Mangrove Conservation Genetics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Incorporating the Plant Phenological Trajectory Into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform
remote sensing Article Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform Huiying Li 1,2, Mingming Jia 1,3,4,* , Rong Zhang 1, Yongxing Ren 1,5 and Xin Wen 1,5 1 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; [email protected] (H.L.); zrfi[email protected] (R.Z.); [email protected] (Y.R.); [email protected] (X.W.) 2 School of Management Engineering, Qingdao University of Technology, Qingdao 266520, China 3 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China 4 National Earth System Science Data Center, Beijing 100101, China 5 College of Earth Sciences, Jilin University, Changchun 130061, China * Correspondence: [email protected] Received: 12 September 2019; Accepted: 22 October 2019; Published: 24 October 2019 Abstract: Information on mangrove species composition and distribution is key to studying functions of mangrove ecosystems and securing sustainable mangrove conservation. Even though remote sensing technology is developing rapidly currently, mapping mangrove forests at the species level based on freely accessible images is still a great challenge. This study built a Sentinel-2 normalized difference vegetation index (NDVI) time series (from 2017-01-01 to 2018-12-31) to represent phenological trajectories of mangrove species and then demonstrated the feasibility of phenology-based mangrove species classification using the random forest algorithm in the Google Earth Engine platform. It was found that (i) in Zhangjiang estuary, the phenological trajectories (NDVI time series) of different mangrove species have great differences; (ii) the overall accuracy and Kappa confidence of the classification map is 84% and 0.84, respectively; and (iii) Months in late winter and early spring play critical roles in mangrove species mapping. -
Morphology on Stipules and Leaves of the Mangrove Genus Kandelia (Rhizophoraceae)
Taiwania, 48(4): 248-258, 2003 Morphology on Stipules and Leaves of the Mangrove Genus Kandelia (Rhizophoraceae) Chiou-Rong Sheue (1), Ho-Yih Liu (1) and Yuen-Po Yang (1, 2) (Manuscript received 8 October, 2003; accepted 18 November, 2003) ABSTRACT: The morphology of stipules and leaves of Kandelia candel (L.) Druce and K. obovata Sheue, Liu & Yong were studied and compared. The discrepancies of anatomical features, including stomata location, stomata type, cuticular ridges of stomata, cork warts and leaf structures, among previous literatures are clarified. Stipules have abaxial collenchyma but without sclereid ideoblast. Colleters, finger-like rod with a stalk, aggregate into a triangular shape inside the base of the stipule. Cork warts may sporadically appear on both leaf surfaces. In addition, obvolute vernation of leaves, the pattern of leaf scar and the difference of vein angles of these two species are reported. KEY WORDS: Kandelia candel, Kandelia obovata, Leaf, Stipule, Morphology. INTRODUCTION Mangroves are the intertidal plants, mostly trees and shrubs, distributed in regions of estuaries, deltas and riverbanks or along the coastlines of tropical and subtropical areas (Tomlinson, 1986; Saenger, 2002). The members of mangroves consist of different kinds of plants from different genera and families, many of which are not closely related to one another phylogenetically. Tomlinson (1986) set limits among three groups: major elements of mangal (or known as ‘strict mangroves’ or ‘true mangroves’), minor elements of mangal and mangal associates. Recently, Saenger (2002) provided an updated list of mangroves, consisting of 84 species of plants belonging to 26 families. Lately, a new species Kandelia obovata Sheue, Liu & Yong northern to the South China Sea was added (Sheue et al., 2003), a total of 85 species of mangroves are therefore found in the world (Sheue, 2003). -
Complete Chloroplast Genome Sequence of the Mangrove Species Kandelia Obovata and Comparative Analyses with Related Species
Complete chloroplast genome sequence of the mangrove species Kandelia obovata and comparative analyses with related species Yong Yang1, Ying Zhang2, Yukai Chen1, Juma Gul1, Jingwen Zhang1, Qiang Liu1 and Qing Chen3 1 Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, China 2 Life Sciences and Technology School, Lingnan Normal University, Zhanjiang, China 3 Bawangling National Nature Reserve, Changjiang, Hainan Province, China ABSTRACT As one of the most cold and salt-tolerant mangrove species, Kandelia obovata is widely distributed in China. Here, we report the complete chloroplast genome sequence K. obovata (Rhizophoraceae) obtained via next-generation sequencing, compare the general features of the sampled plastomes of this species to those of other sequenced mangrove species, and perform a phylogenetic analysis based on the protein-coding genes of these plastomes. The complete chloroplast genome of K. obovata is 160,325 bp in size and has a 35.22% GC content. The genome has a typical circular quadripartite structure, with a pair of inverted repeat (IR) regions 26,670 bp in length separating a large single-copy (LSC) region (91,156 bp) and a small single-cope (SSC) region (15,829 bp). The chloroplast genome of K. obovata contains 128 unique genes, including 80 protein-coding genes, 38 tRNA genes, 8 rRNA genes and 2 pseudogenes (ycf1 in the IRA region and rpl22 in the IRB region). In addition, a simple sequence repeat (SSR) analysis found 108 SSR loci in the chloroplast genome of K. obovata, most of which are A/T rich. -
