Alkaloid Production by Hairy Root Cultures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria
RESEARCH ARTICLE Characterization of Flavin-Containing Opine Dehydrogenase from Bacteria Seiya Watanabe1,2*, Rui Sueda1, Fumiyasu Fukumori3, Yasuo Watanabe1 1 Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan, 2 Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan, 3 Faculty of Food and Nutritional Sciences, Toyo University, Itakura-machi, Gunma, Japan * [email protected] Abstract Opines, in particular nopaline and octopine, are specific compounds found in crown gall tumor tissues induced by infections with Agrobacterium species, and are synthesized by well-studied NAD(P)H-dependent dehydrogenases (synthases), which catalyze the reduc- tive condensation of α-ketoglutarate or pyruvate with L-arginine. The corresponding genes are transferred into plant cells via a tumor-inducing (Ti) plasmid. In addition to the reverse OPEN ACCESS oxidative reaction(s), the genes noxB-noxA and ooxB-ooxA are considered to be involved Citation: Watanabe S, Sueda R, Fukumori F, in opine catabolism as (membrane-associated) oxidases; however, their properties have Watanabe Y (2015) Characterization of Flavin- not yet been elucidated in detail due to the difficulties associated with purification (and pres- Containing Opine Dehydrogenase from Bacteria. ervation). We herein successfully expressed Nox/Oox-like genes from Pseudomonas PLoS ONE 10(9): e0138434. doi:10.1371/journal. putida in P. putida cells. The purified protein consisted of different α-, β-, and γ-subunits pone.0138434 encoded by the OdhA, OdhB, and OdhC genes, which were arranged in tandem on the Editor: Eric Cascales, Centre National de la chromosome (OdhB-C-A), and exhibited dehydrogenase (but not oxidase) activity toward Recherche Scientifique, Aix-Marseille Université, FRANCE nopaline in the presence of artificial electron acceptors such as 2,6-dichloroindophenol. -
Isolation and Characterization of Avirulent and Virulent Strains of Agrobacterium Tumefaciens from Rose Crown Gall in Selected Regions of South Korea
plants Article Isolation and Characterization of Avirulent and Virulent Strains of Agrobacterium tumefaciens from Rose Crown Gall in Selected Regions of South Korea Murugesan Chandrasekaran 1, Jong Moon Lee 2, Bee-Moon Ye 2, So Mang Jung 2, Jinwoo Kim 3 , Jin-Won Kim 4 and Se Chul Chun 2,* 1 Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Korea; [email protected] 2 Department of Environmental Health Science, Konkuk University, Gwangjin-gu, Seoul-143 701, Korea; [email protected] (J.M.L.); [email protected] (B.-M.Y.); [email protected] (S.M.J.) 3 Institute of Agriculture & Life Science and Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea; [email protected] 4 Department of Environmental Horticulture, University of Seoul, Seoul 02504, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2450-3727 Received: 26 September 2019; Accepted: 24 October 2019; Published: 25 October 2019 Abstract: Agrobacterium tumefaciens is a plant pathogen that causes crown gall disease in various hosts across kingdoms. In the present study, five regions (Wonju, Jincheon, Taean, Suncheon, and Kimhae) of South Korea were chosen to isolate A. tumefaciens strains on roses and assess their opine metabolism (agrocinopine, nopaline, and octopine) genes based on PCR amplification. These isolated strains were confirmed as Agrobacterium using morphological, biochemical, and 16S rDNA analyses; and pathogenicity tests, including the growth characteristics of the white colony appearance on ammonium sulfate glucose minimal media, enzyme activities, 16S rDNA sequence alignment, and pathogenicity on tomato (Solanum lycopersicum). Carbon utilization, biofilm formation, tumorigenicity, and motility assays were performed to demarcate opine metabolism genes. -
Simple and Economical Biosensors for Distinguishing Agrobacterium
