Conjunto De Instruções Multimídia

Total Page:16

File Type:pdf, Size:1020Kb

Conjunto De Instruções Multimídia Conjunto de Instruções Multimídia Jonathas Campi Costa Instituto de Computação Universidade Estadual de Campinas - Unicamp Campinas, Brasil RA: 085380 [email protected] ABSTRACT Analisando mais atentamente esse conjunto de opera¸c˜oes Apresenta-se neste artigo uma vis˜aogeral dos diferentes con- multim´ıdia podemos classifica-la, segundo a classifica¸c˜aopro- juntos de instru¸c˜oes multim´ıdia existentes no mercado de posta por Flynn [3], como pertencentes a um hardware do processadores. S˜aoabordados os principais conceitos da tec- tipo SIMD, isto ´e, Single Instruction Multiple Data; pro- nologia por detr´asdo conjunto de instru¸c˜oes bem como seus cessadores em que uma mesma instru¸c˜ao´eaplicada sobre principais representantes; al´em de an´alises de desempenho e diferentes fluxos de dados, empacotados (o conceito de em- abordagens de implementa¸c˜ao. pacotamento de dados ser´aanalisado mais adiante). Es- sas instru¸c˜oes permitem ao hardware a opera¸c˜aosimultˆanea General Terms de diferentes ALUs (Arithmetic Logic Unit), ou equivalen- temente, a divis˜aode uma grande ALU em muitas ALUs SIMD theory, MMX, SSE, 3DNow!, Altivec. menores que podem executar paralelamente [9]. 1. INTRODUÇÃO A id´eia dos projetistas de hardware foi unir o melhor de Durante os anos 90 houve um grande aumento no uso da dois mundos, ou seja, unir o paralelismo existente em n´ıvel computa¸c˜aocomo suporte as opera¸c˜oes multim´ıdia, isto ´e, de instru¸c˜oes das m´aquinas tipo SISD com o paralelismo no o uso do computador na cria¸c˜aode informa¸c˜aomultim´ıdia n´ıvel dos dados, t´ıpico da m´aquinas SIMD. (video, imagem, som, etc.); aliado a esse fato, as worksta- tions e os computadores pessoais eram utilizados cada vez O uso de instru¸c˜oes multim´ıdia, referenciado de agora em mais como instrumentos de c´alculos avan¸cados. Analisando diante como instru¸c˜oes SIMD tamb´em, pode ser visto como essa tendˆencia, os principais fabricantes de processadores uma forma de aproveitamento de situa¸c˜oes em que o par- utilizaram uma id´eia j´aconhecida para atender a uma nova alelismo est´apresente e pode ser utilizado. Como um exem- demanda: o uso de instru¸c˜oes vetoriais. plo do uso de instru¸c˜oes SIMD podemos citar a coerˆencia espacial em aplica¸c˜oes de computa¸c˜aogr´afica [4]. A implementa¸c˜aode uma arquitetura vetorial completa (a presen¸ca de registradores vetoriais em todo os est´agios do Em aplica¸c˜oes de computa¸c˜aogr´afica, tipicamente aplica¸c˜oes pipeline) sobre uma arquitetura i386, por exemplo, se pos- de rasteriza¸c˜ao e processamento de imagem, a coerˆencia es- s´ıvel (devido a falta de flexibilidade na execu¸c˜aode c´odigos pacial est´amuito presente, isto ´e, a probabilidade de que o de prop´osito geral) ainda seria altamente complexa e cus- conjunto de pixels vizinhos a um certo pixel em quest˜aopos- tosa, do ponto de vista operacional, logo a solu¸c˜aoencon- sua atributos diferentes ´emuito pequena [4]. Logo, quando trada pelos fabricantes de processadores foi a implementa¸c˜ao desejamos aplicar uma instru¸c˜aosobre a imagem, a mesma de um subconjunto das opera¸c˜oes tipicamente existentes em instru¸c˜aoser´aaplicada ao mesmo conjunto de pixels com uma arquitetura puramente vetorial[9], sobre uma arquite- iguais propriedades, portanto utilizando uma ´unica instru¸c˜ao tura do tipo SISD [3]. Para tal conjunto de opera¸c˜oes foi sobre o mesmo conjunto de dados. Se o conjunto de pixels dado o nome de Conjunto de Instru¸c˜oes Multim´ıdia. E´ im- suportado pela opera¸c˜aoem