Controlled/Living Radical Polymerization in Aqueous Media: Homogeneous and Heterogeneous Systems

Total Page:16

File Type:pdf, Size:1020Kb

Controlled/Living Radical Polymerization in Aqueous Media: Homogeneous and Heterogeneous Systems Prog. Polym. Sci. 26 =2001) 2083±2134 www.elsevier.com/locate/ppolysci Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems Jian Qiua, Bernadette Charleuxb,*, KrzysztofMatyjaszewski a aDepartment of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA bLaboratoire de Chimie MacromoleÂculaire, Unite Mixte associeÂe au CNRS, UMR 7610, Universite Pierre et Marie Curie, Tour 44, 1er eÂtage, 4, Place Jussieu, 75252 Paris cedex 05, France Received 27 July 2001; accepted 30 August 2001 Abstract Controlled/living radical polymerizations carried out in the presence ofwater have been examined. These aqueous systems include both the homogeneous solutions and the various heterogeneous media, namely disper- sion, suspension, emulsion and miniemulsion. Among them, the most common methods allowing control ofthe radical polymerization, such as nitroxide-mediated polymerization, atom transfer radical polymerization and reversible transfer, are presented in detail. q 2001 Elsevier Science Ltd. All rights reserved. Keywords: Aqueous solution; Suspension; Emulsion; Miniemulsion; Nitroxide; Atom transfer radical polymerization; Reversible transfer; Reversible addition-fragmentation transfer Contents 1. Introduction ..................................................................2084 2. General aspects ofconventional radical polymerization in aqueous media .....................2089 2.1. Homogeneous polymerization .................................................2089 2.2. Heterogeneous polymerizations ................................................2089 2.2.1. Suspension polymerization .............................................2090 2.2.2. Emulsion polymerization ..............................................2091 2.2.3. Miniemulsion polymerization ...........................................2094 3. Controlled/living free-radical polymerization methods . .................................2096 3.1. General features and experimental criteria for controlled/living polymerization .............2096 3.1.1. Feature 1: internal ®rst-order kinetics with respect to monomer ...................2096 3.1.2. Feature 2: linear growth ofdegree ofpolymerization =DP n) with conversion .........2096 3.1.3. Feature 3: narrow molar mass distribution . .................................2097 * Corresponding author. Tel./fax: 133-1-44-27-70-89. E-mail addresses: [email protected] =B. Charleux), [email protected] =K. Matyjaszewski). 0079-6700/01/$ - see front matter q 2001 Elsevier Science Ltd. All rights reserved. PII: S0079-6700=01)00033-8 2084 J. Qiu et al. / Prog. Polym. Sci. 26 52001) 2083±2134 3.1.4. Feature 4: long-lived polymer chains ......................................2097 3.2. Stable free radical polymerization =SFRP) ........................................2098 3.3. Atom transfer radical polymerization =ATRP) .....................................2099 3.4. Reversible/degenerative transfer reaction .........................................2100 4. Controlled/living radical polymerization in aqueous solution ...............................2101 5. Controlled/living radical polymerization in aqueous dispersed systems ........................2104 5.1. Nitroxide mediated polymerization =NMP) ........................................2105 5.1.1. Precipitation and dispersion polymerizations .................................2105 5.1.2. Suspension polymerization . ............................................2105 5.1.3. Emulsion polymerization . ............................................2108 5.1.4. Miniemulsion polymerization ............................................2110 5.2. Atom transfer radical polymerization =ATRP) .....................................2112 5.2.1. Direct ATRP ........................................................2113 5.2.2. Reverse ATRP ......................................................2118 5.3. Reversible transfer radical polymerization ........................................2119 5.3.1. Degenerative iodine transfer ............................................2119 5.3.2. Reversible addition-fragmentation transfer ..................................2120 5.4. Peculiarities ofkinetics in controlled/living emulsion and miniemulsion polymerizations . .2126 