Quick viewing(Text Mode)

Photomultiplier Tubes and Assemblies

Photomultiplier Tubes and Assemblies

PHOTOMULTIPLIER TUBES AND ASSEMBLIES FOR SCINTILLATION COUNTING & HIGH ENERGY PHYSICS INTRODUCTION In radiation measurements, scintillation counters which are combinations of scintillators and photomultiplier tubes are used as most common and useful devices in detecting X-, alpha-, beta-, gamma-rays and other high energy charged particles. A scintillator emits flashes of light in response to input radiations and a photomultiplier tube coupled to a scintillator detects these scintillation lights in a precise way. In high energy physics experiments, one of important apparatuses is a Cherenkov counter in which photomultiplier tubes detect Cherenkov radiations emitted by high energy charged particles passing through a dielectric material. To detect radiations accurately, photomultiplier tubes may be required to have high detecting efficiency (QE & energy resolution), wide dynamic range (pulse linearity), good time resolution (T.T.S.), high stablility & reliability, and to be operatable in high magnetic field environment or at high temperature condition. In addition, a ruggedized construction is required according to circumstances. On the other hand, several kinds of position sensitive photomultiplier tubes have been developed and are used in these measurements. This catalog provides a quick reference for photomultiplier tubes, especially designed or selected for scintillation counters and Cherenkov radiation detectors, and includes most of types currently available ranging in size from 3/8" through 20" in diameter. It should be noted that this catalog is just a starting point in describing Hamamatsu product line since new types are continuously under-development. Please feel free to contact us with your specific requirements. PHOTOMULTIPLIER TUBES AND ASSEMBLIES For scintillation counting & high energy physics

TABLE OF CONTENTS

Photomultiplier tubes Page Operating characteristics ...... 2 List guide for photomultiplier tubes ...... 18 Photomultiplier tubes ...... 20 Photomultiplier tube assemblies ...... 26 Dimensional outlines and basing diagrams for photomultiplier tubes ... 30 Typical gain characteristics ...... 52 Voltage distribution ratios ...... 56 PMT socket assemblies Quick reference for PMT socket assemblies ...... 58 Dimensional outlines and circuit diagrams for PMT socket assemblies ..... 60 Dimensional outlines for E678 series sockets ...... 68 Index by type No...... 70 Cautions and warranty ...... 72 Typical photocathode spectral response and emission spectrum of scintillators ...... 73 Operating characteristics

This section describes the prime features of photomultiplier Number of photoelectrons QE = ×100 (%) tube construction and basic operating characteristics. Number of photons

Radiant sensitivity (S) is the photoelectric current from the photocathode divided by the incident radiant power at a given 1. GENERAL wavelength, expressed in A/W (ampere per watt). The photomultiplier tube (PMT) is a photosensitive device The equation of S is as follows: consisting of an input window, a photocathode, focusing Photoelectric current electrodes, an electron multiplier (dynodes) and an anode in a S = (A/W) Radiant power of light vacuum tube, as shown in Figure 1. When light enters the photocathode, the photocathode emits photoelectrons into Quantum efficiency and radiant sensitivity have the following vacuum by the external photoelectric effect. These photoelec- relationship at a given wavelength. trons are directed by the potential of focusing electrode S×1240 towards the electron multiplier where electrons are multiplied QE = ×100 (%) λ by the process of secondary electron emission. The multiplied electrons are collected to the anode to produce where λ is the wavelength in nm (nanometer). output signal. 2.3 Window materials Figure 1: Cross-section of head-on type PMT The window materials commonly used in PMT are as follows: PHOTOCATHODE FOCUSING ELECTRODES STEM (1) Borosilicate glass This is the most frequently used material. It transmits light from INCIDENT LIGHT the infrared to approximately down to 300 nm. For some scintillation applications where radioactivity of K40 INPUT WINDOW contained in the glass affects the measurement, "K-free" glass is recommended. ELECTRON MULTIPLIER ANODE PHOTOELECTRON (DYNODES) As "K-free" glass contains very little amount of Potassium, the 40 TPMHC0048EA background counts originated by K is minimized. (2) UV-transmitting glass 2. PHOTOCATHODE This glass transmits ultraviolet light well as the name implies, and it is widely used. The UV cut-off wavelength is approxi- 2.1 Spectral response mately 185 nm. The photocathode of PMT converts energy of incident light into (3) Silica glass photoelectrons by the external photoelectric effect. The conver- This material transmits ultraviolet light down to 160 nm. Silica sion efficiency, that is photocathode sensitivity, varies with the is not suitable for the stem material of tubes because it has a wavelength of incident light. This relationship between the different thermal expansion coefficient from kovar metal which photocathode sensitivity and the wavelength is called the is used for the tube leads. Thus, borosilicate glass is used for spectral response characteristics. the stem. In order to seal these two materials having different Typical spectral response curves of the variation of bialkali thermal expansion ratios, a technique called graded seal is photocathodes are shown on the inside of the back cover. used. This is a technique to seal several glass materials having The spectral response range is determined by the photocath- gradually different thermal expansion ratios. Another feature of ode material on the long wavelength edge, and by the window silica is superiority in radiation hardness. material on the short wavelength edge. In this catalog, the long wavelength cut-off of spectral response 2.4 Photocathode materials range is defined as the wavelength at which the cathode The photocathode is a photoemissive surface with very low radiant sensitivity drops to 1 % of the maximum sensitivity. work and high energy physics applications: 2.2 Quantum efficiency and radiant sensitivity (1) Bialkali Spectral response is usually expressed in term of quantum This has a spectral response which fits the emission spectra of efficiency and radiant sensitivity as shown on the inside the most scintillators. Thus, it is frequently used for scintillator back cover. applications. Quantum efficiency (QE) is defined as the ratio of the number of photoelectrons emitted from the photocathode to the number (2) High temperature bialkali of incident photons. This is particularly useful at higher operating temperatures up It's customarily stated as a percentage. to 175 °C. Its major application is oil well logging. Also it can be The equation of QE is as follows: operated with very low dark current at the room temperature.

2 As stated above, the spectral response range is determined by 3. ELECTRON MULTIPLIER (DYNODES) the materials of the photocathode and the window as shown in Figure 34. The superior sensitivity (high gain and high S/N ratio) of PMT is It is important to select appropriate materials which will suit the due to a low noise electron multiplier which amplifies electrons application. in a vaccum with cascade secondary emission process. The electron multiplier consists of several to up to 19 stages of 2.5 Luminous and blue sensitivity electrodes which are called dynodes. Since the measurement of spectral response characteristics of a PMT requires a sophisticated system and time, it isn't practi- 3.1 Dynode types cal to provide spectral response data on each tube. Instead, There are several principal types of dynode structures. cathode and anode luminous sensitivity data are usually Features of each type are as follows: attached. (1) Linear focused type The cathode luminous sensitivity is the photoelectric current Fast time response, high pulse linearity from the photocathode per incident light flux (10-5 to 10-2 lumen) from a tungsten filament lamp operated at a distribution (2) Box and grid type temperature of 2856 K. Good collection efficiency, good uniformity The cathode luminous sensitivity is expressed in the unit of (3) Box and linear focused type μA/lm (micro amperes per lumen). Note that the lumen is a unit used for luminous flux in the visible Good collection efficiency, good uniformity, low profile region, therefore these values may be meaningless for tubes (4) Circular and linear-focused type which are sensitive out of the visible region (refer to Figure 2). Fast time response, compactness The cathode blue sensitivity is the photoelectric current from the photocathode per incident light flux of a tungsten filament (5) Venetian blind type lamp at 2856 K passing through a blue filter. Corning CS-5-58 Good uniformity, large output current filter which is polished to half stock thickness is used for the (6) Fine mesh type measurement of this sensitivity. This filter is a band-pass filter High immunity to magnetic fields, good uniformity, high pulse and its peak wavelength of transmittance is 400 nm. linearity, position detection possible. Since the light flux, once transmitted through the blue filter, can not be expressed in lumen, the blue sensitivity is usually repre- (7) Metal channel type sented by the blue sensitivity index. Compact dynode construction, fast time response, position The blue sensitivity is a very important parameter in the scintil- detection possible. lation counting since most of the scintillators produce emission spectrum in the blue region, and it may dominant factor of energy resolution. These parameters of cathode luminous and blue sensitivities are particularly useful when comparing tubes having the same or similar spectral response ranges. Hamamatsu final test sheets 4. ANODE accompanied with tubes usually indicate these parameters. The PMT anode output is the product of photoelectric current from the photocathode and gain. Photoelectric current is Figure 2: Typical human eye response and spectral proportional to the intensity of incident light. Gain is determined distribution of 2856 K tungsten lamp by the applied voltage on a specified voltage divider.

100 TPMOB0054EB 4.1 Luminous sensitivity

TUNGSTEN 80 The anode luminous sensitivity is the anode output current per LAMP AT 2856 K incident light flux (10-10 to 10-5 lumen) from a tungsten filament lamp operated at a distribution temperature of 2856 K. This is 60 expressed in the unit of A/lm (amperes per lumen) at a speci- fied anode-to-cathode voltage with a specified voltage divider. 40

VISUAL SENSITIVITY RELATIVE VALUE (%) 20

0 200 400 600 800 1000 1200 1400

WAVELENGTH (nm) 3 4.2 Gain (Current amplification) 5. ANODE DARK CURRENT

Photoelectrons emitted from a photocathode are accelerated A small amount of output current flows in a PMT even when it by an electric field so as to strike the first dynode and produce is operated in complete darkness. This current is called the secondary electron emissions. These secondary electrons then anode dark current. The dark current and the noise resulted impinge upon the next dynode to produce additional secondary from are critical factors to determine the lower limit of light electron emissions. Repeating this process over successive detection. dynode stages (cascade process), a high gain is achieved. The causes of dark current may be categorized as follows: Therefore a very small photoelectric current from the photo- cathode can be observed as a large output current from the (1) Thermionic emission of electrons anode of the PMT. Since the materials of the photocathode and dynodes have Gain is simply the ratio of the anode output current to the very low work functions, they emit thermionic electrons even at photoelectric current from the photocathode. Ideally, the gain of the room temperature. Most of the dark current originates from the PMT is defined as δn, where n is the number of dynode the thermionic emissions especially from the photocathode, stage and δ is an average secondary emission ratio. and it is multiplied by the dynodes. δ While the secondary electron emission ratio is given by (2) Ionization of residual gases δ α = A • E Residual gases inside the PMT can be ionized by the flow of where A is constant, E is an interstage voltage, and α is a photoelectrons. When these ions strike the photocathode or coefficient determined by the dynode material and geometric earlier stages of dynodes, secondary electrons may be structure. It usually has a value of 0.7 to 0.8. emitted, thus resulting in relatively large output noise pulses. When a voltage V is applied between the cathode and the These noise pulses are usually observed as afterpulses follow- anode of the PMT having n dynode stages, gain G becomes ing the primary signal pulses and may be a problem in detect- ing short light pulses. Present PMT's are designed to minimize α n α V afterpulses. G = δn = (A • E )n = A • { ()n + 1 } (3) Glass scintillation An = αn αn αn V = K • V In case electrons deviating from their normal trajectories strike (n + 1) (K: constant) the glass envelope, scintillations may occur and dark pulses may result. To eliminate these pulses, PMT's may be operated Figure 3: Example of gain vs. supply voltage with the anode at high voltage and the cathode at the ground TPMOB0038EB 104 109 potential. Otherwise it is useful to coat the glass bulb with a conductive paint connected to the cathode (called HA treatment: see page 13). 103 108 (4) Ohmic leakage Ohmic leakage resulting from insufficient insulation of the glass 102 107 stem base and socket may be another source of dark current. This is predominant when a PMT is operated at a low voltage

