Energy from Waste
Total Page:16
File Type:pdf, Size:1020Kb
Energie_aus_Abfall_Engl.pdf 2 12.09.18 12:32 Energy from Waste Thomé-Kozmiensky und Beckmann hardcover with Energie aus Abfall 14 coloured illustrations Thomé-Kozmiensky und Beckmann Energie aus Abfall 12 Thomé-Kozmiensky und Beckmann Energie aus Abfall 7 Energie aus Abfall 6 Energie aus Abfall 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Abfall Abfall Abfall Abfall Abfall Abfall Abfall Abfall Abfall Abfall Abfall Abfall Abfall Abfall aus aus aus aus aus aus aus aus aus aus aus aus aus aus Energie Energie Energie Energie Energie Energie Energie Energie Energie Energie Energie Energie Energie Energie Thomé-Kozmiensky und Beckmann Energie aus Abfall 6 1 Abfall aus Energie Energie aus Abfall 9 Energie aus Abfall 11 Energie aus Abfall 10 10 Abfall aus Energie Energie aus Abfall 8 Thomé-Kozmiensky und Beckmann Energie aus Abfall 5 Beckmann Beckmann Beckmann Beckmann Beckmann Beckmann Beckmann y Thomé-Kozmiensky und Beckmann Energie aus Abfall 4 Thomé-Kozmiensky und Beckmann Energie aus Abfall 3 Thomé-KozmienskyThomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Thomé-Kozmiensk Beckmann Thomé-Kozmiensky und BeckmannBeckmann und und Thomé-Kozmiensky Thomé-Kozmiensky 10 Abfall aus Energie Thomé-Kozmiensky und Beckmann Energie aus Abfall 8 Thomé-Kozmiensky und Beckmann Energie aus Abfall 11 Thomé-Kozmiensky und Beckmann Energie aus Abfall 9 Thomé-Kozmiensky Beckmann Energie aus Abfall 2 Energie aus Abfall, Volume 1 (2006) ISBN: 978-3-935317-24-5 20.00 EUR Energie aus Abfall, Volume 2 (2007) ISBN: 978-3-935317-26-9 20.00 EUR Energie aus Abfall, Volume 3 (2007) ISBN: 978-3-935317-30-6 20.00 EUR Energie aus Abfall, Volume 4 (2008) ISBN: 978-3-935317-32-0 20.00 EUR Energie aus Abfall, Volume 5 (2008) ISBN: 978-3-935317-34-4 20.00 EUR Energie aus Abfall, Volume 6 (2009) ISBN: 978-3-935317-39-9 30.00 EUR Energie aus Abfall, Volume 7 (2010) ISBN: 978-3-935317-46-7 30.00 EUR Energie aus Abfall, Volume 8 (2011) ISBN: 978-3-935317-60-3 30.00 EUR Energie aus Abfall, Volume 9 (2012) ISBN: 978-3-935317-78-8 30.00 EUR Energie aus Abfall, Volume 10 (2013) ISBN: 978-3-935317-92-4 50.00 EUR Energie aus Abfall, Volume 11 (2014) ISBN: 978-3-944310-06-0 50.00 EUR Energie aus Abfall, Volume 12 (2015) ISBN: 978-3-944310-18-3 50.00 EUR Energie aus Abfall, Volume 13 (2016) ISBN: 978-3-944310-24-4 75.00 EUR Energie aus Abfall, Volume 14 (2017) ISBN: 978-3-944310-32-9 100.00 EUR Energie aus Abfall, Volume15 (2018) ISBN: 978-3-944310-39-8 100.00 EUR Package Price 450.00 EUR Energie aus Abfall, Volume 1 – 15 save 195.00 EUR order now www. .de TK Verlag GmbH Dorfstraße 51 D-16816 Nietwerder-Neuruppin Phone: +49.3391-45.45-0 • Fax +49.3391-45.45-10 E-Mail: [email protected] Qualification of Alternative Systems for the Thermal Conversion of Municipal Solid Waste Qualification of Alternative Systems for the Thermal Conversion of Municipal Solid Waste Frans Lamers 1. Introduction .................................................................................................304 2. Methodology ................................................................................................305 3. Conclusions ..................................................................................................311 4. Acknowledgement ......................................................................................311 5. References ....................................................................................................311 Pyrolysis/Gasification There is a large number of alternative waste to energy systems, such as pyrolysis, gasifi- cation and plasma gasification, additional to two stage gasification/combustion systems that are all brought in the market for the treatment of mixed municipal solid waste. Conventional waste to energy is based on incineration. The older generation of incine- ration plants (before 1990) showed high emissions of dioxins and other pollutants and showed a relatively low electrical efficiency. New generation grate fired incineration is highly controlled, air pollution meets the strictest air emission levels and net electrical efficiency can run to over 25 percent. More than 1,000 plants (all of comparable design) have been built worldwide since 1990, performance is widely reported and they can thus be considered proven and reliable technology. Still alternative thermal treatment systems often claim to be an environmentally and energetically better and sometimes cheaper alternatives for conventional waste to energy. The paper reviews the alternative technologies being presented in the market and their reported performances and it reviews whether these alternatives can be conside- red proven technology. At this moment, so-called