5.4.1. Nucleation step ......................................................2126 5.4.2. Kinetics ...........................................................2127 6. Conclusions ..................................................................2129 Acknowledgements ................................................................2130 References ......................................................................2130 1. Introduction Since Staudinger [1] proposed the concept ofa chain polymerization and the basic structure ofa polymer molecule eight decades ago, polymer science and technology has experienced an immense development that has revolutionized the look ofthe world and the lifeofhuman beings. Numerous polymeric materials have been created thanks to continuous progress in understanding the fundamentals ofpolymerization. One ofthe greatest contributions to this ®eld fromsynthetic polymer chemists is the development ofliving polymerization methodology, which allows the preparation ofmacromolecules with the maximum degree ofstructural and compositional homogeneity. As a consequence, well-de®ned polymers with precise molar masses, compositions, topologies and functionalities can be tailor-made. This is a signi®cant step toward the ultimate goal ofpolymer synthesis, when the design ofnovel materials is only limited by the imagination ofhuman beings. The terms of`living polymerization' and `living polymers' were introduced by Szwarc [2] in 1956, although prior to his classical work, Ziegler [3] and Flory [4] also described similar concepts. By de®nition, a living polymerization is a chain polymerization that proceeds without the occurrence of irreversible chain breaking processes, i.e. chain transfer and termination. For nearly 30 years after Szwarc reported his insightful work, living polymerization of vinyl monomers had been restricted to anionic polymerization systems. But in 1960s and 1970s, several cationic ring-opening polymerizations ofheterocyclic monomers were foundto proceed with most undesirable side reactions virtually absent [5±7]. It was discovered that ifa dynamic equilibrium between an active and dormant species was formed, it allowed for ®ne tuning of the polymerization of tetrahydrofuran [8,9]. This concept of dynamic equilibrium was eventually extended to vinyl monomers in early 1980s, triggering the J. Qiu et al. / Prog. Polym. Sci. 26 52001) 2083±2134 2085 Nomenclature n~ average number ofradicals per particle [I] initiator concentration [I]0 initial initiator concentration [M] monomer concentration [M]0 initial monomer concentration AA acrylic acid ACPA see V-501 AEROSOL-MA80 sodium dihexyl sulfosuccinate AIBN azobisisobutyronitrile AN acrylonitrile ATRP atom transfer radical polymerization BPMOA N,N-bis=2-pyridylmethyl)octylamine BPMODA N,N-bis=2-pyridylmethyl)octadecylamine BPO benzoyl peroxide Bpy 2,20-bipyridine Brij98 C12H25±=OCH2CH2)20±OH CD cyclodextrine CLP controlled/living polymerization cmc critical micelle concentration CRP controlled/living radical polymerization CSA camphorsulfonic acid CTAB cetyl trimethyl ammonium bromide dAbpy 4,40-dialkyl-2,20-bipyridine, alkyl: mixture ofpentyl and 5-nonyl DCP dicumyl peroxide dHDbpy 4,40-di=9-heptadecyl)-2,20-bipyridine DMAEMA 2-=dimethylamino)ethyl methacrylate dNbpy 4,4-di=5-nonyl)-2,20-bipyridine DOWFAX8390 dihexadecyl disulfonated diphenyloxide disodium salt =Dow Chemical) DPn number average degree ofpolymerization DPw weight average degree ofpolymerization DRI differential refractive index detection dTbpy 4,40-di-t-butyl-2.20-bipyridine EBiB ethyl 2-bromoisobutyrate 2 1 Forafac C8F17CH2CH2COO K =Ato®na) HEA 2-hydroxyethyl acrylate HEMA 2-hydroxyethyl methacrylate HLB hydrophilic-lipophilic balance HV25 nonionic poly=ethylene oxide) DPn 25 nonyl phenol surfactant =Witco) Ip DPw=DPn Mw=Mn polydispersity index K activation/deactivation equilibrium constant =dimension depends on the system) ka rate constant ofactivation =dimension depends on the system) 2086 J. Qiu et al. / Prog. Polym. Sci. 26 52001) 2083±2134 21 21 kd rate constant ofdeactivation =l mol s ) 21 21 kp rate constant ofpropagation =l mol s ) Kraton copolymer ofethylene and butylene 21 21 kt rate constant ofirreversible termination =l mol s ) 21 21 ktr rate constant oftransfer=l mol s ) MALDI-TOF MS matrix-assisted laser desorption/ionisation Ð time-of-¯ight mass spectrometry Me6TREN tris[2-=dimethylamino)ethyl]amine MEMA 2-=N-morpholino)ethyl