www.nature.com/scientificreports OPEN Simple and economical biosensors for distinguishing Agrobacterium- mediated plant galls from nematode-mediated root knots Okhee Choi1,5, Juyoung Bae2,5, Byeongsam Kang3, Yeyeong Lee2, Seunghoe Kim2, Clay Fuqua 4 & Jinwoo Kim1,2,3* Agrobacterium-mediated plant galls are often misdiagnosed as nematode-mediated knots, even by experts, because the gall symptoms in both conditions are very similar. In the present study, we developed biosensor strains based on agrobacterial opine metabolism that easily and simply diagnoses Agrobacterium-induced root galls. Our biosensor consists of Agrobacterium mannitol (ABM) agar medium, X-gal, and a biosensor. The working principle of the biosensor is that exogenous nopaline produced by plant root galls binds to NocR, resulting in NocR/nopaline complexes that bind to the promoter of the nopaline oxidase gene (nox) operon and activate the transcription of noxB-lacZY, resulting in readily visualized blue pigmentation on ABM agar medium supplemented with X-gal (ABMX-gal). Similarly, exogenous octopine binds to OccR, resulting in OoxR/octopine complexes that bind to the promoter of the octopine oxidase gene (oox) operon and activate the transcription of ooxB-lacZY, resulting in blue pigmentation in the presence of X-gal. Our biosensor is successfully senses opines produced by Agrobacterium-infected plant galls, and can be applied to easily distinguish Agrobacterium crown gall disease from nematode disease. Plant root galls are abnormal root tissue outgrowths that are caused by various parasites, including viruses, fungi, microscopic soil nematodes, and bacteria. Economic losses due to damage by nematodes and bacteria are signifcant; however, their galls are difcult to distinguish. -
Polyamines and Plant Alkaloids
Indian Journal of Experimental Biology Vol. 38, November 2000, pp. 1086-1091 Review Article Polyamines and plant alkaloids Bharati Ghosh Department of Botany, Bose Institute, Calcutta 700 009, India Naturally occurring alkaloids are nitrogenous compounds th at constitute th e pharmacogenically acti ve basic principles of flowering plants. Alkaloids are classified into several biogenically related groups . Tobacco alkaloids are metabolised from polyamines and diamines putrescine and cadaverine . N-methyl transferase is the tirst enzyme in alk aloid biosynthetic pathway which drives the flow of nitrogen away from polyamine biosynthesis to alkaloid biosynthesis. Arginine decarboxylase has been suggested to be primarily responsible for providing putrescine for nicotine synthesis. Tryptophan is the precursor of indole alkaloids . However, th e biosynthetic pathway of tropane and isoquinoline alkaloids are not clear. Genes for several key biosynthetic enzymes like arginine decarboxylase, ornithine decarboxylase, putrescine N-methyl transferase and spermidine synth ase, hyoscyamine 6 p hydroxylase,tryptophan decarboxylase etc have been cloned from different plant species. These genes arc regulated by plant hormones, li ght, different kinds of stress an e li cito rs like jasmonates and their strong expression is primarily in the cultured roots. In view of thi s, th e axenic hairy root cultures induced by Agrobacterium rhizoge11 es have been utilised to synthesise secondary metabolites. The current development in the knowledge of alk aloid biosynthesis, -
A Structural and Kinetic Analysis of a New Functional Class of Opine
ARTICLE cro Staphylopine, pseudopaline, and yersinopine dehydrogenases: A structural and kinetic analysis of a new functional class of opine dehydrogenase Received for publication, January 19, 2018, and in revised form, April 3, 2018 Published, Papers in Press, April 4, 2018, DOI 10.1074/jbc.RA118.002007 Jeffrey S. McFarlane‡, Cara L. Davis§, and X Audrey L. Lamb‡§1 From the Departments of ‡Molecular Biosciences and §Chemistry, University of Kansas, Lawrence, Kansas 66045 Edited by F. Peter Guengerich Opine dehydrogenases (ODHs) from the bacterial pathogens densation of an ␣ or amino group from an amino acid with an Staphylococcus aureus, Pseudomonas aeruginosa, and Yersinia ␣-keto acid followed by reduction with NAD(P)H, producing a pestis perform the final enzymatic step in the biosynthesis of a family of products known as N-(carboxyalkyl) amino acids or new class of opine metallophores, which includes staphylopine, opines (Fig. 1)(1). Opines are composed of a variety ␣-keto acid Downloaded from pseudopaline, and yersinopine, respectively. Growing evidence and amino acid substrates and have diverse functional roles. indicates an important role for this pathway in metal acquisition Octopine, isolated from octopus muscle by Morizawa in 1927, and virulence, including in lung and burn-wound infections was the first described opine, composed of pyruvate and argi- (P. aeruginosa) and in blood and heart infections (S. aureus). nine (2). ODHs are widespread in cephalopods and mollusks, Here, we present kinetic and structural characterizations of such as Pecten maximus, the king scallop, where they allow the http://www.jbc.org/ these three opine dehydrogenases. A steady-state kinetic analy- continuation of glycolysis under anaerobic conditions by sis revealed that the three enzymes differ in ␣-keto acid and shunting pyruvate into opine products and regenerating NADϩ NAD(P)H substrate specificity and nicotianamine-like sub- (3). -