quest˜aofor de cardinalidade n, portante notar que existem diferen¸cas significativas entre podemos dizer que a instru¸c˜aoSIMD possui n unidades fun- as instru¸c˜oes multim´ıdia e vetorial [9]; e.g. o n´umero de cionais onde cada unidade opera sobre um pixel a mesma elementos em uma instru¸c˜aovetorial n˜aoest´apresente no instru¸c˜ao. c´odigo da opera¸c˜ao(opcode) como nas instru¸c˜oes multim´ı- dia, e sim em um registrador separado. Um exemplo mais comum ´eo uso de instru¸c˜oes SIMD para aritm´etica de vetores; como um vetor pode ser decomposto por suas coordenadas, pode-se efetuar opera¸c˜oes aritm´eticas como soma, subtra¸c˜ao,etc., sobre as diferentes coordenadas dos vetores envolvidos nas opera¸c˜oes. Por exemplo, para a soma de dois vetores: Z~ = X~ + Y~ pode ser executada diretamente sobre as coordenadas dos vetores: zi = xi + yi, onde cada soma ser´aefetuada por uma unidade funcional distinta mas a partir da mesma instru¸c˜ao, i.e., a instru¸c˜ao de soma. Figure 1: Diagrama representando a soma entre dois pixels diferentes utilizando os registradores vetori- Figure 2: Diagrama do pipeline b´asico de execu¸c˜ao ais. da arquitetura P6. Figura retirada de [1]. Nos dois exemplos citados acima podemos observar clara- presen¸ca dessas unidades nas arquiteturas dos processadores mente a maior vantagem do uso das instru¸c˜oes SIMD: a da fam´ılia P6 da Intel (Figura 2), na arquitetura do pro- diminui¸c˜aoda latˆencia no acesso a mem´oria ao ler todos os cessador Athlon da AMD (Figura 3) e na arquitetura do dados necess´arios uma ´unica vez e efetuar a mesma opera¸c˜ao processador PowerPC 970 (Figura 4), por exemplo. sobre eles[5]. Uma implementa¸c˜aointeressante foi a do primeiro conjunto de instru¸c˜oes multim´ıdia da Intel, o MMX [18]. As in- 2. REGISTRADORES VETORIAIS stru¸c˜oes MMX foram implementadas sobre a unidade de A base da arquitetura vetorial e das instru¸c˜oes SIMD s˜ao ponto flutuante j´adispon´ıvel nos primeiros membros da ar- os registradores vetoriais. Um registrador vetorial ´eum reg- quitetura P5, isto ´e, os registradores vetoriais foram im- istrador em que os dados est˜aoorganizados na forma de um plantados sobre os registradores de ponto flutuante logo, os vetor, isto ´e, os dados podem ser comparados aos valores dos registradores MMX, como veremos mais adiante, que eram escalares que comp˜oem as coordenadas de um vetor. Assim, implementados com largura de 64-bits para trabalhar com enquanto que em arquiteturas do tipo SISD, a CPU opera dados em precis˜aointeira, eram representados internamente sobre escalares um a um, em uma arquitetura do tipo SIMD como n´umeros em ponto flutuante inv´alidos, j´aque os reg- a CPU opera sobre uma linha desses escalares, todos do istradores de ponto flutuante da arquitetura P5 possuiam mesmo tipo, executando uma mesma opera¸c˜aosobre todos, largura de 80-bits. Isso era uma forma de diferenciar o con- como uma unidade. te´udo dos registradores tamb´em. Esses vetores s˜aorepresentados em um formato de dados No in´ıcio, cada fabricante de processadores criou e imple- chamado: empacotado (packed data). Por empacotado pode- mentou seu pr´oprio conjunto de instru¸c˜oes SIMD, como por mos entender que os dados s˜aoagrupados em diferentes for- exemplo os conjuntos MAX, VIS, MDMX, etc; enquanto que matos, por exemplo, para um registrador vetorial de 128- na arquitetura i386 esse conjunto de instru¸c˜oes acabou por bits, podemos empacotar os dados como 4 inteiros de 32-bits tornar-se um padr˜aode mercado, o padr˜aoSSE; apesar de cada, ou 8 inteiros de 16-bits cada. atualmente existirem algumas varia¸c˜oes, como veremos mais adiante. Utilizando