methacrylate MMA methyl methacrylate MMD molar mass distribution 21 Mn number average molar mass =g mol ) 21 Mw weight average molar mass =g mol ) NA Avogadro's number NaMA sodium methacrylate NaSS sodium styrenesulfonate NaVBA sodium vinylbenzoate n-BA n-butyl acrylate n-BMA n-butyl methacrylate NMP nitroxide-mediated radical polymerization NMR nuclear magnetic resonance OEGMA oligo=ethylene glycol) methacrylate OP-10 polyoxyethylene nonyl phenyl ether P=NaSS) poly=sodium styrenesulfonate) P=n-BA) poly=n-butyl acrylate) P=n-BMA) poly=n-butyl methacrylate) PMDETA N,N,N0,N00,N00-pentamethyldiethylenetriamine PMMA poly=methyl methacrylate) PRE persistent radical effect PS polystyrene PVA poly=vinyl alcohol) PVP poly=N-vinylpyrrolidone) RAFT reversible addition-fragmentation transfer 21
Recommended publications
  • 2 a Primer on Polymer Colloids: Structure, Synthesis and Colloidal Stability
    A. Al Shboul, F. Pierre, and J. P. Claverie 2 A primer on polymer colloids: structure, synthesis and colloidal stability 2.1 Introduction A colloid is a dispersion of very fine objects in a fluid [1]. These objects can be solids, liquids or gas, and the corresponding colloidal dispersion is then referred to as sus- pension, emulsion or foam. Colloids possess unique characteristics. For example, as their size is smaller than the wavelength of light, they scatter light. They also offer a large interfacial surface area, meaning that interfacial phenomena are of paramount importance in these dispersions. The weight of each dispersed particle being small, gravity and buoyancy forces are not sufficient to counteract the thermal random mo- tion of the particle, named Brownian motion (in tribute to the 19th century botanist Robert Brown who first characterized it). The particles do not remain in a dispersed state indefinitely: they will sooner or later aggregate (phase separation). Thus, thecol- loidal state is in general metastable and colloidal stability is one of the key features to take into account when working with colloids. Among all colloids, the polymer colloid family is one of the most widely inves- tigated [2]. Polymer colloids are used for a large number of applications, ranging from coatings, adhesives, inks, impact modifiers, drug-delivery vehicles, etc. The particles range in size from about 10 nm to 1 000 nm (1 μm) in diameter. They are usually spherical, but numerous other shapes have been observed. Polymer colloids are not uncommon in nature. For example, natural rubber latex, the secretion of the Hevea brasiliensis tree, is in fact a dispersion of polyisoprene nanoparticles in wa- ter.
    [Show full text]
  • „Polymer-Dispersionen“
    „Polymer-Dispersionen“ Klaus Tauer Definitions Meaning & properties of polymer dispersions Preparation of polymer dispersions Polymer Dispersions Polymer: any of a class of natural or synthetic substances composed of very large molecules, called macromolecules, that are multiples of simpler chemical units called monomers. Polymers make up also many of the materials in living organisms, including, for example, proteins, cellulose, and nucleic acids. Dispersion: (physical chemistry) a special form of a colloid: i.e. very fine particles (of a second phase) dispersed in a continuous medium the most popular / famous / best-known case of a polymer dispersion is a LATEX a latex is produced by heterophase polymerization, where the most important technique is emulsion polymerization *) *) *) 1 DM = 1.95583 € Molecular Composition polymer dispersionen: high concentration of polymer with low viscosity thickener (BASF AG, Ludwigshafen) Virtual EASE 2003/1 „Thickening agent“ Sterocoll is an acidic aqueous polymer dispersion containing polymer particles rich in caroxylic acid groups. It is used as thickening agent. First the polymer dispersion is diluted with water to lower the polymer content from 30 % to 5 %. It is still a white liquid having low viscosity. By addition of a small amount of an aqueous sodium hydroxide solution the pH is increased and the caroxylic acid groups are negatively charged. This makes the polymer particles soluble in water and a polymer solution is formed. At the same time the viscosity strongly increases due to the unfolding of the polymer molecules. At the end a clear gel is obtained. important application properties: viscosity viscosity-psd dilatancy (BASF AG, Ludwigshafen) „Dilatancy“ Dilatancy is a rheological phenomenon.