ENRICHMENT of MANGROVE ECOSYSTEMS THROUGH Kandelia Candel (L.) DRUCE SPECIES in the SUNDARBAN MANGROVE FOREST of BANGLADESH *Md
INTERNATIONAL JOURNAL OF BUSINESS, SOCIAL AND SCIENTIFIC RESEARCH ISSN: 2309-7892 (Online), 2519-5530 (Print), Volume: 6, Issue: 4, Page: 01-08, July - December 2018 Review Article ENRICHMENT OF MANGROVE ECOSYSTEMS THROUGH Kandelia candel (L.) DRUCE SPECIES IN THE SUNDARBAN MANGROVE FOREST OF BANGLADESH *Md. Masudur Rahman1 [Citation: Md. Masudur Rahman (2018). Enrichment of mangrove ecosystems through Kandelia candel (L.) Druce species in the Sundarban Mangrove Forest of Bangladesh. Int. J. Bus. Soc. Sci. Res. 6(4): 01-08. Retrieve from http://www.ijbssr.com/currentissueview/14013286] Received Date: 25/05/2018 Acceptance Date: 28/06/2018 Published Date: 01/07/2018 Abstract Kandelia candel (L.) Druce play an important role in creating habitats for a diverse community of organisms ranging from bacteria and fungi to fishes and mammals. A field experiment was conducted to enrich mangrove ecosystems through establishment and conservation of the mangrove species K. candel (L.) Druce in the moderate saline zone of the Sundarban in Bangladesh during the period of 2012 to 2017. Assessing the performance of K. candel plantations were done annually by monitoring the survival rate and one or more structural characteristics of the stand, including height (H), diameter at breast height (DBH) and mean annual increment (MAI). The height (m), DBH (cm), MAI (m) and survival (%) of K. candel trees differ significantly at different spacing. The highest height (m), dbh (cm) and survival (%) have been found 2.99m±0.09, 3.83cm±0.10 and 90%, respectively in the spacing 2m x 2m as well as the highest mean annual increment (MAI) for height 0.60 m and for dbh 0.77 cm were found in the same spacing. -
The Evolutionary Fate of Rpl32 and Rps16 Losses in the Euphorbia Schimperi (Euphorbiaceae) Plastome Aldanah A
www.nature.com/scientificreports OPEN The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome Aldanah A. Alqahtani1,2* & Robert K. Jansen1,3 Gene transfers from mitochondria and plastids to the nucleus are an important process in the evolution of the eukaryotic cell. Plastid (pt) gene losses have been documented in multiple angiosperm lineages and are often associated with functional transfers to the nucleus or substitutions by duplicated nuclear genes targeted to both the plastid and mitochondrion. The plastid genome sequence of Euphorbia schimperi was assembled and three major genomic changes were detected, the complete loss of rpl32 and pseudogenization of rps16 and infA. The nuclear transcriptome of E. schimperi was sequenced to investigate the transfer/substitution of the rpl32 and rps16 genes to the nucleus. Transfer of plastid-encoded rpl32 to the nucleus was identifed previously in three families of Malpighiales, Rhizophoraceae, Salicaceae and Passiforaceae. An E. schimperi transcript of pt SOD-1- RPL32 confrmed that the transfer in Euphorbiaceae is similar to other Malpighiales indicating that it occurred early in the divergence of the order. Ribosomal protein S16 (rps16) is encoded in the plastome in most angiosperms but not in Salicaceae and Passiforaceae. Substitution of the E. schimperi pt rps16 was likely due to a duplication of nuclear-encoded mitochondrial-targeted rps16 resulting in copies dually targeted to the mitochondrion and plastid. Sequences of RPS16-1 and RPS16-2 in the three families of Malpighiales (Salicaceae, Passiforaceae and Euphorbiaceae) have high sequence identity suggesting that the substitution event dates to the early divergence within Malpighiales. -
Mangrove Guidebook for Southeast Asia
RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat. -
Current Status of Mangrove Forests in Singapore