dessa abordagem de organiza¸c˜aodos dados, ´e poss´ıvel efetuar opera¸c˜oes sobre os dados de forma eficiente Para determinar quais seriam as melhores intru¸c˜oes a im- (a latˆencia no acesso aos dados ´ediminu´ıda, como anterior- plementar, os fabricantes de processadores selecionaram um mente exeplicado). Como abordado anteriormente, a soma conjunto de aplica¸c˜oes multim´ıdia que melhor representava o de dois pixels pode ser efetuada em uma opera¸c˜aode adi¸c˜ao que eles acreditavam ser um conjunto representativo de apli- apenas, bastando organizar os elementos do pixel (cores ver- ca¸c˜oes multim´ıdia geral [2]. Analisando essas aplica¸c˜oes, cri- melha, verde, azul e o canal de composi¸c˜ao)em um reg- aram, al´em das instru¸c˜oes b´asicas de aritm´etica e instru¸c˜oes istrador vetorial. Podemos observar tal arranjo na Figura de manipula¸c˜aol´ogica e de alinhamento, instru¸c˜oes para su- 1. portar opera¸c˜oes comuns a muitas das aplica¸c˜oes. Essas opera¸c˜oes variam em n´umero e complexidade de fabricante 3. ARQUITETURA PARA INSTRUÇÕES MUL- para fabricante. TIMÍDIA Em geral, podemos dividir o conjunto de instru¸c˜oes SIMD Em geral, a adi¸c˜aodas instru¸c˜oes multim´ıdia ´eefetuada implementadas pelos fabricantes em quatro grandes grupos: atrav´es da altera¸c˜aodo est´agio de execu¸c˜aodas arquiteturas escalares [11, 9, 5, 1], incluindo uma unidade especializada para a execu¸c˜aodas instru¸c˜oes SIMD. Podemos observar a • Instru¸c˜oes aritm´eticas – Podemos dividir as instru¸c˜oes aritm´eticas em dois subgrupos: as de ponto flutuante e as de precis˜ao inteira. Aqui est˜aoinclu´ıdas as principais oper- a¸c˜oes aritm´eticas, e.g.: satura¸c˜ao(clampf ), m´o- dulo, soma, subtra¸c˜ao,divis˜aoe multiplica¸c˜ao(al- guns fabricantes implementam essas duas ´ultimas opera¸c˜oes apenas atrav´es de shifts para esquerda e direita, respectivamente [6]). Em ponto flutu- ante podemos citar tamb´em opera¸c˜oes espec´ıficas para arredondamento e convers˜ao.
Recommended publications
  • SIMD Extensions
    SIMD Extensions PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 12 May 2012 17:14:46 UTC Contents Articles SIMD 1 MMX (instruction set) 6 3DNow! 8 Streaming SIMD Extensions 12 SSE2 16 SSE3 18 SSSE3 20 SSE4 22 SSE5 26 Advanced Vector Extensions 28 CVT16 instruction set 31 XOP instruction set 31 References Article Sources and Contributors 33 Image Sources, Licenses and Contributors 34 Article Licenses License 35 SIMD 1 SIMD Single instruction Multiple instruction Single data SISD MISD Multiple data SIMD MIMD Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's taxonomy. It describes computers with multiple processing elements that perform the same operation on multiple data simultaneously. Thus, such machines exploit data level parallelism. History The first use of SIMD instructions was in vector supercomputers of the early 1970s such as the CDC Star-100 and the Texas Instruments ASC, which could operate on a vector of data with a single instruction. Vector processing was especially popularized by Cray in the 1970s and 1980s. Vector-processing architectures are now considered separate from SIMD machines, based on the fact that vector machines processed the vectors one word at a time through pipelined processors (though still based on a single instruction), whereas modern SIMD machines process all elements of the vector simultaneously.[1] The first era of modern SIMD machines was characterized by massively parallel processing-style supercomputers such as the Thinking Machines CM-1 and CM-2. These machines had many limited-functionality processors that would work in parallel.