1 6 10 AIN 10 or low temperature. G GAIN Contamination by dirt and on the surface of the tube ANODE SENSITIVITY may cause ohmic leakage, and therefore should be avoided. 100 105 (5) Field emission When a PMT is operated at a voltage near the maximum rating 10-1 4

ANODE LUMINOUS SENSITIVITY (A/lm) 10 value, some electrons may be emitted from electrodes by strong electric fields causing dark pulses. It is therefore recom- 10-2 103 mended that the tube be operated at 100 volts to 300 volts 200 300 500 700 1000 1500 lower than the maximum rating. SUPPLY VOLTAGE (V) The anode dark current decreases along time after a PMT is placed in darkness. In this catalog, anode dark currents are Figure 3 shows gain characteristics. specified as the state after 30 minutes storage in darkness. Since generally PMTs have 8 to 12 dynode stages, the anode output varies directly with the 6th to 10th power of the change in applied voltage. The output signal of the PMT is extremely susceptible to fluctuations in the power supply voltage, thus the power supply should be very stable and exhibit minimum ripple, drift and temperature coefficient. Regulated high voltage power supplies designed with this consideration are available from Hamamatsu. 4 6. TIME RESPONSE These parameters are affected by the dynode structure and applied voltage. In general, PMTs of the linear focused struc- In applications where forms of the incident light are pulses, the ture exhibit better time response than that of the box-and-grid anode output signal should reproduce a waveform faithful to or venetian blind structure. the incident pulse waveform. This reproducibility depends on the anode pulse time Figure 6 shows typical time response characteristics vs. applied response. voltage for types R2059 (51 mm dia. head-on, 12-stage, (1) Rise time (refer to Figure 4) linear-focused type). The time for the anode output pulse to rise from 10 % to 90 % of the peak amplitude when the whole photocathode is illumi- Figure 6: Time response characteristics vs. supply nated by a delta-function light pulse. voltage

(2) Electron transit time (refer to Figure 4) TPMOB0059EB TYPE NO.: R2059 102 The time interval between the arrival of a delta-function light pulse at the photocathode and the instant when the anode TRANSIT TIME output pulse reaches its peak amplitude. (3) T.T.S. (Transit Time Spread) (refer to Figure 5) This is also called the transit time jitter. This is the fluctuation in 101 transit time between individual pulses, and is defined as the FWHM of the frequency distribution of electron transit times.

T.T.S. depends on the number of incident photons. The values RISE TIME in this catalog are measured in the single photoelectron state. TIME (ns) 100 Figure 4: Definition of rise time and transit time T.T.S.

DELTA-FUNCTION 500 1000 1500 20002500 3000 LIGHT PULSE AT PHOTOCATHODE TRANSIT TIME Tt SUPPLY VOLTAGE (V) 90 %

10 %

RISE TIME TPMOC0041EA

7. PULSE LINEARITY Figure 5: Definition of T.T.S. The definition of the pulse linearity is proportionality between FWHM=T.T.S. the input light amount and the output current in the pulse operation mode. When intense light pulses are to be Tt Tt measured, it's necessary to know the pulse linearity range of the PMT. FREQUENCY In this catalog, typical values of pulse linearity are specified at TIME two points (±2 % and ±5 % deviations from linear proportional- TPMOC0042EA ity), as shown in Figure 7. The two-pulse technique is employed in this measurement. (4) C.R.T. (Coincident Resolving Time) LED's are used for a pulsed light source. Its pulse width is This is one of the important parameters in high energy physics 50 ns and the repetition rate is 1 kHz. applications and is defined as the FWHM of a coincident timing The deviation from the proportionality is called non-linearity in spectrum of a pair PMT's facing each other when they detect this catalog. The cause of non-linearity is mainly a space coincident gamma-ray emission due to positron annihilation of charge effect in the later stages of an electron multiplier. This a radiation source (22Na). The scintillators used are CsF, BGO space charge effect depends on the pulse height of the PMT or BaF2 crystals. These PMT's can be selected for special output current and the strength of electric fields between requirements. electrodes.

5 Figure 7: Example of pulse linearity characteristic 9. STABILITY

TPMHB0094ED 10 In scintillation counting, there are two relevant stability charac- teristics for the PMT in pulse height mode operation, the long term and the short term. In each case a 137Cs source (662 keV), and an NaI(Tl) scintillator, and a multichannel pulse height 0 analyzer are used. PMT's are warmed up for about one hour in 2 % the dark with voltage applied. 5 % 9.1 Long term stability (Mean gain deviation)

DEVIATION (%) -10 This is defined as follows when the PMT is operated for 16 hours at a constant count rate of 1000 s-1: n -20 Σ P-Pi 100 101 102 103 i =1 100 Dg = • (%) n P ANODE PEAK CURRENT (mA) where P is the mean pulse height averaged over n readings, Pi The special voltage distribution ratios are designed to achieve is the pulse height at the i-th reading, and n is the total number strong electric fields in the later stages of the electron multiplier. of readings. Some types are specified with these special voltage dividers. 9.2 Short term stability This is the gain shift against count rate change. The tube is -1 8. UNIFORMITY initially operated at about 10000 s . The photo-peak count rate is then decreased to approximately 1000 s-1 by increasing the Although the focusing electrodes of a PMT are designed so distance between the 137Cs source and the scintillator coupled that electrons emitted from the photocathode or dynodes are to the PMT. collected efficiently by the first or following dynodes, some electrons may deviate from their desired trajectories and 9.3 Drift and life characteristics collection efficiency is degraded. The collection efficiency While operating a photomultiplier tube continuously over a long varies with the position on the photocathode from which the period, anode output current of the photomultiplier tube may photoelectrons are emitted, and influences the spatial unifor- vary slightly with time, although operating conditions have not mity of a photomultiplier tube. The spatial uniformity is also changed. This change is reffered to as drift or in the case where determined by the photocathode surface uniformity itself. the operating time is 1000 hours to 10000 hours it is called life PMTs especially designed for gamma camera applications characteristics. Figure 9 shows typical life characteristics. have excellent spatial uniformity. Example of spatial uniformity Drift is primarily caused by damage to the last dynode by is shown in Figure 8. heavy electron bombardment. Therefore the use of lower anode current is desirable. When stability is of prime impor- Figure 8: Example of spatial uniformity tance, the use of average anode current of 1 μA or less is TOP VIEW OF recommended. PHOTOCATHODE Figure 9: Examples of life characteristics

TPMHB0794EA 150

x + σ 125 x 0

50 100 100 100 x - σ SENSITIVITY (%) 75

50 50 TEST CONDITIONS SUPPLY VOLTAGE: 1000 V INITIAL CURRENT: 100 μA SENSITIVITY (%) 25 LIGHT SOURCE: TUNGSTEN LAMP 0 TEMPERATURE: 25 °C RELATIVE ANODE SENSITIVITY (%) NUMBER OF SAMPLES: 10 TPMHC0050EA 0 1 10 100 1000 10000

OPERATING TIME (h) 6 10. ENVIRONMENT The magnetic shielding factor is determined by the permeability µ, the thickness t(mm) and inner diameter r(mm) of the shield 10.1 Temperature characteristics case as follows. The sensitivity of the PMT varies with the temperature. Figure Hout 3µt = 10 shows typical temperature coefficients of anode sensitivity Hin 4r around the room temperature for bialkali and high temp. bialkali It should be noted that the magnetic shielding effect decreases photocathode types. In the ultraviolet to visible region, the towards the edge of the shield case as shown in Figure 12. It is temperature coefficient of sensitivity has a negative value, suggested to cover a PMT with a shield case longer than the while it has a positive value near the longer wavelength cut-off. PMT length by at least half the PMT diameter. Since the temperature coefficient change is large near the longer wavelength cut-off, temperature control may be required in some applications. Figure 11: Typical effects by magnetic fields perpendicular to tube axis Figure 10: Typical temperature coefficients of anode 1.0 TPMOB0017EB sensitivity

1.5 TPMOB0036ED 19 mm dia. HEAD-ON TYPE LINEAR-FOCUSED 1 () TYPE DYNODE

BIALKALI HIGH TEMP. 0.5 BIALKALI 0.1

0

RELATIVE OUTPUT 51 mm dia. ANODE SENSITIVITY HEAD-ON TYPE -0.5 BOX-AND-GRID ( TYPE DYNODE ) TEMPERATURE COEFFICIENT (% / °C) -1 200 300 400 500 600 700 800

0.01 WAVELENGTH (nm) -3 -2 -1 0 1 2 3

MAGNETIC FLUX DENSITY (mT) 10.2 Magnetic field

Most PMTs are affected by the presence of magnetic fields. Figure 12: Edge effect of magnetic shield case Magnetic fields may deflect electrons from their normal trajec- tories and cause a loss of gain. The extent of the loss of gain EDGE EFFECT t LONGER than r depends on the type of the PMT and its orientation in the magnetic field. Figure 11 shows typical effects of magnetic fields on some types of PMTs. In general, a PMT having a long