Proceedings of Nature Society, Singapore’s Conference on ‘Nature Conservation for a Sustainable Singapore’ – 16th October 2011. Pg. 99–120. THE CURRENT STATUS OF MANGROVE FORESTS IN SINGAPORE YANG Shufen1, Rachel L. F. LIM1, SHEUE Chiou-Rong2 & Jean W. H. YONG3,4* 1National Biodiversity Centre, National Parks Board, 1 Cluny Road, Singapore 259569. 2Department of Life Sciences, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan. 3Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 4Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682. (*E-mail: [email protected]) ABSTRACT Even in a small and urbanised country like Singapore, we are still able to find new plant records in our remaining 735 ha of mangrove forests. With only one notable extinction (Brownlowia argentata Kurz), a total of 35 ‘true’ mangrove species can still be found in Singapore. This is half of the world’s total ‘true’ mangrove species recognised by IUCN. The botanical results indicate that Singapore still harbours rich mangrove diversity. The IUCN 'Critically Endangered' mangrove, Bruguiera hainesii C. G. Rogers, was discovered in 2003 as a new record. Thought to be extinct, B. sexangula (Lour.) Poir. trees were re-discovered in 2002 and occur mainly in the back mangrove. In 1999, an uncertain taxon of Ceriops was discovered, and identified as the so-called C. decandra (Griff.) Ding Hou. We later confirmed that the uncertain Ceriops species should be C. zippeliana Blume. Through international collaborative research efforts, the elucidation of the taxonomic identity of Kandelia obovata Sheue, Liu & Yong (the main mangrove of China, Japan, Taiwan and Vietnam) in 2003 was assisted by our local research efforts towards protecting our own Kandelia candel (L.) Druce. -
Running Head 'Biology of Mangroves'
BIOLOGY OF MANGROVES AND MANGROVE ECOSYSTEMS 1 Biology of Mangroves and Mangrove Ecosystems ADVANCES IN MARINE BIOLOGY VOL 40: 81-251 (2001) K. Kathiresan1 and B.L. Bingham2 1Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, India 2Huxley College of Environmental Studies, Western Washington University, Bellingham, WA 98225, USA e-mail [email protected] (correponding author) 1. Introduction.............................................................................................. 4 1.1. Preface........................................................................................ 4 1.2. Definition ................................................................................... 5 1.3. Global distribution ..................................................................... 5 2. History and Evolution ............................................................................. 10 2.1. Historical background ................................................................ 10 2.2. Evolution.................................................................................... 11 3. Biology of mangroves 3.1. Taxonomy and genetics.............................................................. 12 3.2. Anatomy..................................................................................... 15 3.3. Physiology ................................................................................. 18 3.4. Biochemistry ............................................................................. 20 3.5. Pollination -
Threatened Ecosystems of Myanmar
Threatened ecosystems of Myanmar An IUCN Red List of Ecosystems Assessment Nicholas J. Murray, David A. Keith, Robert Tizard, Adam Duncan, Win Thuya Htut, Nyan Hlaing, Aung Htat Oo, Kyaw Zay Ya and Hedley Grantham 2020 | Version 1.0 Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Murray, N.J., Keith, D.A., Tizard, R., Duncan, A., Htut, W.T., Hlaing, N., Oo, A.H., Ya, K.Z., Grantham, H. License This document is an open access publication licensed under a Creative Commons Attribution-Non- commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0). Authors: Nicholas J. Murray University of New South Wales and James Cook University, Australia David A. Keith University of New South Wales, Australia Robert Tizard Wildlife Conservation Society, Myanmar Adam Duncan Wildlife Conservation Society, Canada Nyan Hlaing Wildlife Conservation Society, Myanmar Win Thuya Htut Wildlife Conservation Society, Myanmar Aung Htat Oo Wildlife Conservation Society, Myanmar Kyaw Zay Ya Wildlife Conservation Society, Myanmar Hedley Grantham Wildlife Conservation Society, Australia Citation: Murray, N.J., Keith, D.A., Tizard, R., Duncan, A., Htut, W.T., Hlaing, N., Oo, A.H., Ya, K.Z., Grantham, H. (2020) Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Wildlife Conservation Society. ISBN: 978-0-9903852-5-7 DOI 10.19121/2019.Report.37457 ISBN 978-0-9903852-5-7 Cover photos: © Nicholas J. Murray, Hedley Grantham, Robert Tizard Numerous experts from around the world participated in the development of the IUCN Red List of Ecosystems of Myanmar. The complete list of contributors is located in Appendix 1. -
Genetic Structure and Connectivity of the Red Mangrove at Different