    [Show full text]
  • Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene
    polymers Article Initiator Systems Effect on Particle Coagulation and Particle Size Distribution in One-Step Emulsion Polymerization of Styrene Baijun Liu 1, Yajun Wang 1, Mingyao Zhang 1,* and Huixuan Zhang 1,2 1 School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; [email protected] (B.L.); [email protected] (Y.W.); [email protected] (H.Z.) 2 Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China * Correspondence: [email protected]; Tel.: +86-431-8571-6465 Academic Editor: Haruma Kawaguchi Received: 6 December 2015; Accepted: 15 February 2016; Published: 19 February 2016 Abstract: Particle coagulation is a facile approach to produce large-scale polymer latex particles. This approach has been widely used in academic and industrial research owing to its higher polymerization rate and one-step polymerization process. Our work was motivated to control the extent (or time) of particle coagulation. Depending on reaction parameters, particle coagulation is also able to produce narrowly dispersed latex particles. In this study, a series of experiments were performed to investigate the role of the initiator system in determining particle coagulation and particle size distribution. Under the optimal initiation conditions, such as cationic initiator systems or higher reaction temperature, the time of particle coagulation would be advanced to particle nucleation period, leading to the narrowly dispersed polymer latex particles. By using a combination of the Smoluchowski equation and the electrostatic stability theory, the relationship between the particle size distribution and particle coagulation was established: the earlier the particle coagulation, the narrower the particle size distribution, while the larger the extent of particle coagulation, the larger the average particle size.
    [Show full text]
  • Poly(Sodium Acrylate)-Based Antibacterial Nanocomposite Materials
    Poly(Sodium Acrylate)-Based Antibacterial Nanocomposite Materials Samaneh Khanlari Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Doctorate in Philosophy in Chemical Engineering Department of Chemical and Biological Engineering Faculty of Engineering UNIVERSITY OF OTTAWA © Samaneh Khanlari, Ottawa, Canada, 2015 i ii Abstract Polymer-based bioadhesives for sutureless surgery provide a promising alternative to conventional suturing. In this project, a new poly(sodium acrylate)-based nanocomposite with antibacterial properties was developed. Poly(sodium acrylate), was prepared using a redox solution polymerization at room temperature; this polymer served as a basis for a nanocomposite bioadhesive material using silver nanoparticles. In-situ polymerization was chosen as a nanocomposite synthesizing method and three methods were applied to quantify the distribution and loadings of nanofiller in the polymer matrices. These included the Voronoi Diagram, Euclidean Minimum Spanning Tree (EMST) method and pixel counting. Results showed that pixel counting combined with the EMST method would be most appropriate for nanocomposite morphology quantification. Real-time monitoring of the in-situ polymerization of poly(sodium acrylate)- based nanocomposite was investigated using in-line Attenuated Total Reflectance/Fourier Transform infrared (ATR-FTIR) technique. The ATR-FTIR spectroscopy method was shown to be valid in reaction conversion monitoring using a partial least squares (PLS) multivariate calibration method and the results were consistent with the data from off-line water removal gravimetric monitoring technique. Finally, a second, more degradable polymer (i.e., gelatin and poly(vinyl alcohol)) was used to modify the degradation rate and hydrophilicity of the nanocomposite bioadhesive.
    [Show full text]
  • Preparation of Ultra Fine Poly(Methyl Methacrylate) Microspheres in Methanol-Enriched Aqueous Medium
    Macromolecular Research, Vol. 12, No. 2, pp 240-245 (2004) Preparation of Ultra Fine Poly(methyl methacrylate) Microspheres in Methanol-enriched Aqueous Medium Sang Eun Shim, Kijung Kim, Sejin Oh, and Soonja Choe* Department of Chemical Engineering, Inha University, Yonghyun 253, Namgu, Incheon 402-751, Korea Received March 17, 2004; Revised April 6, 2004 Abstract: Monodisperse PMMA microspheres are prepared by means of a simple soap-free emulsion polymerization in methanol-enriched aqueous medium in a single step process. The size and uniformity of the microspheres are dependent on the polymerization temperature. In a stable system, the uniformity is improved with the polymerization time. The most uniform and stable microspheres are obtained under mild agitation speed of 100 rpm at 70 oC. The monodisperse PMMA microspheres in the size range of 1.4-2.0 µm having less than 5% size variation are successfully achieved with varying concentrations of monomer and initiator. As the monomer and initiator concentrations increase, the larger microspheres with enhanced uniformity are obtained. However, the decreased amount of water induces the polydisperse PMMA particles due to the generation of secondary particles. Keywords: monodisperse microspheres, poly(methyl methacrylate), soap-free emulsion polymerization. Introduction micron-sized polymer colloids have been exploited and found that they allow to shift the stop-band in NIR and IR region.21 Since the seminal concept of the photonic band-gap In the synthesis of micron-sized polymer colloids via (PBG) crystals was proposed by Yablonovich1 and John,2 emulsion polymerization, several attempts have been made. explosive researches have been flushed in the fabrication Homola et al.