2r PHOTOMULTIPLIER TUBE path from the photocathode to the first dynode are very sensi- tive to magnetic fields. Therefore head-on types, especially of large diameter, tend to be more adversely influenced by L magnetic fields. 1000 When a PMT has to be operated in magnetic fields, it may be 100 necessary to shield the PMT with a magnetic shield case. (Hamamatsu provides a variety of magnetic shield cases.) 10 For example, the shield case, of which inner diameter is 60 mm and the thickness is 0.8 mm, can be used in a magnetic field of 1 r r around 5 mT without satulation. If a magnetic field strength is SHIELDING FACTOR (Ho/Hi) more than 10 mT, the double shielding method is necessary for TPMOB0011EC a conventional PMT, otherwise proximity mesh types should be The proximity mesh made of non-magnetic material has been used. The magnetic shielding factor is used to express the introduced as alternate dynodes in PMT's. These types (see effect of a magnetic shield case. This is the ratio of the strength page 24) exhibit much higher immunity to external magnetic of the magnetic field outside the shield case or Hout, to that fields than the conventional PMT's. Also triode and three types inside the shield case or Hin. (see page 24) are useful for applications at high light intensi- ties. 7 11. VOLTAGE DIVIDER CIRCUITS 11.1 Anode grounding and photocathode grounding To operate a photomultiplier tube, a high voltage of 500 volts to In order to eliminate the potential difference between the 2000 volts is usually supplied between the photocathode (K) photomultiplier tube anode and external circuits such as an and the anode (P), with a proper voltage gradient set up along ammeter, and to facilitate the connection, the generally used the photoelectron focusing electrode (F) or grid (G), secondary technique for voltage divider circuits is to ground the anode electron multiplier electrodes or dynodes (Dy) and, depending and supply a high negative voltage (-HV) to the photocathode, on photomultiplier tube type, an accelerating electrode (Acc). as shown in Figure 14. This scheme provides the signal output Figure 13 shows a schematic representation of photomultiplier in both DC and pulse operations, and is therefore used in a tube operation using independent multiple power supplies, but wide range of applications. this is not a practical method. Instead, a voltage divider circuit In photon counting and scintillation counting applications, is commonly used to divide, by means of resistors, a high however, the photomultiplier tube is often operated with the voltage supplied from a single power supply. photocathode grounded and a high positive voltage (+HV) supplied to the anode mainly for purposes of noise reduction. Figure 13: Schematic representation of photomultiplier This photocathode grounding scheme is shown in Figure 15, tube operation along with the coupling capacitor Cc for isolating the high LIGHT K F Dy1 Dy2 Dy3 P voltage from the output circuit. Accordingly, this setup cannot SECONDARY ELECTRONS provide a DC signal output and is only used in pulse output e- e- e- e- PHOTOELECTRONS ANODE CURRENT applications. The resistor RP is used to give a proper potential Ip to the anode. The resistor RL is placed as a load resistor, but A the actual load resistance will be the combination of RP and RL. V1 V2 V3 V4 V5

POWER SUPPLIES TACCC0055EA Figure 15: Photocathode grounded voltage divider circuit

K FPDy1 Dy2 Dy3 Figure 14 shows a typical voltage divider circuit using resistors, Cc with the anode side grounded. The capacitor C1 connected in OUTPUT Ip parallel to the resistor R5 in the circuit is called a decoupling capacitor and improves the output linearity when the photomul- RP RL R1 R2 R3 R4 R5 tiplier tube is used in pulse operation, and not necessarily used C2 in providing DC output. In some applications, transistors or Zener diodes may be used in place of these resistors. C1

Figure 14: Anode grounded voltage divider circuit +HV TACCC0057EB K FPDy1 Dy2 Dy3

Ip OUTPUT

RL

R1 R2 R3 R4 R5

C1

-HV

TACCC0056EB

8 11.2 Standard voltage divider circuits 11.4 Voltage divider circuit and photomultiplier tube output linearity Basically, the voltage divider circuits of socket assemblies listed in this catalog are designed for standard voltage distribu- In both DC and pulse operations, when the light incident on the tion ratios which are suited for constant light measurement. photocathode increases to a certain level, the relationship Socket assemblies for side-on photomultiplier tubes in particu- between the incident light level and the output current begins to lar mostly use a voltage divider circuit with equal interstage deviate from the ideal linearity. As can be seen from Figure 18, voltages allowing high gain as shown in Figure 16. region A maintains good linearity, and region B is the so-called overlinearity range in which the output increase is larger than Figure 16: Equally divided voltage divider circuit the ideal level. In region C, the output goes into saturation and

K Dy1 Dy2 Dy3 Dy4 Dy5 P becomes smaller than the ideal level. When accurate measure- ment with good linearity is essential, the maximum output OUTPUT current must be within region A. In contrast, the lower limit of the output current is determined by the dark current and noise RL of the photomultiplier tube as well as the leakage current and 1R 1R 1R 1R 1R 1R noise of the external circuit.

C1 C2 Figure 18: Output linearity of photomultiplier tube

TACCB0005EB -HV 10 TACCC0058EB C

11.3 Tapered voltage divider circuits 1.0

B In most pulsed light measurement applications, it is often ACTUAL CURVE necessary to enhance the voltage gradient at the first and/or 0.1 last few stages of the voltage divider circuit, by using larger IDEAL CURVE resistances as shown in Figure 17. This is called a tapered voltage divider circuit and is effective in improving various

TO DIVIDER CURRENT A characteristics. However it should be noted that the overall 0.01 RATIO OF OUTPUT CURRENT gain decreases as the voltage gradient becomes greater. In addition, care is required regarding the interstage voltage 0.001 tolerance of the photomultiplier tube as higher voltage is 0.001 0.01 0.1 1.0 10 supplied. The tapered voltage circuit types and their suitable LIGHT FLUX (A.U.) applications are listed below.

Tapered circuit at the first few stages (resistance: large / small ) 11.5 Output linearity in DC mode Photon counting (improvement in pulse height distribution) Figure 19 is a simplified representation showing photomultiplier Low-light-level detection (S/N ratio enhancement) tube operation in the DC output mode, with three stages of High-speed pulsed light detection (improvement in timing properties) dynodes and four dividing resistors R1 through R4 having the Other applications requiring better magnetic characteristics and uniformity same resistance value. Tapered circuit at the last few stages (resistance: small / large ) High pulsed light detection (improvement in output linearity) Figure 19: Basic operation of photomultiplier tube High-speed pulsed light detection (improvement in timing properties) and voltage divider circuit Other applications requiring high output across the load resistor K Dy1 Dy2 Dy3 P

I2 I3 Figure 17: Tapered voltage divider circuit I1 I4 Ip K Dy1 Dy2 Dy3 Dy4 Dy5 P IK IDy1 IDy2 IDy3 A

R1 R2 R3 R4 OUTPUT

IR1 IR2 IR3 IR4

RL ID 2R 1.5R 1R 1R 2R 3R -HV TACCC0060EA

C1 C2

-HV TACCC0059EB 9 [When light is not incident on the tube] Figure 21: Operation with light input

In dark state operation where a high voltage is supplied to a I4' (=IP') I1' (=IK') I2' I3' photomultiplier tube without incident light, the current compo- K Dy1 Dy2 Dy3 P

nents flowing through the voltage divider circuit will be similar Ik'IDy1'IDy2'IDy3'IP' to those shown in Figure 20 (if we ignore the photomultiplier IR1'IR2'IR3'IR4'

tube dark current). The relation of current and voltage through R1 R2 R3 R4

each component is given below V1'V2'V3'V4' Interelectrode current of photomultiplier tube

I1=I2=I3=I4 (= 0 A) -HV Δ Electrode current of photomultiplier tube ID' =ID + ID TACCC0062EA IK=IDy1=IDy2=IDy3=IP (= 0 A) Voltage divider circuit current Figure 22 shows changes in the interstage voltages as the 4 incident light level varies. The interstage voltage V4' with light IR1=IR2=IR3=IR4=ID= (HV/ Σ Rn) n=1 input drops significantly compared to V4 in dark state opera- Voltage divider circuit voltage tion. This voltage loss is redistributed to the other stages, V1=V2=V3=V4=ID • Rn (= HV/4) resulting an increases in V1', V2' and V3' which are higher than those in dark state operation. The interstage voltage V4' is only Figure 20: Operation without Light Input required to collect the secondary electrons emitted from the

I4 (=IP) last dynode to the anode, so it has little effect on the anode I1 (=IK)I2 I3 K Dy1 Dy2 Dy3 P current even if dropped to 20 or 30 volts. In contrast, the

IK IDy1 IDy2 IDy3 IP increases in V1', V2' and V3' directly raise the secondary IR1 IR2 IR3 IR4 emission ratios (δ1, δ2 and δ3) at the dynodes Dy1, Dy2 and

R1 R2 R3 R4 Dy3, and thus boost the overall gain m (= δ1 • δ2 • δ3 ). This is

V1 V2 V3 V4 the cause of overlinearity in region B in Figure 10. As the incident light level further increases so that V4' approaches 0

-HV volts, output saturation occurs in region C.

ID TACCC0061EA Figure 22: Changes in interstage voltages at different [When light is incident on the tube] incident light levels

When light is allowed to strike the photomultiplier tube under TACCB0017EA 120 the conditions in Figure 20, the resulting currents can be MODERATE considered to flow through the photomultiplier tube and the LIGHT INPUT voltage divider circuit as schematically illustrated in Figure 21. 110 HIGH LIGHT INPUT Here, all symbols used to represent the current and voltage are expressed with a prime ( ' ), to distinguish them from those in

dark state operation. 100 The voltage divider circuit current ID' is the sum of the voltage NO OR FAINT divider circuit current ID in dark state operation and the current LIGHT INPUT Δ flowing through the photomultiplier tube ID (equal to average 90

interelectrode current). The current flowing through each INTERSTAGE VOLTAGE (%) dividing resistor Rn becomes as follows:

IRn' = ID' - In' 80 V1 V2 V3 V4 Where In' is the interelectrode current which has the following POSITION OF INTERSTAGE VOLTAGE relation:

I1' < I2' < I3' < I4'

Thus, the interstage voltage Vn' (=IRn' • Rn) becomes smaller at the latter stages, as follows:

V1' > V2' > V3' > V4'

10 11.6 Linearity improvement in DC output mode 2Using the active voltage divider circuit To improve the linearity in DC output mode, it is important to Use of a voltage divider circuit having transistors in place of the minimize the changes in the interstage voltage when photocur- dividing resistors in last few stages (for example, Hamamatsu rent flows through the photomultiplier tube. There are several E6270 series using FETs) is effective in improving the output specific methods for improving the linearity, as discussed below. linearity. This type of voltage divider circuit ensures good linearity up to an output current equal to 60 % to 70 % of the 1Increasing the voltage divider current voltage divider current, since the interstage voltage is not Figure 23 shows the relationship between the output linearity affected by the interelectrode current inside the photomultiplier of a 28 mm (1-1/8") diameter side-on photomultiplier tube and tube. A typical active voltage divider circuit is shown in Figure the ratio of anode current to voltage divider current. For exam- 24. ple, to obtain an output linearity of 1 %, it can be seen from the Figure 24: Active voltage divider circuit figure that the anode current should be set approximately 1.4 % of the divider circuit current. However, this is a calculated KPDy1 Dy2 Dy3 Dy4 Dy5 plot, so actual data may differ from tube to tube even for the same type of photomultiplier tube, depending on the supply voltage and individual dynode gains. To ensure high photomet- RL ric accuracy, it is recommended that the voltage divider current TWO be maintained at least twice the value obtained from this figure. TRANSISTORS The maximum linear output in DC mode listed for the D-type socket assemblies in this catalog indicates the anode current equal to 1/20 of the voltage divider current. The output linearity -HV at this point can be maintained within 3 % to 5 %. TACCC0063EA

Figure 23: Output linearity vs. anode current to 3 voltage divider current ratio Using zener diodes The output linearity can be improved by using Zener diodes in TACCB0031EA 10 place of the dividing resistors in the last few stages, because the Zener diodes serve to maintain the interstage voltages at a constant level. However, if the supply voltage is greatly varied, the voltage distribution may be imbalanced compared to other 1 interstage voltages, thus limiting the adjustable range of the voltage with this technique. In addition, if the supply voltage is reduced or if the current flowing through the Zener diodes becomes insufficient due to an increase in the anode current, 0.1 noise may be generated from the Zener diodes. Precautions

OUTPUT LINEARITY (%) should be taken when using this type of voltage divider circuit. Figure 25 shows a typical voltage divider circuit using Zener diodes. 0.01 0.11 10

RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%) Figure 25: Voltage divider circuit using zener diodes

K Dy1 Dy2 Dy3 Dy4 Dy5 P As stated above, good output linearity can be obtained simply by increasing the voltage divider current. However, this is accompanied by heat emanating from the voltage divider. If RL this heat is conducted to the photomultiplier tube, it may cause TWO ZENER DIODES problems such as an increase in the dark current, and variation in the output.