diversity Article Genetic Structure and Connectivity of the Red Mangrove at Different Geographic Scales through a Complex Transverse Hydrological System from Freshwater to Marine Ecosystems 1 1, 2, Landy R. Chablé Iuit , Salima Machkour-M’Rabet * , Julio Espinoza-Ávalos y, Héctor A. Hernández-Arana 3 , Haydée López-Adame 4 and Yann Hénaut 5 1 Laboratorio de Ecología Molecular y Conservación, El Colegio de la Frontera Sur. Av. Centenario km 5.5, Chetumal C.P. 77014, Quintana Roo, Mexico 2 El Colegio de la Frontera Sur. Av. Centenario km 5.5, Chetumal C.P. 77014, Quintana Roo, Mexico 3 Laboratorio de Estructura y Función de Ecosistemas Costeros Tropicales (EFECT-LAB), El Colegio de la Frontera Sur. Av. Centenario km 5.5, Chetumal C.P. 77014, Quintana Roo, Mexico 4 ATEC Asesoría Técnica y Estudios Costeros SCP, Calle 63b, no. 221, fraccionamiento Yucalpetén, Mérida CP 97238, Yucatán, Mexico 5 Laboratorio de Etología, El Colegio de la Frontera Sur. Av. Centenario km 5.5, Chetumal C.P. 77014, Quintana Roo, Mexico * Correspondence: [email protected]; Tel.: +(52)-983-835-0454 Sadly, our colleague Julio passed away before publication. y Received: 5 December 2019; Accepted: 24 January 2020; Published: 27 January 2020 Abstract: Mangrove forests are ecologically and economically valuable resources composed of trees morphologically and physiologically adapted to thrive across a range of habitats. Although, mangrove trees have high dispersion capacity, complexity of hydrological systems may lead to a fine-scale genetic structure (FSGS). The Transverse Coastal Corridor (TCC) is an interesting case of hydrological systems from fresh to marine waters where mangrove forests dominate. -
Response to Nitrogen and Salinity in Rhizophora Mangle Propagules Varies by Maternal Family and Population of Origin
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.04.454989; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Response to nitrogen and salinity in Rhizophora mangle propagules varies by maternal family and population of origin 1 Christina L. Richards1,2†‡*, Kristen L. Langanke1†, Jeannie Mounger1, Gordon A. Fox1,3‡, David 2 B. Lewis1‡ 3 1Department of Integrative Biology, Tampa, FL, USA 4 2Plant Evolutionary Ecology Group, University of Tubingen, Tubingen, Germany 5 3Biology Department, University of New Mexico, Albuquerque, NM, USA 6 †These authors share first authorship 7 ‡These authors have contributed equally to this work and share senior authorship 8 * Correspondence: 9 Christina L. Richards 10 [email protected] 11 Keywords: coastal ecosystems, conservation genetics, foundation species, phenotypic plasticity, 12 mangroves, Rhizophora mangle. 13 Abstract 14 Many coastal foundation plant species thrive across a range of environmental conditions, often 15 displaying dramatic phenotypic variation in response to environmental variation. We characterized 16 the response of propagules from six populations of the foundation species Rhizophora mangle L. to 17 full factorial combinations of two levels of salt (15 ppt and 45 ppt) reflecting the range of salinity 18 measured in the field populations, and two levels of nitrogen (N; no addition and amended at 19 approximately 3 mg N per pot each week) equivalent to comparing ambient N to a rate of addition of 20 75 kg per hectare per year. -
Comparative Systematic Study of Colleters and Stipules of Rhizophoraceae with Implications for Adaptation to Challenging Environments
bs_bs_banner Botanical Journal of the Linnean Society, 2013, 172, 449–464. With 7 figures Comparative systematic study of colleters and stipules of Rhizophoraceae with implications for adaptation to challenging environments CHIOU-RONG SHEUE1*, PETER CHESSON1,2, YING-JU CHEN1, SZU-YANG WU1, YEH-HUA WU1, JEAN W. H. YONG3, TE-YU GUU1, CHUNG-LU LIM4, RAZAFIHARIMINA MARIE AGNÈS RANDRIANASOLO5, MIALY HARINDRA RAZANAJATOVO5,6 and YUEN-PO YANG7 1Department of Life Sciences & Research Center for Global Change Biology, National Chung Hsing University, Taichung, 402, Taiwan 2Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, AZ, USA 3Singapore University of Technology and Design, Singapore 138682, Singapore 4Forest Biodiversity Division, Forest Research Institute Malaysia, 52109 Kepong, Selangor Darul Ehsan, Malaysia 5Department of Biology and Ecology, Antananarivo University, Antananarivo, 101, Madagascar 6Department of Biology, University of Konstanz, 78457 Konstanz, Germany 7Department of Bioresources, Dayeh University, 168 University Rd., Dacun, Changhua 515, Taiwan Received 29 October 2012; revised 16 December 2012; accepted for publication 7 April 2013 Colleters are multicellular secretory structures found on various organs in flowering plants. Colleters on the adaxial sides of stipules have been hypothesized to play a role in protecting the developing shoot. Rhizophoraceae is a stipulate family with a broad distribution from mangrove to montane environments, which makes the family well suited for the examination of this hypothesis, but the colleters of Rhizophoraceae are not well known. We compared species from all three tribes of Rhizophoraceae, including five inland genera and all four mangrove genera. In all species, several to hundreds of colleters, sessile or stalked, arranged in rows aggregated in genus-specific shapes, are found at the adaxial bases of open and closed stipules.