    [Show full text]
  • SIMD: Data Parallel Execution J
    ERLANGEN REGIONAL COMPUTING CENTER SIMD: Data parallel execution J. Eitzinger PATC, 12.6.2018 Stored Program Computer: Base setting for (int j=0; j<size; j++){ Memory sum = sum + V[j]; } 401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4] Arithmetic Control 401d0d: 48 83 c0 01 add rax,1 Logical 401d11: 39 c7 cmp edi,eax Unit CPU 401d13: 77 f3 ja 401d08 Unit Input Output Architect’s view: Make the common case fast ! Execution and memory . Improvements for relevant software Strategies . What are the technical opportunities? . Increase clock speed . Parallelism . Economical concerns . Specialization . Marketing concerns 2 Data parallel execution units (SIMD) for (int j=0; j<size; j++){ Scalar execution A[j] = B[j] + C[j]; } Register widths • 1 operand = + • 2 operands (SSE) • 4 operands (AVX) • 8 operands (AVX512) 3 Data parallel execution units (SIMD) for (int j=0; j<size; j++){ A[j] = B[j] + C[j]; SIMD execution } Register widths • 1 operand • 2 operands (SSE) = + • 4 operands (AVX) • 8 operands (AVX512) 4 History of short vector SIMD 1995 1996 1997 1998 1999 2001 2008 2010 2011 2012 2013 2016 VIS MDMX MMX 3DNow SSE SSE2 SSE4 VSX AVX IMCI AVX2 AVX512 AltiVec NEON 64 bit 128 bit 256 bit 512 bit Vendors package other ISA features under the SIMD flag: monitor/mwait, NT stores, prefetch ISA, application specific instructions, FMA X86 Power ARM SPARC64 Intel 512bit IBM 128bit A5 upward Fujitsu 256bit AMD 256bit 64bit / 128bit K Computer 128bit 5 Technologies Driving Performance Technology 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
    [Show full text]
  • Effectiveness of the MAX-2 Multimedia Extensions for PA-RISC 2.0 Processors
    Effectiveness of the MAX-2 Multimedia Extensions for PA-RISC 2.0 Processors Ruby Lee Hewlett-Packard Company HotChips IX Stanford, CA, August 24-26,1997 Outline Introduction PA-RISC MAX-2 features and examples Mix Permute Multiply with Shift&Add Conditionals with Saturation Arith (e.g., Absolute Values) Performance Comparison with / without MAX-2 General-Purpose Workloads will include Increasing Amounts of Media Processing MM a b a b 2 1 2 1 b c b c functionality 5 2 5 2 A B C D 1 2 22 2 2 33 3 4 55 59 A B C D 1 2 A B C D 22 1 2 22 2 2 2 2 33 33 3 4 55 59 3 4 55 59 Distributed Multimedia Real-time Information Access Communications Tool Tool Computation Tool time 1980 1990 2000 Multimedia Extensions for General-Purpose Processors MAX-1 for HP PA-RISC (product Jan '94) VIS for Sun Sparc (H2 '95) MAX-2 for HP PA-RISC (product Mar '96) MMX for Intel x86 (chips Jan '97) MDMX for SGI MIPS-V (tbd) MVI for DEC Alpha (tbd) Ideally, different media streams map onto both the integer and floating-point datapaths of microprocessors images GR: GR: 32x32 video 32x64 ALU SMU FP: graphics FP:16x64 Mem 32x64 audio FMAC PA-RISC 2.0 Processor Datapath Subword Parallelism in a General-Purpose Processor with Multimedia Extensions General Regs. y5 y6 y7 y8 x5 x6 x7 x8 x1 x2 x3 x4 y1 y2 y3 y4 Partitionable Partitionable 64-bit ALU 64-bit ALU 8 ops / cycle Subword Parallel MAX-2 Instructions in PA-RISC 2.0 Parallel Add (modulo or saturation) Parallel Subtract (modulo or saturation) Parallel Shift Right (1,2 or 3 bits) and Add Parallel Shift Left (1,2 or 3 bits) and Add Parallel Average Parallel Shift Right (n bits) Parallel Shift Left (n bits) Mix Permute MAX-2 Leverages Existing Processing Resources FP: INTEGER FLOAT GR: 16x64 General Regs.