-HV

TACCC0064EA

11 4Using Cockcroft-Walton circuit 11.7 Output linearity in pulsed mode When a Cockcroft-Walton circuit as shown in Figure 26 is used In applications such as scintillation counting where the incident to operate a 28 mm (1-1/8") diameter side-on photomultiplier light is in the form of pulses, individual pulses may range from tube with a supply voltage of 1000 volts, good DC linearity can a few to over 100 milliamperes even though the average anode µ be obtained up to 200 A and even higher. Since a high current is small at low count rates. In this pulsed output mode, voltage is generated by supplying a low voltage to the oscillator the peak current in extreme cases may reach a level hundreds circuit, there is no need for using a high voltage power supply. of times higher than the voltage divider current. If this happens, This Cockcroft-Walton circuit achieves superior DC output it is not possible to supply interelectrode currents from the linearity as well as low current consumption. voltage divider circuit to the last few stages of the photomulti- plier tube, thus leading to degradation in the output linearity. Figure 26: Cockcroft-Walton circuit

K Dy1 Dy2 Dy3 Dy4 Dy5 P 11.8 Improving linearity in pulsed output mode 1Using decoupling capacitors

RL Using multiple power supplies mentioned above is not popular

-HV in view of the cost. The most commonly used technique is to GENERATED supply the interelectrode current by using decoupling capaci- OSCILLATION CIRCUIT tors as shown in Figure 28. There are two methods for TACCC0065EA connecting these decoupling capacitors: the serial method and the parallel method. As Figures 28 and 29 show, the serial 5Using multiple high voltage power supplies method is more widely used since it requires lower tolerance As shown in Figure 27, this technique uses multiple power voltages of the capacitors. The capacitance value C (farads) of supplies to directly supply voltages to the last few stages near the decoupling capacitor between the last dynode and the the anode. This is sometimes called the booster method, and anode should be at least 100 times the output charge as is used for high pulse and high count rate applications in high follows: energy physics experiments. C > 100 • Q/V where Q is the charge of one output pulse (coulombs) and V is Figure 27: Voltage divider circuit using multiple power the voltage (volts) across the last dynode and the anode. supplies (Booster method) Since this method directly supplies the pulse current with K Dy1 Dy2 Dy3 Dy4 Dy5 P electrical charges from the capacitors, if the count rate is increased and the resulting duty factor becomes larger, the electrical charge will be insufficient. Therefore, in order to RL maintain good linearity, the capacitance value obtained from the above equation must be increased according to the duty factor, so that the voltage divider current is kept at least 50

AUXILIARY times larger than the average anode current just as with the POWER SUPPLY 2 DC output mode. AUXILIARY POWER SUPPLY 1 The active voltage divider circuit and the booster method using multiple power supplies discussed previously, provide superior MAIN POWER SUPPLY pulse output linearity even at a higher duty factor. TACCC0066EA Figure 28: Equally divided voltage divider circuit and decoupling capacitors

K Dy1 Dy2 Dy3 Dy4 Dy5 P

RL 1R 1R 1R 1R1R 1R

CD1 CD2

TWO DECOUPLING CAPACITORS

-HV

TACCC0067EB

12 2Using tapered voltage divider circuit with decoupling Figure 30: HA treatment capacitors CONDUCTIVE PAINT CONNECTED TO Use of the above voltage divider circuit having decoupling CATHODE PIN capacitors is effective in improving pulse linearity. However, when the pulse current increases further, the electron density also increases, particularly in last stages. This may cause a space charge effect which prevents interelectrode current from flowing adequately and leading to output saturation. A commonly used technique for extracting a higher pulse current is the tapered voltage divider circuit in which the voltage distribution ratios in the latter stages are enhanced as shown in INSULATING BLACK COVER TPMHC0049EB Figure 29. Care should be taken in this case regarding loss of the gain and the breakdown voltages between electrodes. Since use of a tapered voltage divider circuit allows an increase in the voltage between the last dynode and the anode, it is possible to raise the voltage across the load resistor when it is connected to the anode. It should be noted 13. SCINTILLATION COUNTING however, that if the output voltage becomes excessively high, the voltage between the last dynode and the anode may drop, 13.1 General causing a degradation in output linearity. Scintillation counting is one of the most common and effective methods in detecting radiation particles. It uses a PMT coupled Figure 29: Tapered voltage divider circuit using to a scintillator which produces light by incidence of radiation decoupling capacitors particles. K Dy1 Dy2 Dy3 Dy4 Dy5 P In radiation particle measurement, there are two parameters that should be measured. One is the energy of individual particle and the other is the amount of particles. When radia- tion particles enter the scintillator, they produce light flashes in RL 1R 1R 1R 1.5R2.5R 3R response to each particle. The amount of flash is proportional to the energy of the incident particle and individual light flashes CD1 CD2 are detected by the PMT. Consequently, the output pulses TWO DECOUPLING CAPACITORS obtained from the PMT contain information on both the energy and number of pulses, as shown in Figure 31. -HV

TACCC0068EB Figure 31: Incident particles and PMT output

TIME 12. EXTERNAL POTENTIAL If the input window or glass envelope near the photocathode is grounded, slight conductivity of glass material causes a current flow between the photocathode, which has a high negative SCINTILLATOR potential, and ground. THE HEIGHT OF OUTPUT This may cause electrolysis of photocathode, leading to signifi- PULSE IS PROPORTIONAL PMT TO THE ENERGY OF cant deterioration. INCIDENT PARTICLE. Also this may cause noise resulted from the light flashes at the above input window or glass envelope. For those reasons, when designing a PMT housing with an electrostatic or magnetic shield case, extreme care should be required. CURRENT When the anode ground scheme is used, bringing a grounded TIME metallic holder or magnetic shield case near the glass enve- TPMOC0039EA lope of PMT can cause electrons to strike the inner glass wall, resulting in the noise. This problem can be solved by applying a black conductive paint around the glass envelope and connecting it to the cathode potential. Then PMT is wrapped with an insulating black cover, as shown in Figure 30. This method is called HA treatment. 13 Figure 32: Typical pulse height distribution (Energy spectral) Figure 33: Definition of pulse height resolution (a) 55Fe+Nal(TI) b

1000

a H

500 H NUMBER OF PULSES 2

PULSE HEIGHT

0500 1000 a Energy Resolution (FWHM) = — × 100 % ENERGY b TPMOB0088EA (b) 137Cs+Nal(TI) The following factors determin the energy resolution.

10000 (51 mm dia. × 51 mm t) (1) Energy conversion efficiency of the scintillator (2) Intrinsic energy resolution of the scintillator (3) Quantum efficiency of the photocathode 5000 (4) Collection efficiency of photoelectrons at the first dynode COUNTS COUNTS (5) Secondary emission yield of dynodes (especially first dynode)

The equation of the pulse height resolution is described as 0500 1000 follows: ENERGY 60 (c) Co+Nal(TI) R(E)2 = RS(E)2 + RP(E)2

10000 (51 mm dia. × 51 mm t) where R(E) : energy resolution RS(E) : energy resolution of a scintillator RP(E) : energy resolution of a PMT

2 5000 RP(E) is described as follows: COUNTS

2.352 δ RP(E)2 = × Nηα δ –1

0500 1000 where N : mean number of incident photon ENERGY η : quantum efficiency TPMOB0087EC α : collection efficiency δ : mean secondary emission yield of each dynode By analyzing these output pulses using a multichannel analyzer (MCA), pulse height distribution (PHD), or energy To obtain a good energy resolution, it is important to use a spectra, as shown in Figure 32, are obtained. From the PHD, good scintillator having a high efficiency and a good intrinsic the number of incident particles at various energy levels can be energy resolution. It is also important to reduce a light loss measured. between a PMT and a scintillator. For this purpose, it is useful to couple them with silicon oil having a refractive index close to 13.2 Energy resolution that of the faceplate window of the PMT or scintillator material or its protective window. For the energy spectrum measurement, it is very important to have a distinct peak at each energy level. This characteristic is evaluated as the pulse height resolution or the energy resolution and is most significant in the radiation particle identification. Figure 33 shows the definition of the energy resolution using NaI(Tl) scintillator and 137Cs γ-ray source. It is customarily stated as a percentage.

14 13.3 Emission spectrum of scintillator 13.4 Features of scintillators The quantum efficiency of the PMT is one of the main factors Figure 35 shows typical temperature responses of various to determine its energy resolution. It is necessary to choose a scintillators. These characteristics should be considered in the PMT whose spectral response matches the scintillator emission. actual operation. Figure 34 shows PMT typical spectral response vs. emission Table 1 shows a summary of scintillator characteristics. spectra of scintillators. For NaI(Tl), which is the most popular These data are reported by scintillator manufactures. scintillator, bialkali photocathode PMTs are widely used.