two stage gasification/combustion installations (which are in fact more complex incineration plants) can be considered proven for the treatment of mixed municipal solid waste. Gasification, plasma gasifi- cation and pyrolysis plants have not yet run successfully with municipal solid waste at an even more or less comparable performance to modern incineration plants nor are their emission levels lower than for incineration. In future possible conversion of sustainably generated syn-gases to fuels or chemicals may provide a chance for further development however this still needs to be proven and will probably take at least five years more. 303 Frans Lamers 1. Introduction Economies that are investing into waste to energy are faced with challenges regarding environmentally compliant municipal solid waste management capacity and regarding reliable electricity supply capacity. From a sustainability point of view waste to energy is considered as a solution to provide both a stronger base load green electricity supply and a sustainable long term municipal solid waste management solution. Within mature economies, a Waste to Energy solution should be able to treat waste streams and generate electricity and/or heat reliably and predictably, for minimum 7,500, preferably 8,000 hours per year. In that way, a Waste to Energy solution becomes a utility. Regular Waste to Energy, based on grate fired combustion complies with all that conditions Stakeholders of economies that are moving away from landfilling are regularly being approached by suppliers of alternative Waste to Energy technologies, with claims of optimal suitability for the local requirements and improvements with respect to: Pyrolysis/Gasification • efficiency of electrical output • lower air emissions • carbon reduction and • quality of solid residues and optimization of recycling. A short overview is presented on the status of several alternative thermal technologies proposed on worldwide basis, compared to conventional but state of the art combus- tion system. The point of departure fore any Waste to Energy system being selected for commercial operation is that it should be proven technology. The overview contains an assessment of the following systems: • combustion systems (mainly grate combustion and fluidized bed combustion) • staged gasification or pyrolysis systems • pyrolysis systems • gasification systems and • plasma gasification systems. Within the article an inventory is given of the indicative number of working installations worldwide, pre-treatment necessity, waste quality requirements, size of installations (tonnes / hour), net energy efficiency and emissions, to give an indication on the tech- nology readiness of several alternative thermal systems. Furthermore, some examples of larger alternative technology developments are presented. 304 Qualification of Alternative Systems for the Thermal Conversion of Municipal Solid Waste 2. Methodology Sources and background The paper is based on the ISWA White Paper Alternative Waste Conversion Technologies of which author was main editor and on experiences of several other ISWA members including the co-author. Furthermore, several worldwide directories were used to review technology penetration The overview has been prepared to compile an overview of easily accessible information regarding various Waste to Energy technologies and to present the information that should be available to allow an investor to determine and compare which technology is suitable and fit for his purposes. System boundaries To make a proper evaluation of a technology for thermal treatment of waste, the com- plete system of waste pretreatment, energy and material input, technology, energy and material output should be assessed and quantified. In that way a properly comparable material and energy balance can be made (Figure 1). This total system evaluation will Pyrolysis/Gasification prevent any inconsistent comparisons. Waste treatment system Operating resources Waste Materials Energy INPUT Mechanical Thermal pretreatment Combustion pretreatment (reductive, e.g. gasification) (oxydic) Energy recovery Flue gas treatment Residues treatment OUTPUT Energy Valuable Materials Energy Materials Recovered recources Figure 1: Overview of system boundaries and input and output streams defining a thermal waste conversion process 305 Frans Lamers The relation between several technologies is presented in Figure 2. Basically, combustion of waste involves all three steps of pyrolysis (no oxygen), gasification (under stoichi- ometric in oxygen) and incineration, leading to complete conversion to CO2, water and ashes, whereas the typical pyrolysis or gasification processes provide intermediate products such as gas and / or oil