Reviews in Mineralogy & Geochemistry Vol. 75 pp. 7-46, 2013 2 Copyright © Mineralogical Society of America Carbon Mineralogy and Crystal Chemistry Robert M. Hazen Geophysical Laboratory, Carnegie Institution of Washington 5251 Broad Branch Road NW Washington, DC 20015, U.S.A.
[email protected] Robert T. Downs Department of Geosciences, University of Arizona 1040 East 4th Street Tucson, Arizona 85721-0077, U.S.A.
[email protected] Adrian P. Jones Earth Sciences, University College London Gower Street London WC1E 6BT, United Kingdom
[email protected] Linda Kah Department of Earth & Planetary Sciences University of Tennessee Knoxville, Tennessee 37996-4503, U.S.A.
[email protected] INTRODUCTION Carbon, element 6, displays remarkable chemical flexibility and thus is unique in the diversity of its mineralogical roles. Carbon has the ability to bond to itself and to more than 80 other elements in a variety of bonding topologies, most commonly in 2-, 3-, and 4-coordination. With oxidation numbers ranging from −4 to +4, carbon is observed to behave as a cation, as an anion, and as a neutral species in phases with an astonishing range of crystal structures, chemical bonding, and physical and chemical properties. This versatile element concentrates in dozens of different Earth repositories, from the atmosphere and oceans to the crust, mantle, and core, including solids, liquids, and gases as both a major and trace element (Holland 1984; Berner 2004; Hazen et al. 2012). Therefore, any comprehensive survey of carbon in Earth must consider the broad range of carbon-bearing phases. The objective of this chapter is to review the mineralogy and crystal chemistry of carbon, with a focus primarily on phases in which carbon is an essential element: most notably the polymorphs of carbon, the carbides, and the carbonates.