Figure 35: Typical temperature response of various Figure 34: Typical spectral response and emission scintillators spectra of scintillators TPMOB0033EA TPMHB0342EE 100 G NaI (Tl) I F 100

C D

80

H A 60 10 BGO B J E CsI (Tl) Pure CsI 40

LSO RELATIVE LIGHT OUTPUT (%) CsI (Tl) Nal (Tl) BGO 20 LaBr3 -100 -60 -20 0 +20 +60 +100 +140 1 100 BaF2 80 SCINTILLATOR TEMPERATURE (°C)

QUANTUM EFFICIENCY (%) 60

40

20

0.1 10 0 100 200 300 400 500 600 700 RELATIVE INTENSITY (%)

WAVELENGTH (nm)

A: Bialkali Photocathode (Borosilicate Glass) B: Bialkali Photocathode (UV Glass) C: Bialkali Photocathode (Silica Glass) D: Bialkali Photocathode E: High Temp. Bialkali Photocathode F: Super Bialkali G: Ultra Bialkali H: Extended Green Bialkali I: Low Temp. (down to -110 °C) Bialkali Photocathode J: Low Temp. (down to -186 °C) Bialkali Photocathode

Table 1: Summary of scintillator characteristics

Nal(Tl) BGO Csl(Tl) Pure Csl BaF2 GSO: Ce PlasticLaBr3: Ce LSO: Ce YAP: Ce

Density (g/cm3) 3.67 7.13 4.51 4.51 4.88 6.71 1.03 5.29 7.35 5.55

Lrad (cm) 2.59 1.12 1.85 1.85 2.10 1.38 40 2.1 0.88 2.70

Refractive index 1.85 2.15 1.80 1.80 1.58 1.85 1.58 1.9 1.82 1.97

Hygroscopic Yes No Slightly Slightly Slightly No No Yes No No

Luminescence (nm) 410 480 530 310 220 / 325 430 400 380 420 380

Decay time (ns) 230 300 1000 10 0.9 / 630 30 2.0 16 40 30

Relative light output 100 15 45 to 50 <10 20 20 25 165 70 40

15 14. METAL PACKAGE PHOTOMULTIPLIER TUBE The R5900 / R7600 / R8520 / R11265 series is another version of metal package PMT. It incorporates 10 to 12 stages of metal In general including, the development of more compact and channel dynodes into a metal package of 26 mm × 26 mm portable equipment has continuously progressed. This has led square and about 20 mm in height. The prime features are to a strong demand for miniaturization of highly sensitive similar to those of R9880 series, but its effective area is differ- photodetectors like PMTs. However, it is difficult to miniaturize ent of R9880. The dimensional outline of R11265U is shown in conventional PMTs with glass envelopes and sophisticated Figure 37. In this figure, "U" means a tube having an insulation electrode structures. plastic cover. It is necessary to prevent electric shock with Accordingly, PMTs have been mainly used in high-precision some insulation material, because a metal package has a photometric systems, while semiconductor sensors have been cathode potential voltage. used in general purpose, compact and portable equipments/ applications. To meet the increasing needs for small photode- tectors with high sensitivity, Hamamatsu has developed Figure 37: Insulation plastic cover of R11265U subminiature PMTs (R9880 series) using a metal package in 30.0 ± 0.5 +0 place of the traditional glass envelope. These tubes have a 26.2 -0.5 18.7 ± 0.5 3.5 ± 0.7 size as small as semiconductor sensors, without sacrificing 23 MIN. 0.6 ± 0.4 22.95

high sensitivity, and have the high speed response offered by 19- 0.45 conventional PMTs. The remarkable features of R9880 series 12.0 ± 0.5 are: smallest size, fast time response, ability of low light level detection and good immunity to magnetic fields. 4.2 MAX. 2.22 PITCH R9880 series are a subminiature PMT that incorporates an EFFECTIVE AREA PHOTOCATHODE 22.56 eight stages electron multiplier constructed with stacked thin TOP VIEW SIDE VIEW BOTTOM VIEW electrodes (metal channel dynode) into a TO-8 type metal can TPMHA0585EA package of 15 mm in diameter and 10 mm in height. The development of this metal package and its unique thin electrodes have made the fabrication of this subminiature PMT As the metal channel dynode is a sort of an array of small possible. The electrode structure of the electron multiplier was linear focused dynodes, secondary electrons hardly go to the designed by means of advanced computer simulation and adjacent dynode channel in a process of multiplication. It is electron trajectory analysis. possible to make multi-anode PMTs utilizing this feature. Furthermore, our long experience with micromachining technol- These anode shapes are categorized into 5 groups. The first ogy has achieved a closed proximity assembly of these thin group is multianode in matrix. 4 (2 × 2), 16 (4 × 4) and 64 (8 × electrodes. Figure 36 shows a cross section of the metal chan- 8) matrix channels types are available. (see Figure 38-A) nel dynode with simulated electron trajectories. Those are suitable for scintillating fiber readout as well as RICH (Ring Image CHerenkov counter). The second group is linear anode. 16 (1 × 16) and 32 (1 × 32) linear channels types Figure 36: Cross section of metal channel dynode with are available. (see Figure 38-B) Those are suitable for coupling electron trajectories with slit shape scintillators and ribbon-shaped scintillating fiber e e bundle. R11265 series are wider effective area and shorter length compare with those of R7600 series. Those are also offering matrix channel type as well as single channel type (see Figure 38-C). Flat panel PMT assemblies use a 52 mm square photomulti- plier tube having an effective area ratio of 89 % and a

TPMHC0101EA 64-channel or 256-channel multianode. These flat panel PMTs offer a wide photosensitive area and come in thin, compact shape (see Figure 38-D). These PMTs can be efficiently arrayed in rows or matrices with almost no unused space between them. (See figure 38-E)

16 Figure 38: Various anode shape 15. FINE MESH PHOTOMULTIPLIER TUBE

(A) Matrix channel type As indicated in section 10.2, normal photomultiplier tubes exhibit a large variation in a magnetic field, for example, sensi- tivity reduces at least one order of magnitude in a magnetic field of 10 milliteslas. In high-energy physics applications, however, photomultiplier tubes capable of operating in a

R7600U-00-M4 H8711 H7546B magnetic field of more than one tesla are demanded. To meet (R7600-00-M16) (R7600-00-M64) these demands, special photomultiplier tubes with fine-mesh dynodes have been developed and put into use. 1) The struc- (B) Linear channel type ture of this photomultiplier tube is illustrated in Figure 39. Figure 40 shows current relative output of a 19-stage photo- multiplier tube versus magnetic field at different angles.

ELECTRON FINE MESH ELECTRON −− DYNODE R5900U-00-L16 H7260 (R7259) * R5900 series has flange at the bottom of the metal package, whereas − − R7600 series doesn't have it. −

− −

(C) R11265 series −

Figure 39: Structure of a photomultiplier tube designed for use in highly magnetic fields

DYNODE ANODE R11265U R11265U-00-M4 R11265-00-M16 R11265-00-M64 INPUT * R11265 series have wider effective area and low profile with those of WINDOW R7600 series.

(D) Flat panel type PIN BASE or SEMIFLEXIBLE LEADS PHOTOCATHODE HA TREATMENT

THBV3_1309EA

Figure 40: Magnetic characteristics of photomultiplier tubes for highly magnetic fields

H12700A H13700 THBV3_1310EAb 1 (R12699-00-M64) (R12699-00-M256) 10 SUPPLY VOLTAGE: 2000 V (E) Flat panel PMT array 100

30 ° 8 × 8 8 × 8

10-1

θ 8 × 8 8 × 8 RELATIVE OUTPUT 10-2

H13974-00-1616 MAGNETIC 0 ° TPMHC0204EC FLUX DIRECTION 10-3 0 0.25 0.50 0.75 1.0 1.25 1.5

MAGNETIC FLUX DENSITY (T)

17 List guide for photomultiplier tubes

q Spectral response w Cathode characteristics Anode characteristics er tyyo!u i Dark current 0 Time response !1 Blue Out- Spectral Q.E. Lumi- Anode to Lumi- Tube Type Curve sensitivity Gain line response at peak nous Radiant cathode nous Radiant Rise Transit T.T.S. diameter No. code index Typ. No. range Typ. Typ. Typ. supply Typ. Typ. Typ. Max. time time Typ. (CS 5-58) voltage Typ. Typ. (FWHM) (nm) (%) (µA/lm) Typ. (mA/W) (V) (A/lm) (A/W) (nA) (nA) (ns) (ns) (ns)

q Outline No. y Radiant This number corresponds to that of PMT dimensional outline Measured at the peak sensitivity wavelength. drawing shown on later pages. (Refer to section 2.2 on page 2 for further details.) Basing diagram symbols are explained as follows:

u Anode to cathode supply voltage BASING DIAGRAM SYMBOLS All base diagrams show terminals viewed from the The voltage indicates a standard applied voltage used to base end of the tube. Short Index measure characteristics. The number in circles corresponds to Pin that of the voltage distribution ratio on page 56 and 57. DY : Dynode Pin G(F) : Grid (Focusing Electrode) ACC : Accelerating Electrode K : Photocathode P : Anode Key i Anode sensitivity (Luminous) Semiflexible SH : Shield Lead IC : Internal Connection (Do not use) The output current from the anode per incident light flux from a TPMOC0068EC tungsten filament lamp operated at 2856 K. (Refer to section 4.1 on page 3 for further details.) w Spectral response The relationship between photocathode sensitivity and wave- o Gain (Current amplification) length of input light. Curve code corresponds to that of spectral response curve on The ratio of the anode output current to the photoelectric the inside back cover. current from the photocathode. (Refer to section 2 on page 2 for further details.) (Refer to section 4.2 on page 4 for further details.)

!0 e QE (Quantum Efficiency) Anode dark current The ratio of the number of photoelectrons emitted from the The output current from the anode measured after 30 minutes photocathode to the number of incident photons. storage in complete darkness. This catalog shows quantum efficiency at the peak wavelength. (Refer to section 5 on page 4 for further details.) (Refer to section 2.2 on page 2 for further details.) ! 1 Time response r Cathode sensitivity (Luminous) The photoelectric current from the photocathode per incident The time for the anode output pulse to rise from 10 % to 90 % light flux from a tungsten filament lamp operated at 2856 K. of the peak amplitude. (Refer to section 2.5 on page 3 for further details.) The time interval between the arrival of a delta function light pulse at the photocathode and the instant when the anode t Cathode blue sensitivity index output pulse reaches its peak amplitude. The photoelectric current from the photocathode per incident light flux from a tungsten filament lamp operated at 2856 K This is the fluctuation in transit time among individual pulses, passing through a blue filter which is Corning CS 5-58 polished and is defined as the FWHM of the frequency distribution of to 1/2 stock thickness. transit time. (Refer to section 2.5 on page 3 for further details.) (Refer to section 6 on page 5 for further details.)

18 (at 25 °C) Max. ratings !2 !3 Stabirity !4 Pulse linearity ! 5 Remarks Typical !6 !7 Anode Average pulse Socket to Long Short 2 % 5 % Dynode Type anode height & Note cathode term term deviation deviation structure No. current resolution socket voltage Typ. Typ. Typ. Typ. / stage assembly (V) (mA) (%) (%) (%) (mA) (mA)

! 2 Maximum rating ! 5 Pulse linearity Typical values of pulse linearity are specified at two points The maximum anode to cathode voltages are limited by the (±2 % and ±5 % deviation points from linear proportionality). internal structure of the PMT. (Refer to section 7 on page 5 and 6 for further details.) Excessive voltage causes electrical breakdown. The voltage lower than the maximum rating should be applied to the PMT. ! 6 Dynode This indicates the maximum averaged current over any interval of 30 seconds. For practical use, operating at lower average Each mark means dynode structure as follows: anode current is recommended. LINE : linear focused (Refer to section 9.3 on page 6 for further details) BOX : box and grid B + L : box and linear focused ★Operating ambient temperature range for the photomultiplier C + L : circular and linear focused itself is -30 °C to +50 °C except for some types of tubes. VB : venetian blind However, when photomultiplier tubes are operated below FM : fine mesh -30 ° C at their base section, please consult us in advance. MC : metal channel ! 3 Pulse height resolution (P.H.R.) The number of dynodes used. (Refer to section 3 on page 4 for further details.) The P.H.R. is measured with the combination of an NaI(Tl) 137 scintillator and a Cs source as a standard measurement. If ! 7 Socket & socket assembly other scintillators or γ-ray sources are used, note is attached. (Refer to section 13.2 on page 14 for further details.) ★ mark : A socket will be supplied with a PMT. no mark : A socket will be supplied as an option. The number in square corresponds to the outline number of ! 4 Stability the PMT socket assembly on page 58 and 59. This is defined as follows under the operation for 16 hours at a constant count rate of 1000 s-1:

n Σ P-Pi i =1 100 Dg = • (%) n P where P is the mean pulse height averaged over n readings, Pi is the pulse height at the i-th reading, and n is the total number of readings.