    [Show full text]
  • Batch Emulsion Polymerization of Vinyl Chloride
    Batch Emulsion Polymerization of Vinyl Chloride: Application of Experimental Design to Investigate the Effects of Operating Variables on Particle Size and Particle Size Distribution Mahdi Pourmehr, Amir H. Navarchian Department of Chemical Engineering, University of Isfahan, Isfahan, Iran Received 4 May 2008; accepted 7 July 2008 DOI 10.1002/app.29079 Published online 3 October 2008 in Wiley InterScience (www.interscience.wiley.com). ABSTRACT: In this article, the influences of operating effects in the range of levels investigated in this study. variables on the particle size (PS) and particle size distribu- Except initiator concentration, all factors have important tion (PSD) of emulsion poly(vinyl chloride) in batch reactor influence on the PSD (significance sequence: S > R > T > were investigated using Taguchi experimental design [E]). It is implied from the greater influence of agitation approach. The variables were temperature (T), water to speed relative to temperature on PSD that the shear coagula- monomer weight ratio (R), concentrations of initiator ([I]) tion predominates the Brownian coagulation in this system. and emulsifier ([E]), and agitation speed (S). Scanning elec- The relative optimum condition for a typical paste applica- tron microscope was used together with image analysis soft- tion was also determined using overall evaluation criteria. ware to determine the PS and PSD. Statistical analysis of VC 2008 Wiley Periodicals, Inc. J Appl Polym Sci 111: 338–347, 2009 results revealed that the PS of emulsion poly(vinyl chloride)
    [Show full text]
  • Synthesis and Characterization of Solution and Melt Processible Poly(Acrylonitrile-Co-Methyl Acrylate) Statistical Copolymers
    SYNTHESIS AND CHARACTERIZATION OF SOLUTION AND MELT PROCESSIBLE POLY(ACRYLONITRILE-CO-METHYL ACRYLATE) STATISTICAL COPOLYMERS Padmapriya Pisipati Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Macromolecular Science and Engineering James E. McGrath, Chair Judy S. Riffle, Acting Chair Eugene G. Joseph Sue J. Mecham Donald G. Baird 02/20/2015 Blacksburg, VA Keywords: melt processability, polyacrylonitrile, carbon fibers, methyl acrylate, acrylic fibers, plasticizer, solution processing, high tensile modulus Copyright 2015, Padmapriya Pisipati SYNTHESIS AND CHARACTERIZATION OF SOLUTION AND MELT PROCESSIBLE POLY (ACRYLONITRILE-CO-METHYL ACRYLATE) STATISTICAL COPOLYMERS ABSTRACT Padmapriya Pisipati Polyacrylonitrile (PAN) and its copolymers are used in a wide variety of applications ranging from textiles to purification membranes, packaging material and carbon fiber precursors. High performance polyacrylonitrile copolymer fiber is the most dominant precursor for carbon fibers. Synthesis of very high molecular weight poly(acrylonitrile-co-methyl acrylate) copolymers with weight average molecular weights of at least 1.7 million g/mole were synthesized on a laboratory scale using low temperature, emulsion copolymerization in a closed pressure reactor. Single filaments were spun via hybrid dry-jet gel solution spinning. These very high molecular weight copolymers produced precursor fibers with tensile strengths averaging 954 MPa with an elastic modulus of 15.9 GPa (N = 296). The small filament diameters were approximately 5 µm. Results indicated that the low filament diameter that was achieved with a high draw ratio, combined with the hybrid dry-jet gel spinning process lead to an exponential enhancement of the tensile properties of these fibers.