    [Show full text]
  • Pengju Ren@XJTU 2021
    Computer Architecture Lecture 10 – Vector Machine (Data Level Parallel) Pengju Ren Institute of Artificial Intelligence and Robotics PengjuXi’an Ren@XJTU Jiaotong University 2021 http://gr.xjtu.edu.cn/web/pengjuren SISD、MIMD、SIMD and MIMD Data Streams Single Multiple Instruction Single SISD: Intel Pentium 4 SIMD: SSE instruction of x86 Streams Multiple MISD: No example today MIMD: Intel Core i7 SISD: Single Instruction stream, Single Data Stream MIMD: Multiple Instruction streams, Multiple Data Streams SPMD (SinglePengju Program Ren@XJTU multiple data) GPU 2021 SIMD: Single Instruction stream, Multiple Data Streams MISD: Multiple Instruction streams, Single Data Stream 2 Agenda . Vector Processors . Single Instruction Multiple Data (SIMD) . Instruction Set Extensions (Neon@ARM, AVX@Intel, etc.) Pengju Ren@XJTU 2021 3 Modern SIMD Processors SIMD architectures can exploit significant data-level parallelism for: Matrix-oriented scientific computing Media-oriented image and sound processors Machine Learning Algorithms Most modern CPUs have SIMD architectures Intel SSE and MMX, AVX, AVX2 (Streaming SIMD Extension, Multimedia extensions、Advanced Vector extensions) ARM NEON, MIPS MDMX These architectures include instruction set extensions which allow both sequential and parallel instructions to be executed Some architectures include separate SIMD coprocessors for handling these instructions ARM NEON Pengju Ren@XJTU 2021 Included in Cortex-A8 and Cortex-A9 processors Intel SSE and AVX Introduced in 1999 in the Pentium III processor AVX512 currently used in Xeon Core series 4 Vector Processor Basic idea: Read sets of data elements into “vector registers” Operate on those registers Disperse the results back into memory Registers are controlled by compiler Used to hide memory latency Leverage memory bandwidth Overcoming limitations of ILP: – Dramatic reduction in fetch and decode bandwidth.
    [Show full text]
  • Implications of Programmable General Purpose Processors for Compression/Encryption Applications 1. Introduction
    In the Proceedings of the 13th International Conference on Application-specific Systems, Architectures and Processors (ASAP 2002), July 2002 Implications of Programmable General Purpose Processors for Compression/Encryption Applications £ Byeong Kil Lee and Lizy Kurian John The University of Texas at Austin g fblee, ljohn @ece.utexas.edu Abstract With the growth of the Internet and mobile communication industry, multimedia applications form a domi- nant computer workload. Media workloads are typically executed on Application Specific Integrated Circuits (ASICs), application specific processors (ASPs) or general purpose processors (GPPs). GPPs are flexible and allow changes in the applications and algorithms better than ASICs and ASPs. However, executing these applications on GPPs is done at a high cost. In this paper, we analyze media compression/decompression algorithms from the perspective of the overhead of executing them on a programmable general purpose processor versus ASPs. We choose nine encode/decode programs from audio, image/video and encryption applications. The instruction mix, memory access and parallelism aspects during the execution of these pro- grams are analyzed. Memory access latency is observed to be the main factor influencing the execution time on general purpose processors. Most of these compression/decompression algorithms involve processing the data through execution phases (e.g. quantization, encoding, etc) and temporary results are stored and retrieved between these phases. A metric called overhead memory-access bandwidth per input/output byte is defined to characterize the temporary memory activity of each application. We observe that more than 90% of the memory accesses made by these programs are temporary data stores and loads arising from the general purpose nature of the execution platform.