This is the gain shift on count rate charge. The tube is first operated at about 10000 s-1. The photo-peak count rate is then decreased to about 1000 s-1 by increasing the distance between the 137Cs source and the tube coupled to the NaI(Tl) scintillator. (Refer to section 9 on page 6 for further details.)

19 Photomultiplier tubes q Spectral response w Cathode characteristics Anode characteristics er tyyo!u i Dark current 0 Time response !1 Blue Out- Spectral Q.E. Lumi- Anode to Lumi- Tube Type Curve sensitivity Gain line response at peak nous Radiant cathode nous Radiant Rise Transit T.T.S. diameter No. code index Typ. No. range Typ. Typ. Typ. supply Typ. Typ. Typ. Max. time time Typ. (CS 5-58) voltage Typ. Typ. (FWHM) (nm) (%) (µA/lm) Typ. (mA/W) (V) (A/lm) (A/W) (nA) (nA) (ns) (ns) (ns) 10 mm R1635 q 300 to 650 A-D 25 100 10.0 80 1250 e 100 8.0 × 104 1.0 × 106 1 50 0.8 9 0.5 (3/8") R2496 q 160 to 650 C-D 25 100 10.0 80 1250 t 100 8.0 × 104 1.0 × 106 2 50 0.7 9 0.5 R647-01 e 300 to 650 A-D 25 110 10.0 80 1000 !6 150 1.1 × 105 1.4 × 106 1 2 2.1 22 2.0 R4124 w 300 to 650 A-D 25 100 10.0 80 1000 @7 100 8.0 × 104 1.0 × 106 1 15 1.1 12 0.5 13 mm R4177-06 e 300 to 650 A-E 12 30 4.5 38 1500 !6 15 1.9 × 104 5.0 × 105 0.5 10 2.0 20 — (1/2") R12421 r 300 to 650 A-D 25 110 10 80 1000 @3 220 1.6 × 105 2.0 × 106 0.5 2 1.2 14 1.4 R12421-300 r 300 to 700 H 32 160 14 105 1000 @3 320 2.1 × 105 2.0 × 106 1 5 1.2 14 1.4 R1166 t 300 to 650 A-D 26 110 10.5 85 1000 @0 110 8.5 × 104 1.0 × 106 1 5 2.5 27 2.8 R1450 y 300 to 650 A-D 27 115 11.0 88 1500 @5 200 1.5 × 105 1.7 × 106 3 50 1.8 19 0.76 19 mm R3478 u 300 to 650 A-D 27 115 11.0 88 1700 !0 200 1.5 × 105 1.7 × 106 10 300 1.3 14 0.36 (3/4") R3991A-04 i 300 to 650 A-E 12 30 4.5 38 1500 @6 10 1.3 × 104 3.3 × 105 0.1 10 1.0 10 — R4125 y 300 to 650 A-D 27 115 11.0 88 1500 @1 100 7.7 × 104 8.7 × 105 10 50 2.5 16 0.85 R5611A-01 i 300 to 650 A-D 26 90 10.5 85 1000 @6 50 4.7 × 104 5.5 × 105 3 20 1.3 12 0.8 R1288A-06 o 300 to 650 A-E 12 30 4.5 38 1500 @6 10 1.2 × 104 3.3 × 105 0.1 10 1.3 13 — R1924A o 300 to 650 A-D 26 90 10.5 85 1000 @6 180 1.7 × 105 2.0 × 106 3 20 1.5 17 0.9 R4998 !0 300 to 650 A-D 23 80 9.5 76 2250 !9 400 3.8 × 105 5.0 × 106 10 200 0.7 10 0.16 1250 @7 190 1.8 × 105 2.0 × 106 2 15 1.6 17 0.6 R7899-01 !1 300 to 650 A-D 27 95 11.0 88 25 mm 1500 @8 160 1.5 × 105 1.7 × 106 2 20 1.6 16 0.7 (1") R8619 !2 300 to 650 A-D 27 95 11.0 88 1000 @7 250 2.3 × 105 2.6 × 106 2 15 2.5 28 1.2 R9800 !3 300 to 650 A-D 27 95 11.0 88 1300 o 100 9.3 × 104 1.1 × 106 5 50 1.0 11 0.27 R9800-100 !3 300 to 650 F 35 130 13.5 110 1300 o 140 1.2 × 105 1.1 × 106 10 100 1.0 11 0.27 R13478 !4 300 to 650 A-D 25 95 10.0 80 1500 w 50 4.2 × 104 5.3 × 105 3 30 0.9 9.1 0.13 R3998-02 !5 300 to 650 A-D 26 90 10.5 85 1000 !3 120 1.1 × 105 1.3 × 106 2 10 4.4 32 3.5 R3998-100-02 !5 300 to 650 F 35 130 13.5 110 1000 !3 130 1.1 × 105 1.0 × 106 5 25 4.4 32 3.5 1500 #0 500 4.4 × 105 5.0 × 106 10 200 1.7 16 0.5 R6427 !6 300 to 650 A-D 27 100 11.0 88 28 mm 1500 #1 190 1.7 × 105 2.0 × 106 4 80 1.8 17 0.5 (1-1/8") R7111 !7 300 to 650 A-D 26 90 10.5 85 1000 @6 180 1.7 × 105 2.0 × 106 3 20 1.6 18 0.9 1500 y 45 4.7 × 104 5.3 × 105 5 100 1.3 14 0.55 R7525 !8 300 to 650 A-D 27 95 11.0 88 1500 u 19 1.8 × 104 2.1 × 105 2 40 1.3 15 0.58 R13449 !9 300 to 650 A-D 25 95 10.0 80 1500 w 50 4.2 × 104 5.3 × 105 3 30 0.9 10 0.17 1250 @3 100 4.7 × 104 1.1 × 106 3 20 2.7 37 4.5 R580 @0 300 to 650 A-D 27 95 11.0 88 1500 @4 75 7.0 × 104 7.9 × 105 2 15 2.7 40 4.5 R11102 @1 300 to 650 A-D 28 120 11.5 89 1000 @3 120 8.9 × 104 1.0 × 106 2 20 3.2 34 4.8 38 mm R3886A @2 300 to 650 A-D 26 90 10.5 85 1000 @3 180 1.7 × 105 2.0 × 106 3 20 2.6 30 2.0 (1-1/2") R9420 @3 300 to 650 A-D 27 95 11.0 88 1300 o 47 4.4 × 104 5.0 × 105 10 100 1.6 17 0.55 R9420-100 @3 300 to 650 F 35 130 13.5 110 1300 o 65 5.5 × 104 5.0 × 105 10 100 1.6 17 0.55 R13408 @4 300 to 650 A-D 25 95 10.0 80 1500 w 50 4.2 × 104 5.3 × 105 3 30 1.2 13 0.19 Note: The data shown in is measured with tapered voltage distribution ratio. Please refer to page 18 and 19 for each item in the above list.

20 (at 25 °C) Max. ratings !2 !3 Stabirity !4 Pulse linearity ! 5 Remarks Typical !6 !7 Anode Average pulse Socket to Long Short 2 % 5 % Dynode Type anode height & Note cathode term term deviation deviation structure No. current resolution socket voltage Typ. Typ. Typ. Typ. / stage assembly (V) (mA) (%) (%) (%) (mA) (mA) 1500 0.03 23 / BGO *1 1.0 2.0 3 7 LINE / 8 E678-11* z UV type (R3878) R1635 1500 0.03 23 / BGO *1 1.0 2.0 3 7 LINE / 8 E678-11* z R2496 1250 0.1 7.8 1.0 2.0 3 7 LINE / 10 E678-13F* x SILICA (R760) and UV (R960) types R647-01 1250 0.03 8.1 1.0 2.0 2 5 LINE / 10 E849-68 c UV type (R4141) R4124 1800 0.02 12.0 2.0 2.0 8 13 LINE / 10 E678-13E* Flying lead type (R4177-04) R4177-06 1250 0.1 — — — 3 12 LINE / 10 E678-13F* c UV types (R12421-03) R12421 1250 0.1 — — — 3 12 LINE / 10 E678-13F* c EGBA type R12421-300 1250 0.1 7.8 1.0 2.0 4 7 LINE / 10 E678-12L* v SILICA (R762) and UV (R750) types R1166 1800 0.1 7.8 1.0 2.0 4 8 LINE / 10 E678-12L* b R1450 1800 0.1 7.8 1.0 2.0 4 8 LINE / 8 E678-12L* n SILICA (R2076) and UV (R3479) types R3478 1800 0.02 11.0 1.0 2.0 20 40 C+L / 10 E678-12R* R3991A-04 1800 0.1 7.8 1.0 2.0 100 170 LINE / 10 E678-12L* m R4125 1250 0.1 8.0 1.0 2.0 10 20 LINE / 10 E678-12A* Glass base type (R5611A) R5611A-01 1800 0.02 9.0 1.0 2.0 30 50 C+L / 10 E678-14-03* Flying lead type (R1288A-04) R1288A-06 1250 0.1 7.8 1.0 2.0 30 50 C+L / 10 E678-14C* ⁄1 Flying lead type (R1924A-01) R1924A 2500 0.1 8.0 1.0 2.0 40 70 LINE / 10 E678-12A* SILICA type (R5320) R4998 1800 0.1 7.8 1.0 2.0 30 50 LINE / 10 E678-12A* Glass base type (R7899) R7899-01 1800 0.1 7.8 1.0 2.0 100 150 1500 0.1 8.0 1.0 2.0 5 8 LINE / 10 E678-12A* R8619 1500 0.1 7.8 1.0 2.0 30 50 LINE / 8 E678-12A* R9800 1500 0.1 — — — 30 50 LINE / 8 E678-12A* SBA type R9800-100 1750 0.1 8.0 — — 10 25 LINE / 8 E678-20B* R13478 1500 0.1 7.5 1.0 1.0 8 10 B+L / 9 E678-14C* ⁄0 R3998-02 1500 0.1 7.0 1.0 1.0 8 10 B+L / 9 E678-14C* ⁄0 SBA type R3998-100-02 2000 0.1 7.8 1.0 2.0 10 30 LINE / 10 E678-14C* ⁄2⁄3 UV type (R7056) R6427 2000 0.1 7.8 1.0 2.0 100 150 1250 0.1 7.8 1.0 2.0 30 50 C+L / 10 E678-14C* ⁄1 R7111 1750 0.2 7.8 1.0 2.0 10 30 LINE / 8 E678-14C* R7525 1750 0.2 7.8 1.0 2.0 100 150 1750 0.1 8.0 — — 10 30 LINE / 8 E678-20B* R13449 1750 0.1 7.7 1.0 1.0 40 60 LINE / 10 E678-12A* ⁄4 R580 1750 0.1 7.7 1.0 1.0 150 200 1250 0.1 7.6 0.5 0.5 10 30 C+L / 10 E678-12A ⁄4 R11102 1250 0.1 7.5 1.0 2.0 20 30 C+L / 10 E678-12A* ⁄4 R3886A 1500 0.1 7.8 1.0 2.0 30 50 LINE / 8 E678-12A* R9420 1500 0.1 7.0 1.0 2.0 30 50 LINE / 8 E678-12A* SBA type R9420-100 1750 0.1 8.0 — — 20 50 LINE / 8 E678-20B* R13408

Note 1: This data is measured with 22Na source and BGO scintillator.