    [Show full text]
  • Polymer Chemistry
    CLOTHWORKERS LIBRARY UNIVERSITY OF LEEDS THERMAL AND OXIDATIVE DEGRADATION OF AN AROMATIC POLYAMIDE. by «. Shojan Nanoobhai Patel 2. Submitted in accordance with the requirement for the degree of Doctor of Philosophy under the supervision of Professor I.E. McIntyre and Dr. S.A. Sills. The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to work of others. Department of Textile Industries, The University of Leeds, Leeds, LS2 9JT. December 1992. CLASS MARK T:; ~S 2tC\4 -1- ABSTRACT. The thermal oxidation of an aromatic polyamide fibre, namel\' poly(m-xylylene adipamide) has been investigated. The volatile and non-volatile products of oxidation identified using T.L.C., H.P.L.C. and G.C.-M.S. include homologous series of monocarboxylic acids, dicarboxylic acids, n-alkyl amines, diamines and aldehydes. Furthermore, several aromatics, ketones and amides were also identified. Mechanisms for their derivation have been proposed which are based on oxidation reactions already established in polymer chemistry. These include a mechanism of ~ scission by an alkoxy radical thought to be responsible for the creation of the homologous series. MXD,6 fibres were also spun incorporating 100, 200 and 400ppm of a cobalt catalyst and the effect of the metal ions on the oxygen uptake of the fibres was investigated. The results show a consistent increase in the rate of oxygen uptake as the concentration of the cobalt is increased. Furthermore, T.G.A. oxidative degradation studies, conducted at isothermal temperatures in the solid state, show decreases in the activation energies associated with fibre oxidation with increased cobalt concentrations, implying the cobalt is a catalyst for oxidation.
    [Show full text]
  • Polybenzimidazole Synthesis from Compounds with Sulfonate Ester Linkages
    AN ABSTRACT OF THE THESIS OF Turgav Seckin for the degree of Master of Science in Chemistry presented on August 26, 1987 TITLE : Polybenzimidazole Synthesis Frog Comnounds with Sulfonate Ester Linkages Redacted for privacy Abstract approved : Dr. R.W. THIES This investigation of polybenzimidazole synthesis involvedthe two-stage low temperature solution polymerization of dialdehydes, One-step polycondensation of dialdehydes,two-stage melt polyconden- sation of diesters, and one-step solutionpolycondensation of diesters with 3,3'-diaminobenzidine. Dialdehyde or diester monomers were prepared which contained aromatic units whichwere hooked toget- her with sulfonate linkages. Polymerization of these monomers with 3,3'-diaminobenzidine resulted in moderate viscosities of0.4-0.8 dlg in DMSO at 19°C. The polybenzimidazoles obtained appear to be linear; most of them when tested immediatelyafter preparation, were largely soluble in certain acidicor dipolar approtic solvents. Films, obtained by dissolving the polymerin dipolar approtic solvents such as N,N-dimethylacetamideor N,N-dimethyl formamide, were flexible, clear, yellow to brown in color, and foldable depen- ding upon which monomers and which polymerization methodswere used. Polybenzimidazole Synthesis From Compounds with Sulfonate Ester Linkages by Turgay Seckin A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Completed August 26, 1987 Commencement June 1988 APPROVED Redacted for privacy Professor of Chemistry in Charge ofMajor Redacted for privacy Chairman of Department of Chemistry Redacted for privacy Dean of G ad ate School Date thesis is prepared August 17, 1987 Thesis typed by Turgay Seckin To my family for their never failing love andsupport NE MUTLU TURKUM DIYENE ACKNOWLEDGEMENT I would like to thank Prof.