    [Show full text]
  • ALEX BENNÉE KVM FORUM 2017 Created: 2017-10-20 Fri 20:46
    VECTORING IN ON QEMU'S TCG ENGINE ALEX BENNÉE KVM FORUM 2017 Created: 2017-10-20 Fri 20:46 1 INTRODUCTION Alex Bennée [email protected] stsquad on #qemu Virtualization Developer @ Linaro Projects: QEMU TCG, KVM, ARM 2 . 1 WHY VECTORS? 2 . 2 DATA PARALLELISM: AUDIO EXAMPLE 2 . 3 WHAT ARE VECTORS? 2 . 4 VECTOR REGISTER 2 . 5 VECTOR OPERATION vadd %Vd, %Vn, %Vm 2 . 6 REGISTER LAYOUT 2 . 7 OTHER DATA PARALLELISM EXAMPLES General Matrix Multiplication (GEMM) 3D modelling AI/Machine learning Numerical simulation 2 . 8 HISTORY OF VECTORS IN COMPUTING 3 . 1 NAME THAT MACHINE? 3 . 2 CRAY 1 SPECS Addressing 8 24 bit address Scalar Registers 8 64 bit data Vector Registers 8 (64x64bit elements) Clock Speed 80 Mhz Performance up to 250 MFLOPS* Power 250 kW ref: The Cray-1 Computer System, Richard M Russell, Cray Reasearch Inc, ACM Jan 1978, Vol 21, Number 1 3 . 3 VECTOR PROCESSORS/MACHINES Year Machine Performance 1971 CDC Star-100 100 MFLOPS 1976 Cray 1 250 MFLOPS 1982 Cray X-MP 400 MFLOPS 1996 Fujitsu VP2600 5 GFLOPS 2001 NEC SX-6 8 GFLOPS/node 3 . 4 SX-6 (2001) 8 vector pipelines up to 72 Vector Registers up to 256 64 bit words per register 8 GFLOPS/node 3 . 5 NAME THAT MACHINE? 3 . 6 EARTH SIMULATOR (ES) 640 SX-6 nodes 5120 vector processors 35.86 TFLOPS Fastest Supercomputer 2002-2004 3 . 7 VECTORS COMES TO THE WORKSTATION Intel MMX (multi-media extensions*) 1997, Intel Pentium P5 8x64bit MMX registers 1x64/2x32/4x16/8x8 Integer only 3 .
    [Show full text]
  • Msc THESIS Customizing Vector Instruction Set Architectures
    Computer Engineering 2007 Mekelweg 4, 2628 CD Delft The Netherlands http://ce.et.tudelft.nl/ MSc THESIS Customizing Vector Instruction Set Architectures C¸at¸alinBogdan CIOBANU Abstract Data Level Parallelism(DLP) can be exploited in order to improve the performance of processors for certain workload types. There are two main application ¯elds that rely on DLP, multimedia and scienti¯c computing. Most of the existing multimedia vector ex- tensions use sub-word parallelism and wide data paths for process- ing independent, mainly integer, values in parallel. On the other hand, classic vector supercomputers rely on e±cient processing of large arrays of floating point numbers typically found in scienti¯c applications. In both cases, the selection of an appropriate instruc- tion set architecture(ISA) is crucial in exploiting the potential DLP to gain high performance. The main objective of this thesis is to develop a methodology for synthesizing customized vector ISAs for various application domains targeting high performance program execution. In order to accomplish this objective, a number of applications from the telecommunication and linear algebra do- mains have been studied, and custom vector instructions sets have CE-MS-2007-04 been synthesized. Three algorithms that compute the shortest paths in a directed graph (Dijkstra, Floyd and Bellman-Ford) have been analyzed, along with the widely used Linpack floating point bench- mark. The framework used to customize the ISAs included the use of the Gnu C Compiler versions 4.1.2 and 2.7.2.3 and the SimpleScalar-3.0d tool set extended to simulate customized vector units. The modi¯cations applied to the simulator include the addition of a vector reg- ister ¯le, vector functional units and speci¯c vector instructions.
    [Show full text]
  • The X86 Is Dead. Long Live the X86!
    the x86 is dead. long live the x86! CC3.0 share-alike attribution copyright c 2013 nick black with diagrams by david kanter of http://realworldtech.com “Upon first looking into Intel’s x86” that upon which we gaze is mankind’s triumph, and we are its stewards. use it well. georgia tech ◦ summer 2013 ◦ cs4803uws ◦ nick black The x86 is dead. Long live the x86! Why study the x86? Used in a majority of servers, workstations, and laptops Receives the most focus in the kernel/toolchain Very complex processor, thus large optimization space Excellent documentation and literature Fascinating, revealing, lengthy history Do not think that x86 is all that’s gone on over the past 30 years1. That said, those who’ve chased peak on x86 can chase it anywhere. 1Commonly expressed as “All the world’s an x86.” georgia tech ◦ summer 2013 ◦ cs4803uws ◦ nick black The x86 is dead. Long live the x86! In the grim future of computing there are 10,000 ISAs Alpha + BWX/FIX/CIX/MVI SPARC V9 + VIS3a AVR32 + JVM JVMb CMS PTX/SASSc PA-RISC + MAX-2 TILE-Gxd SuperH ARM + NEONe i960 Blackfin IA64 (Itanium) PowerISA + AltiVec/VSXf MIPS + MDMX/MIPS-3D MMIX IBMHLA (s390 + z) a Most recently the “Oracle SPARC Architecture 2011”. b m68k Most recently the Java SE 7 spec, 2013-02-28. c Most recently the PTX ISA 3.1 spec, 2012-09-13. VAX + VAXVA d TILE-Gx ISA 1.2, 2013-02-26. e z80 / MOS6502 ARMv8: A64, A32, and T32, 2011-10-27. f MIX PowerISA v.2.06B, 2010-11-03.