21 Photomultiplier tubes q Spectral response w Cathode characteristics Anode characteristics er tyyo!u i Dark current 0 Time response !1 Blue Out- Spectral Q.E. Lumi- Anode to Lumi- Tube Type Curve sensitivity Gain line response at peak nous Radiant cathode nous Radiant Rise Transit T.T.S. diameter No. code index Typ. No. range Typ. Typ. Typ. supply Typ. Typ. Typ. Max. time time Typ. (CS 5-58) voltage Typ. Typ. (FWHM) (nm) (%) (µA/lm)Typ. (mA/W) (V) (A/lm) (A/W) (nA) (nA) (ns) (ns) (ns) 1500 $4 100 9.4 × 104 1.1 × 106 6 40 2.6 48 1.1 R329-02 @5 300 to 650 A-D 26 90 10.5 85 2000 $7 270 2.6 × 105 3.0 × 106 10 100 2.7 40 1.1 R331-05 @6 300 to 650 A-D 26 90 10.5 85 1500 $4 120 1.1 × 105 1.3 × 106 1000 s-1 *2 2000 s-1 *2 2.6 48 1.1 R1306 @7 300 to 650 A-D 28 110 11.5 95 1000 q 30 2.6 × 104 2.7 × 105 2 20 7.0 60 — 2500 #7 1800 1.7 × 106 2.0 × 107 50 400 1.3 28 0.55 R1828-01 @8 300 to 650 A-D 26 90 10.5 85 2500 #8 900 8.5 × 105 1.0 × 107 25 200 1.7 32 0.55 R2083 @9 300 to 650 A-D 25 80 10.0 80 3000 !2 200 2.0 × 105 2.5 × 106 100 800 0.8 16 0.37 1250 @3 90 8.5 × 104 1.0 × 106 5 20 3.4 31 3.6 R2154-02 #0 300 to 650 A-D 26 90 10.5 85 1500 @4 54 5.1 × 104 6.0 × 105 3 15 3.4 33 3.6 R4607A-06 #1 300 to 650 A-E 12 30 4.5 38 1500 @3 10 1.2 × 104 3.3 × 105 3 50 2.6 28 — R6041 #2 300 to 650 A-D 20 60 8.5 60 800 $0 60 6.0 × 104 1.0 × 106 5 50 2.3 16 0.75 51 mm (2") R6041-406 #3 160 to 650 I 30 100 12.5 100 800 $0 100 1.0 × 105 1.0 × 106 5 50 2.3 16 0.75

R6041-506 #3 160 to 650 J 25 100 11.5 90 800 $0 100 9.0 × 104 1.0 × 106 5 50 2.3 16 0.75

R6231 #4 300 to 650 A-D 28 110 11.5 95 1000 r 30 2.6 × 104 2.7 × 105 2 20 8.5 48 6.9 R6231-100 #4 300 to 650 F 35 130 13.5 110 1000 r 30 2.5 × 104 2.3 × 105 10 30 8.5 48 6.9 R7723 #5 300 to 650 A-D 26 90 10.5 85 1750 i 90 8.5 × 104 1.0 × 106 3 20 1.7 23 1.1 R7724 #5 300 to 650 A-D 26 90 10.5 85 1750 #2 300 2.8 × 105 3.3 × 106 6 40 2.1 29 1.2 R7724-100 #5 300 to 650 F 35 130 13.5 110 1750 #2 300 2.5 × 105 2.3 × 106 6 50 2.1 29 1.2 R7725 #5 300 to 650 A-D 26 90 10.5 85 1750 $5 600 5.7 × 105 6.7 × 106 9 60 2.5 35 1.3 R13089 #6 300 to 650 A-D 25 95 10.0 80 1500 w 30 2.5 × 104 3.2 × 105 10 50 2.0 20 0.23 R13435 #7 300 to 650 A-D 25 95 10.0 80 1750 !8 400 3.4 × 105 4.2 × 106 30 200 2.0 23 0.23 60 mm R6232 #8 300 to 650 A-D 28 110 11.5 95 1000 r 30 2.6 × 104 2.7 × 105 2 20 9.5 52 8.5 R1307 #9 300 to 650 A-D 28 110 11.5 95 1000 q 30 2.6 × 104 2.7 × 105 2 20 8.0 64 — 1500 $3 450 4.3 × 105 5.0 × 106 10 60 2.6 48 2 R6091 $0 300 to 650 A-D 26 90 10.5 85 2000 $6 900 8.5 × 105 1.0 × 107 30 120 2.7 40 1.5 R6233 $1 300 to 650 A-D 28 110 11.5 95 1000 r 30 2.6 × 104 2.7 × 105 2 20 9.5 52 8.5 76 mm $1 r 4 5 (3") R6233-100 300 to 650 F 35 130 13.5 110 1000 30 2.5 × 10 2.3 × 10 10 30 9.5 52 8.5 R11065 $2 200 to 650 J 25 90 10 85 1500 $8 450 4.2 × 105 5.0 × 106 10 100 5.5 46 9.0

R11410 $2 160 to 650 I 26 90 10 85 1500 $6 450 4.2 × 105 5.0 × 106 10 100 5.5 46 9.0

80 mm R12199 $3 300 to 650 A-D 26 90 10.5 85 1000 @6 500 2.6 × 105 3.0 × 106 50 500 3.6 43 3.7 90 mm R10233 $4 300 to 650 A-D 30 110 11.5 95 1000 t 30 2.6 × 104 2.7 × 105 2 20 10.0 52 9.4 (3.5") R10233-100 $4 300 to 650 F 35 130 13.5 110 1000 t 30 2.5 × 104 2.3 × 105 10 30 10.0 52 9.4 102 mm R10806 $5 300 to 650 A-D 26 90 10.5 85 1000 r 30 2.8 × 104 3.3 × 105 5 20 9.0 55 10.5 (4") R10806-100 $5 300 to 650 F 35 105 13.5 110 1000 r 30 3.1 × 104 2.9 × 105 10 40 9.0 55 10.5 R877 $6 300 to 650 A-D 26 90 10.5 85 1250 !7 40 3.7 × 104 4.4 × 105 10 50 20.0 115 18.5 R877-100 $6 300 to 650 F 35 105 13.5 110 1250 !7 46 4.8 × 104 4.4 × 105 20 100 20.0 115 18.5 2000 $9 1000 1.0 × 106 1.4 × 107 50 300 2.5 54 1.2 R1250 $7 300 to 650 A-D 22 70 9.0 72 127 mm 2500 %0 2800 2.9 × 106 4.0 × 107 300 1800 2.2 53 1.2 (5") 1500 #3 240 2.4 × 105 3.0 × 106 30 300 3.5 45 1.5 R6594 $8 300 to 650 A-D 25 80 10.0 80 1500 #4 160 1.6 × 105 2.0 × 106 20 200 3.5 45 1.5 R11833-03 $9 300 to 650 A-D 22 70 9.0 76 1250 !1 35 3.3 × 104 5.0 × 105 10 50 3.3 41 4.6 R11833-100-03 $9 300 to 650 F 35 105 13.5 110 1250 !1 50 5.5 × 104 4.4 × 105 20 100 3.3 41 4.6 R5912 %0 300 to 650 A-D 25 80 10.0 80 1500 %1 800 8.0 × 105 1.0 × 107 100 1000 3.6 54 2.4 204 mm R5912-20 %0 300 to 650 A-D 25 80 10.0 80 1500 %2 80 000 8.0 × 107 1.0 × 109 5000 10000 4.4 72 3.0 (8") R5912-100 %0 300 to 650 F 35 130 13.5 115 1500 %1 1300 1.2 × 106 1.0 × 107 500 1000 3.6 54 2.4 R7081 %1 300 to 650 A-D 25 80 10.0 80 1500 %1 800 8.0 × 105 1.0 × 107 100 1000 3.8 62 3.4 254 mm R7081-20 %1 300 to 650 A-D 25 80 10.0 80 1500 %2 80 000 8.0 × 107 1.0 × 109 5000 10000 5.0 80 3.9 (10") R7081-100 %1 300 to 650 F 35 130 13.5 115 1500 %1 1300 1.2 × 106 1.0 × 107 500 1000 3.8 62 3.4 508 mm 5 7 (20") R12860 %2 300 to 650 A-D 30 80 11.5 90 2000 #5 800 9.0 × 10 1.0 × 10 500 1000 6.0 95 2.4 Note: The data shown in is measured with tapered voltage distribution ratio. Note 2: Dark count Please refer to page 18 and 19 for each item in the above list. 22 (at 25 °C) Max. ratings !2 !3 Stabirity !4 Pulse linearity ! 5 Remarks Typical !6 !7 Anode Average pulse Socket to Long Short 2 % 5 % Dynode Type anode height & Note cathode term term deviation deviation structure No. current resolution socket voltage Typ. Typ. Typ. Typ. / stage assembly (V) (mA) (%) (%) (%) (mA) (mA) 2700 0.2 7.6 1.0 1.0 15 30 SILICA type (R2256-02) LINE / 12 E678-21C* 20 R329-02 2700 0.2 7.6 1.0 1.0 100 200 UV type (R5113-02) 2500 0.2 — — — 15 30 LINE / 12 E678-21C* 20 R331-05 1500 0.1 6.3 (8.5) *3 0.5 0.5 1 5 BOX / 8 E678-14W ⁄7⁄8 K-FREE type (R1306-15) R1306 3000 0.2 7.8 1.0 1.0 100 200 SILICA type (R2059) LINE / 12 E678-20B* ⁄6 R1828-01 3000 0.2 7.8 1.0 1.0 250 500 UV type (R4004) 3500 0.2 7.8 1.0 2.0 100 150 LINE / 8 E678-19J* SILICA type (R3377) R2083 1750 0.1 7.6 1.0 1.0 50 70 LINE / 10 E678-14W ⁄5 Glass base type (R3149) R2154-02 1750 0.1 7.6 1.0 1.0 150 200 1800 0.02 10.0 2.0 2.0 30 60 C+L / 10 E678-15C* R4607A-06 1000 0.1 — — — 40 — MC / 12 — R6041 For low temperature operation down to -110 °C 1000 0.1 — — — 40 — MC / 12 — R6041-406 Low radicoactivity material For low temperature operation down to -186 °C 1000 0.1 — — — 40 — MC / 12 — R6041-506 Low radicoactivity material 1500 0.1 6.3 (8.5) *3 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 Semiflexible lead type (R6231-01) R6231 1500 0.1 6.1 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 SBA type R6231-100 2000 0.2 7.6 1.0 1.0 80 100 LINE / 8 E678-21C* 20 R7723 2000 0.2 7.6 1.0 1.0 60 90 LINE / 10 E678-21C* 20 R7724 2000 0.2 — 1.0 1.0 60 90 LINE / 10 E678-21C 20 SBA type R7724-100 2000 0.2 7.6 1.0 1.0 40 80 LINE / 12 E678-21C* 20 R7725 1750 0.1 8.0 — — 30 60 LINE / 8 E678-20B* R13089 2000 0.1 8.0 — — 30 60 LINE / 10 E678-20B* R13435 1500 0.1 6.3 (8.5) *3 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 Semiflexible lead type (R6232-01) R6232 1500 0.1 6.3 (8.5) *3 0.5 0.5 1 5 BOX / 8 E678-14W ⁄7⁄8 K-FREE type (R1307-07) R1307 2500 0.2 7.8 1.0 1.0 40 60 LINE / 12 E678-21C* 20 R6091 2500 0.2 7.8 1.0 1.0 80 110 1500 0.1 6.3 (8.5) *3 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 Semiflexible lead type (R6233-01) R6233 1500 0.1 6.1 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 SBA type R6233-100 For low temperature operation down to -186 °C 1750 0.1 — — — 20 25 B+L / 12 E678-20B* R11065 Low radicoactivity material For low temperature operation down to -110 °C 1750 0.1 — — — 20 25 B+L / 12 E678-20B* R11410 Low radicoactivity material 1500 0.1 — — — — — C+L / 10 E678-14W R12199 1500 0.1 6.3 (8.5) 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 Semiflexible lead type (R10233-01) R10233 1500 0.1 6.1 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 SBA type R10233-100 1500 0.1 — 1.0 2.0 5 10 B+L / 8 E678-14W ⁄9 R10806 1500 0.1 — 1.0 2.0 5 10 B+L / 8 E678-14W ⁄9 SBA type R10806-100 1500 0.1 8.0 1.0 1.0 10 20 BOX / 10 E678-14W 21 22 K-FREE type (R877-01) R877 1500 0.1 7.6 1.0 1.0 10 20 BOX / 10 E678-14W 21 22 SBA type R877-100 3000 0.2 8.3 1.0 1.0 100 150 LINE / 14 E678-20B* 23 R1250 3000 0.2 8.3 1.0 1.0 160 250 2000 0.1 — — — 30 50 B+L / 10 E678-20B* R6594 2000 0.1 — — — 100 150 1500 0.1 — 1.0 1.0 10 30 B+L / 8 E678-14W R11833-03 1500 0.1 — 1.0 1.0 10 30 B+L / 8 E678-14W SBA type R11833-100-03 2000 0.1 — — — 40 60 B+L / 10 E678-20B* 24 R5912 2000 0.1 — — — 30 60 B+L / 14 E678-20B* R5912-02 2000 0.1 — — — 40 60 B+L / 10 E678-20B 24 SBA type R5912-100 2000 0.1 — — — 40 60 B+L / 10 E678-20B* 24 R7081 2000 0.1 — — — 30 60 B+L / 14 E678-20B* 24 R7081-20 2000 0.1 — — — 40 60 B+L / 10 E678-20B 24 SBA type R7081-100 2500 0.1 — — — 20 40 B+L / 10 E678-20B R12860 Note 3: This data in parenthese is measured with 57Co.