ISSN 2320-5407 International Journal of Advanced Research (2014), Volume 2, Issue 2, 48-54
ISSN 2320-5407 International Journal of Advanced Research (2014), Volume 2, Issue 2, 48-54 Journal homepage: http://www.journalijar.com INTERNATIONAL JOURNAL OF ADVANCED RESEARCH REVIEW ARTICLE Medicinal importance of Genus Atropa Royle -A review * Farhana Maqbool, Seema Singh, Zahoor A Kaloo and Mahroofa Jan Plant Tissue Culture Research Laboratory, Department of Botany, University of Kashmir, Hazratbal, Srinagar, J&K, 190006 India. Manuscript Info Abstract Manuscript History: Genus Atropa is medicinally important as it has anticholinergic, antispasmodic, and antidote, anodyne, analgesic, hallucinogenic, Received: 14 December 2013 Final Accepted: 19 January 2014 Parkinsonism, encephalitis, carcinoma, and spastic dysmenorrhoea, Published Online: February 2014 mydriatic, narcotic and sedative. A large number of bioactive compounds have so far been isolated from Atropa. This emphasizes on the need for the Key words: review of literature for reporting the additional information on the medicinal Solanaceae, Atropa, alkaloids, importance of other species of genus Atropa. bioactive compounds . *Corresponding Author Sanjai Gandhi E Copy Right, IJAR, 2014,. All rights reserved. Introduction The genus Atropa belonging to family Solanaceae, tribe Hyoscyameae, and consists of 4 species, Atropa acuminata Royle, Atropa belladonna L., Atropa baetica Willk., Atropa pallidiflora Schönb.-Tem., which are distributed in the Mediterranean region, South Europe and Asia (Nasir 1972).Diverse biological activities have been attributed to this genus like anticholinergic, antispasmodic, (Tyler et al; 1988). Antidote, anodyne, analgesic, hallucinogenic, Parkinsonism, encephalitis, carcinoma, spastic dysmenorrhoea, mydriatic, narcotic and sedative its pharmacologically active ingredients include atropine, scopolamine, hyoscyamine all tropane alkaloids (Grieve and Chiej 1948). Atropa acuminata Royle Atropa acuminata Royle is an important medicinal plant belongs to family Solanaceae, (Anonymous, 1948). -
Ethnopharmacological Investigations of Phytochemical Constituents
International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 589 ISSN 2229-5518 Ethnopharmacological Investigations of Phytochemical Constituents Isolated from the Genus Atropa Mannawar Hussain a, Waseem Akram, b Jaleel Ahmad, b Taha Bin Qasim, c Rukhsana Bibi c All Address; Department of Applied Chemistry Government College University, Faisalabad a, Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University, Multan b, Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan b Department of Chemistry Government College University Lahore b Institute of Molecular Biology and Biotechnology Bahauddin Zakariya University Multan c Email; [email protected] Cell no 923460655538a [email protected] b [email protected] b [email protected] c [email protected] c Corresponding Author; Mannawar Hussain Abstract Medicinal plants play a vital role in the development of human culture. Medicinal plantsIJSER are a source of traditional medicine, and many modern medicines come directly from plants. According to WHO the world's people in progressing countries 80 percent rely on traditional medicine for their primary health care more over about 85% of traditional medication involves the make use of plant extracts. Herb and shrubs of the genus Atropa (Solonaceae) inhabitate various ecosystems in worldwide. This review present a complete study of the text on, phytochemistry, pharmacognosy and traditional biological meditional uses of Atropa. Atropa genus contain many chemical constituents like, flavonoids, phenolic compounds like Alkoloids, alcohols, terpenes and flavonoids have been identified in this genus. Some published studies have shown a broad spectrum of biological and pharmacological activities, including anticancer, antioxidant, anti-tumor agent, antibacterial, antimicrobial, antifungal and antiviral effects. -
Plantas Prohibidas O Restringidas Por Su Toxicidad