    [Show full text]
  • Numerical Applications and Sub-Word Parallelism: the NAS Benchmarks on a Pentium 4
    Numerical applications and sub-word parallelism: The NAS benchmarks on a Pentium 4 Daniel Etiemble University of Toronto 10 King’s college Road Toronto, Ontario, Canada, M5S3G4 PN: 416 946 65784 Fax: 416 971 22 86 [email protected] Abstract: We examine the impact of Pentium 4 SIMD instructions on the Fortran and C versions of the NAS benchmarks, either by compiler vectorization or by assembly code in-lining. If few functions generally profit from the SIMD operations, the using complex numbers or random number generators can be efficiently accelerated. Key words: SIMD extensions, Numerical applications vectors is more recent: AMD 3D Now [CAS98] and Intel SSE [INT99]. Motorola introduced 1. INTRODUCTION Altivec in 1999 [APP99]. With the Pentium 4, Intel introduced SSE2 [INT-AP, INT-IR] which With clusters of PCs or multiprocessor PCs, enables double precision floating point SIMD low cost parallel machines are now available. computation. If multimedia and DSP Most programming efforts concerns the applications remain the major applications that parallelization considering the two different can profit from SIMD extensions, the double models (shared memory inside nodes and precision extensions can also be used for message-passing between nodes). But, to exploit numerical applications. In the rest of the paper, any type of available parallelism, it is we will use “double” as an abbreviation for worthwhile to investigate the impact of SIMD double-precision floating point number. The parallelism that exists now in most of modern Pentium 4 XMM registers are 128-bit long and microprocessors on numerical applications. can pack two doubles. The SSE2 instructions The SIMD extensions to general purpose provide a large set of floating point SIMD microprocessor instruction sets were introduced operations, either on 4 packed floats or 2 packed in 1995 to improve the performance of doubles.
    [Show full text]
  • The RISC-V Instruction Set Manual Volume I: User-Level ISA Document Version 2.2
    The RISC-V Instruction Set Manual Volume I: User-Level ISA Document Version 2.2 Editors: Andrew Waterman1, Krste Asanovi´c1;2 1SiFive Inc., 2CS Division, EECS Department, University of California, Berkeley [email protected], [email protected] May 7, 2017 Contributors to all versions of the spec in alphabetical order (please contact editors to suggest corrections): Krste Asanovi´c,Rimas Aviˇzienis,Jacob Bachmeyer, Christopher F. Batten, Allen J. Baum, Alex Bradbury, Scott Beamer, Preston Briggs, Christopher Celio, David Chisnall, Paul Clayton, Palmer Dabbelt, Stefan Freudenberger, Jan Gray, Michael Hamburg, John Hauser, David Horner, Olof Johansson, Ben Keller, Yunsup Lee, Joseph Myers, Rishiyur Nikhil, Stefan O'Rear, Albert Ou, John Ousterhout, David Patterson, Colin Schmidt, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy Thorn, Ray VanDeWalker, Megan Wachs, Andrew Waterman, Robert Wat- son, and Reinoud Zandijk. This document is released under a Creative Commons Attribution 4.0 International License. This document is a derivative of \The RISC-V Instruction Set Manual, Volume I: User-Level ISA Version 2.1" released under the following license: c 2010{2017 Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovi´c. Creative Commons Attribution 4.0 International License. Please cite as: \The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2", Editors Andrew Waterman and Krste Asanovi´c,RISC-V Foundation, May 2017. Preface This is version 2.2 of the document describing the RISC-V user-level architecture. The document contains the following versions of the RISC-V ISA modules: Base Version Frozen? RV32I 2.0 Y RV32E 1.9 N RV64I 2.0 Y RV128I 1.7 N Extension Version Frozen? M 2.0 Y A 2.0 Y F 2.0 Y D 2.0 Y Q 2.0 Y L 0.0 N C 2.0 Y B 0.0 N J 0.0 N T 0.0 N P 0.1 N V 0.2 N N 1.1 N To date, no parts of the standard have been officially ratified by the RISC-V Foundation, but the components labeled \frozen" above are not expected to change during the ratification process beyond resolving ambiguities and holes in the specification.