    [Show full text]
  • Polymer Colloid Science
    Polymer Colloid Science Jung-Hyun Kim Ph. D. Nanosphere Process & Technology Lab. Department of Chemical Engineering, Yonsei University National Research Laboratory Project the financial support of the Korea Institute of S&T Evaluation and Planning (KISTEP) made in the program year of 1999 기능성 초미립자 공정연구실 Colloidal Aspects 기능성 초미립자 공정연구실 ♣ What is a polymer colloids ? . Small polymer particles suspended in a continuous media (usually water) . EXAMPLES - Latex paints - Natural plant fluids such as natural rubber latex - Water-based adhesives - Non-aqueous dispersions . COLLOIDS - The world of forgotten dimensions - Larger than molecules but too small to be seen in an optical microscope 기능성 초미립자 공정연구실 ♣ What does the term “stability/coagulation imply? . There is no change in the number of particles with time. A system is said to be colloidally unstable if collisions lead to the formation of aggregates; such a process is called coagulation or flocculation. ♣ Two ways to prevent particles from forming aggregates with one another during their colliding 1) Electrostatic stabilization by charged group on the particle surface - Origin of the charged group - initiator fragment (COOH, OSO3 , NH4, OH, etc) ionic surfactant (cationic or anionic) ionic co-monomer (AA, MAA, etc) 2) Steric stabilization by an adsorbed layer of some substance 3) Solvation stabilization 기능성 초미립자 공정연구실 기능성 초미립자 공정연구실 Stabilization Mechanism Electrostatic stabilization - Electrostatic stabilization Balancing the charge on the particle surface by the charges on small ions
    [Show full text]
  • 1 050929 Quiz 1 Introduction to Polymers 1) in Class We Discussed
    050929 Quiz 1 Introduction to Polymers 1) In class we discussed a hierarchical categorization of the terms: macromolecule, polymer and plastics, in that plastics are polymers and macromolecules and polymers are macromolecules; but all macromolecules are not polymers and all polymers are not plastics. a) Give an example of a macromolecule that is not a polymer. b) Give an example of a polymer that is not a plastic. c) Define polymer. d) Define plastic. e) Define macromolecule. 2) In class we observed a simulation of a small polymer chain of 40 flexible steps. The chain was observed to explore configurational space. a) Explain what the phrase "explore configurational space" means. b) Consider the two ends of the chain to be tethered with a separation distance of about 6 extended steps. If temperature were increased would the chain ends push apart or pull together the tether points? Explain why. c) If one chain end is fixed in Cartesian space at x = 0, what are the limits on the x-axis for the other chain end as it explores configurational space? d) What is the average value of the position on the x-axis? dγ 3) Polymer melts are processed at high rates of strain, , in an extruder, injection molder, or dt calander. a) Sketch a typical plot of polymer viscosity versus rate of strain on a log-log plot showing the power-law region and the Newtonian plateau at low rates of strain. b) Explain using this plot why polymers are processed at high rates of strain. c) Using your own words propose a molecular model that could explain shear thinning in polymers.
    [Show full text]
  • Solution Polymerization of Acrylic Acid Initiated by Redox Couple Na-PS/Na-MBS: Kinetic Model and Transition to Continuous Process
    processes Article Solution Polymerization of Acrylic Acid Initiated by Redox Couple Na-PS/Na-MBS: Kinetic Model and Transition to Continuous Process Federico Florit , Paola Rodrigues Bassam , Alberto Cesana and Giuseppe Storti * Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy; federico.fl[email protected] (F.F.); [email protected] (P.R.B.); [email protected] (A.C.) * Correspondence: [email protected] Received: 28 May 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: This work aims at modeling in detail the polymerization of non-ionized acrylic acid in aqueous solution. The population balances required to evaluate the main average properties of molecular weight were solved by the method of moments. The polymerization process considered is initiated by a persulfate/metabisulfate redox couple and, in particular, the kinetic scheme considers the possible formation of mid-chain radicals and transfer reactions. The proposed model is validated using experimental data collected in a laboratory-scale discontinuous reactor. The developed kinetic model is then used to intensify the discontinuous process by shifting it to a continuous one based on a tubular reactor with intermediate feeds. One of the experimental runs is selected to show how the proposed model can be used to assess the transition from batch to continuous process and allow faster scale-up to industrial scale using a literature approach. Keywords: Poly(acrylic acid); free-radical polymerization; reaction model; process intensification; semi-batch to continuous 1. Introduction Poly(acrylic acid) (PAA) is a widely produced polymer with a growing, global annual production of 1.58 109 kg as of 2008 [1] and with applications in many industrial sectors.
    [Show full text]