PLANTAS PROHIBIDAS O RESTRINGIDAS POR SU TOXICIDAD: FLORA PSICOTRÓPICA Forbidden or restricted plants for their toxicity: flora psicotrópica Eusebio Cano Carmona1, Antonio Cano Ortiz2 Ana Cano Ortiz3 1 Dpto. Biología animal, Vegetal y Ecología. Área de Botánica. Universidad de Jaén. 2 Servicio de Oftalmología MIR-Hospital Ciudad de Jaén. 3 Dpto. Estudios y Consultorías. Gerencia Ingeniería del Agua. TRAGSATEC. RESUMEN: Se hace un estudio de plantas prohibidas o de uso restringido por su toxicidad, atendien- do a la orden del Ministerio de Sanidad y Consumo (2004). Orden SCO/190/del 28 de Enero por la que se establece la lista de plantas cuya venta al público queda prohibida o restringida por razón de su toxicidad. Dicho listado consta de 197 plantas, de las cuales se encuentran en la provincia de Jaén 68. En este trabajo aportamos diversos estudios sobre plantas ricas en alcaloides, en especial sobre la flora psicotrópica. PALABRAS CLAVE: Plantas, Drogas, Toxicidad, Decreto Ministerial ABSTRACT: A study of forbidden plants is made or of use restricted by its toxicity, to spreading to the order of Department of Health and Consumption (2004). Order SCO/190/del January 28 for that the list of plants settles down which sale to the public is forbidden or restricted by reason of its toxicity. This listing consists of 197 plants, of which are in the county of Jaén 68. In this work we contribute diverse studies on rich plants in alkaloids, especially on the flora psicotrópica KEY WORDS: Plants, Drugs, Toxicity, Ministerial Order INTRODUCCIÓN El uso de las plantas medicinales por el hombre data de muchos años antes de Cristo; ya egipcios, babilónicos, hebreos, fenicios, chinos, grie- gos romanos etc., usaban las plantas para combatir las enfermedades del hombre, por ello existe una fármaco historia que no debe ser despreciada por la medicina moderna, ya que ésta se deriva de ella. -
Sobre La Presencia Actual De Atropa Baetica Willk. (Solanaceae) En La Alta Alcarria (Utande, Guadalajara)
Flora Montiberica 63: 18-30 (V-2016). ISSN: 1138-5952, edic. digital: 1988-799X SOBRE LA PRESENCIA ACTUAL DE ATROPA BAETICA WILLK. (SOLANACEAE) EN LA ALTA ALCARRIA (UTANDE, GUADALAJARA) Juan Javier GARCÍA-ABAD ALONSO Departamento de Geología, Geografía y Medio Ambiente. Universidad de Alcalá. C/ Colegios, 2. 2880-Alcalá de Henares (Madrid). [email protected] RESUMEN: Se da noticia del hallazgo y presencia actual de Atropa baetica Willk. (Solanaceae) en una localidad de la Alta Alcarria, municipio de Utande (provincia de Guadalajara). Se indica la cuadrícula U.T.M. de 1×1 km donde se encuentra. Se presentan datos ecológicos y fitogeográficos básicos sobre su emplazamiento, algunos datos vegetativos descriptivos de los dos rodales o conjuntos de tallos encontrados y comentarios sobre posibles amenazas de la escueta población. Finalmente, se comenta la relación de esta nueva cita con referencias antiguas publicadas en la bibliografía. Palabras clave: Atropa baetica, Solanaceae, flora amenazada, conservación, corología, La Alcarria, Guadalajara, Castilla–La Mancha, España. ABSTRACT: On the actual presence of Atropa baetica Willk. (Solanaceae) in the Alta Alcarria (Utande, Guadalajara). This article reports the finding and current presence of Atropa baetica Willk. (Solanaceae) in a municipality (Utande) belonging to the “Alta Alcarria” (province of Guadalajara, Central Iberian Peninsula, Spain). We provide the 1×1 km U.T.M.-grid location. Ecological and phytogeographical data as well as information on the location basic vegetative descriptive data from the two sets of stems and a review on the possible threats are reported. Finally, the relationshio of this new citation with old literature references is discussed. -
The Enzyme Activities of Opine and Lactate Dehydrogenases in the Gills, Mantle, Foot, and Adductor of the Hard Clam Meretrix Lusoria
Journal of Marine Science and Technology, Vol. 19, No. 4, pp. 361-367 (2011) 361 THE ENZYME ACTIVITIES OF OPINE AND LACTATE DEHYDROGENASES IN THE GILLS, MANTLE, FOOT, AND ADDUCTOR OF THE HARD CLAM MERETRIX LUSORIA An-Chin Lee* and Kuen-Tsung Lee* Key words: hard clam, opine dehydrogenase, tissues, lactate dehy- Taiwan. The salinity of pond water varies with the site and is drogenase. maintained at approximately 20‰ in the Taishi area of Yunlin County, Taiwan [18]. Normally, the food of juvenile clam is supplied by natural production which may provide insufficient ABSTRACT food to meet the needs of clam in the middle and late stages of Alanopine dehydrogenase (ADH) and both ADH and strom- culture. Therefore, powdered fish meal and