    [Show full text]
  • Zynq-7000 All Programmable Soc Architecture Porting Quick Start Guide
    Zynq-7000 All Programmable SoC Architecture Porting Quick Start Guide UG1181 (v1.1.1) October 22, 2015 Revision History The following table shows the revision history for this document. Date Version Revision 10/22/2015 1.1.1 Updated title. 08/31/2015 1.1 Updated the TrustZone section. 06/25/2015 1.0 Initial Xilinx release. Architecture Porting Guide www.xilinx.com Send Feedback 2 UG1181 (v1.1.1) October 22, 2015 Table of Contents Revision History . 2 Chapter 1: Introduction Chapter 2: Porting Considerations ARM Cortex-A9 Features . 6 Chapter 3: Feature Comparison Across Architectures Architectural Comparison . 13 Address Maps. 18 Detailed Porting Guides: MIPS, PowerPC, Intel, and Renesas . 24 Appendix A: Additional Resources and Legal Notices Xilinx Resources . 25 Solution Centers. 25 References . 25 Please Read: Important Legal Notices . 25 Architecture Porting Guide www.xilinx.com Send Feedback 3 UG1181 (v1.1.1) October 22, 2015 Chapter 1 Introduction This document supports Xilinx® Zynq®-7000 All Programmable (AP) SoC customers that want to port embedded software from non ARM based processors to an ARM processing architecture. This porting guide references documentation on porting for PowerPC®, Intel®, Renesas-SH, and MIPS processors to ARM processors. (Zynq-7000 AP SoC contains the ARM® Cortex®-A9 dual core processor.) The ARM Cortex-A9 processor is a popular general purpose choice for low-power or thermally constrained, cost-sensitive devices. The processor is a mature option and remains a very popular choice for smart phones, digital TV, and both consumer and enterprise applications enabling the Internet of Things. The Cortex-A9 processor is available with a range of supporting ARM technology.
    [Show full text]
  • Native Signal Processing with Altivec in the Ptolemy Environment
    Native Signal Processing With Altivec In the Ptolemy Environment Ken Aponte and Ken Logan March 8, 2000 Abstract In the near future, media processing (i.e. creation, encoding/decoding, processing, display, and communication of digital multimedia such as images, audio, video, and graphics) is expected to become one of the dominant computing workloads [3]. Native signal processing (NSP) extensions for various general-purpose processor (GPP) architectures have been introduced in an effort to make media processing on workstations and personal computers easier. Due to incredible progress in microprocessor performance, it has become possible to perform many media processing tasks solely on general-purpose processors augmented with NSP extensions, even tasks that historically required special purpose hardware or specialized digital signal processors (DSP). In [8] it was found that using MMXä to enhance DSP and multimedia applications was a ‘difficult chore’ and in [5] the level of difficulty in programming with Sun’s VISä extensions was compared to that of DSP programming. Regardless of the NSP extension being used, usability problems arise because the legacy software development environment for general-purpose processors is not easily amenable to the single instruction multiple data (SIMD) semantics used in the NSP extensions. Our objective in this survey is to summarize the NSP extensions available, explain problems that software developers frequently encounter using the extensions, and discuss a possible strategy to solve this problem using code-generation facilities built into the prototyping environment called Ptolemy [4]. 1 Native Signal Processing Architectures Many of the modern general-purpose processor architectures now include NSP extensions. PA-RISCä was the first instruction set architecture to introduce multimedia extensions, MAX-1ä (Multimedia Acceleration extensions), in products introduced in January 1994 [7].
    [Show full text]