, i.e., control of an active–dormant equilibrium, was attributed to the formation of a complex 71 between GaCl3 and the alkylbenzene, as confirmed by UV–vis and Ga NMR analyses. Polymer Journal (2015) 47, 152–157; doi:10.1038/pj.2014.108; published online 3 December 2014 INTRODUCTION To realize controlled cationic polymerizations of monomers with A variety of potential monomers