fermented organic bine dehydrogenase (SDH) are respectively the major opine matter are added to clam ponds to directly feed the clam and dehydrogenases in the gills and mantle of hard clam under enrich natural production. The addition of organic matter to normoxia. However, ADH, octopine dehydrogenase (ODH), ponds can result in the formation of a reduced layer in the and SDH are the predominant opine dehydrogenases in the sediments [14]. The reduced layer in the sediment consumes a foot and adductor of the hard clam under normoxia. After lot of dissolved oxygen (DO) and results in low levels of DO anoxic exposure, significant increases in the activities of opine in the bottom layer of pond water under stagnant conditions dehydrogenases in the gills were observed for ADH as well as [22]. Therefore, hard clam are likely to experience environ- SDH and lactate dehydrogenase (LDH). -
Fitness Costs Restrict Niche Expansion by Generalist Niche-Constructing Pathogens
The ISME Journal (2017) 11, 374–385 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE Fitness costs restrict niche expansion by generalist niche-constructing pathogens Julien Lang1,3,4, Armelle Vigouroux1,3, Abbas El Sahili1,5, Anthony Kwasiborski1,6, Magali Aumont-Nicaise1, Yves Dessaux1, Jacqui Anne Shykoff2, Solange Moréra1 and Denis Faure1 1Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France and 2Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France We investigated the molecular and ecological mechanisms involved in niche expansion, or generalism, versus specialization in sympatric plant pathogens. Nopaline-type and octopine-type Agrobacterium tumefaciens engineer distinct niches in their plant hosts that provide different nutrients: nopaline or octopine, respectively. Previous studies revealed that nopaline-type pathogens may expand their niche to also assimilate octopine in the presence of nopaline, but consequences of this phenomenon on pathogen dynamics in planta were not known. Here, we provided molecular insight into how the transport protein NocT can bind octopine as well as nopaline, contributing to niche expansion. We further showed that despite the ability for niche expansion, nopaline-type pathogens had no competitive advantage over octopine-type pathogens in co-infected plants. We also demonstrated that a single nucleotide polymorphism in the nocR gene was sufficient to allow octopine assimilation by nopaline-type strains even in absence of nopaline. The evolved nocR bacteria had higher fitness than their ancestor in octopine-rich transgenic plants but lower fitness in tumors induced by octopine-type pathogens. -
Genista Tinctoria Hairy Root Cultures for Selective Production Of
Genista tinctoria Hairy Root Cultures for Selective Production of Isoliquiritigenin Maria Łuczkiewicz* and Adam Kokotkiewicz Department of Pharmacognosy, Medical University of Gdan´ sk, al. Gen. J. Hallera 107, 80-416 Gdan´ sk-Wrzeszcz, Poland. E-mail: [email protected] *Author for correspondence and reprint requests Z. Naturforsch. 60c, 867Ð875 (2005); received March 29/May 2, 2005 Hairy root cultures were established after inoculation of Genista tinctoria in vitro shoots with Agrobacterium rhizogenes, strain ATCC 15834. In transformed roots of G. tinctoria grown in Schenk-Hildebrandt medium without growth regulators the biosynthesis of isoflavo- nes, derivatives of genistein and daidzein, and flavones, derivatives of luteolin and apigenin, characteristic for the intact plant, was completely inhibited. The only compound synthesized in G. tinctoria hairy roots was isoliquiritigenin (2.3 g/100 g DW), a daidzein precursor absent in the intact plant. This compound was stored entirely within cells and it was not until abscisic acid was added (37.8 µm supplement on day 42) that approx. 80% of it was released into the experimental medium. The paper discusses the effect of abscisic acid on the growth of G. tinctoria hairy root cultures, the biosynthesis of isoliquiritigenin and the way it is stored. A prototype basket-bubble bioreactor was designed and built to upgrade the scale of the G. tinctoria hairy root cultures. With immobilized roots and a new aeration system, large Ð1 amounts of biomass were obtained (FWmax 914.5 g l ) which produced high contents of isoliquiritigenin (2.9 g/100 g DW). The abscisic acid-induced release of the metabolite from the tissue into the growth medium greatly facilitated subsequent extraction and purification of isoliquiritigenin.