23 Photomultiplier tubes of special shapes q Spectral response w Cathode characteristics Anode characteristics er tyyo!u i Dark current 0 Time response !1 Blue Out- Spectral Q.E. Lumi- Anode to Lumi- Tube Type Curve sensitivity Gain line response at peak nous Radiant cathode nous Radiant Rise Transit T.T.S. diameter No. code index Typ. No. range Typ. Typ. Typ. supply Typ. Typ. Typ. Max. time time Typ. (CS 5-58) voltage Typ. Typ. (FWHM) (nm) (%) (µA/lm)Typ. (mA/W) (V) (A/lm) (A/W) (nA) (nA) (ns) (ns) (ns) Metal package photomultipliers %3 !5 5 6 25 mm R8520-406 160 to 650 I 30 100 11.0 100 800 100 1.0 × 10 1.0 × 10 2 20 1.8 12.4 0.8 (1") R8520-506 %3 160 to 650 J 25 100 9.5 80 800 !5 100 8.0 × 104 1.0 × 106 2 20 1.8 12.4 0.8 R7600U %4 300 to 650 A-D 24 80 9.5 80 800 @2 160 1.6 × 105 2.0 × 106 2 20 1.6 9.6 0.35 R7600U-100 %4 300 to 650 F 35 105 13.5 110 800 @2 105 1.1 × 105 1.0 × 106 2 20 1.6 9.6 0.35 R7600U-200 %4 300 to 650 G 43 135 15.5 130 800 @2 135 1.3 × 105 1.0 × 106 2 20 1.6 9.6 0.35 R7600U-300 %4 300 to 700 H 39 160 14 125 800 @2 320 2.5 × 105 2.0 × 106 2 20 1.6 9.6 0.35 R7600U-100-M4 %5 300 to 650 F 35 105 13.5 110 800 @2 140 1.4 × 105 1.3 × 106 0.5/ch 5/ch 1.2 9.5 0.36 R7600U-200-M4 %5 300 to 650 G 43 135 15.5 130 800 @2 175 1.7 × 105 1.3 × 106 0.5/ch 5/ch 1.2 9.5 0.36 R7600U-300-M4 %5 300 to 700 H 39 160 14 125 800 @2 210 1.6 × 105 1.3 × 106 0.5/ch 5/ch 1.2 9.5 0.36 30 mm R7600U-00-M4 %5 300 to 650 A-D 24 80 9.5 80 800 @2 140 1.4 × 105 1.8 × 106 0.5/ch 5/ch 1.2 9.5 0.36 square type R5900U-00-L16 %6 300 to 650 A-D 21 70 8.5 72 800 !6 280 2.9 × 105 4.0 × 106 0.2/ch 2/ch 0.6 7.4 0.18 R5900U-100-L16 %6 300 to 650 F 35 105 13.5 110 800 !6 105 1.1 × 105 1.0 × 106 0.2/ch 2/ch 0.6 7.4 0.18 R5900U-200-L16 %6 300 to 650 G 43 135 15.5 130 800 !6 135 1.3 × 105 1.0 × 106 0.2/ch 2/ch 0.6 7.4 0.18 R9880U-110 %7 230 to 700 F 35 105 13.5 110 1000 !4 210 2.2 × 105 2.0 × 106 1 10 0.57 2.7 0.2 R9880U-210 %7 230 to 700 G 43 135 15.5 130 1000 !4 270 2.6 × 105 2.0 × 106 1 10 0.57 2.7 0.2 R11265U-100 %8 300 to 650 F 35 105 13.5 110 900 $1 126 1.3 × 105 1.2 × 106 2 20 1.3 5.8 0.27 R11265U-200 %8 300 to 650 G 43 135 15.5 130 900 $1 162 1.6 × 105 1.2 × 106 2 20 1.3 5.8 0.27 R11265U-300 %8 300 to 700 H 39 160 14 125 900 $1 192 1.5 × 105 1.2 × 106 2 20 1.3 5.8 0.27 Fine mesh photomultipliers 25 mm %9 %3 4 5 (1") R5505-70 300 to 650 A-D 23 80 9.5 76 2000 40 3.8 × 10 5.0 × 10 5 30 1.5 5.6 0.35 39 mm ^0 %4 5 7 (1.5") R7761-70 300 to 650 A-D 23 80 9.5 76 2000 800 7.6 × 10 1.0 × 10 15 100 2.1 7.5 0.35 51 mm ^1 %4 5 7 (2") R5924-70 300 to 650 A-D 22 70 9.0 72 2000 700 7.2 × 10 1.0 × 10 30 200 2.5 9.5 0.44 Square, Rectangular shape photomultipliers 10 mm ^2 e 4 6 (3/8") R2248 300 to 650 A-D 25 100 10.0 80 1250 100 8.0 × 10 1.0 × 10 1 50 0.9 9.0 0.6 60 mm R6236 ^3 300 to 650 A-D 28 110 11.5 95 1000 r 30 2.6 × 104 2.7 × 105 2 20 9.5 52 8.5

76 mm ^4 r 4 5 (3") R6237 300 to 650 A-D 28 110 11.5 95 1000 30 2.6 × 10 2.7 × 10 2 20 9.5 52 8.5 25 mm ^5 #0 5 6 (1") R1548-07 300 to 650 A-D 23 80 9.5 76 1250 200 1.9 × 10 2.5 × 10 20 250 1.8 20 1.0 ^6 @9 4 6 38 mm R8997 300 to 650 A-D 23 80 9.5 76 1250 100 9.9 × 10 1.2 × 10 10 200 5.0 25 2.8 (1-1/2") R10550 ^7 300 to 650 A-D 25 80 10.0 80 1300 o 100 1.0 × 105 1.3 × 106 10 100 1.3 12 0.6 Hexagonal shape photomultipliers 60 mm R6234 ^8 300 to 650 A-D 28 110 11.5 95 1000 r 30 2.6 × 104 2.7 × 105 2 20 9.5 52 8.5 76 mm ^9 r 4 5 (3") R6235 300 to 650 A-D 28 110 11.5 95 1000 30 2.6 × 10 2.7 × 10 2 20 9.5 52 8.5 2π shape photomultipliers 25 mm &0 @6 4 6 (1") R7373A-01 300 to 650 A-D 26 90 10.5 85 1000 100 9.4 × 10 1.1 × 10 3 20 2 19 1.1 28 mm &1 #6 5 6 (1-1/8") R8143 300 to 650 A-D 26 90 10.5 85 1000 200 1.8 × 10 2.2 × 10 2 10 25 72 —

24 (at 25 °C) Max. ratings !2 !3 Stabirity !4 Pulse linearity ! 5 Remarks Typical !6 !7 Anode Average pulse Socket to Long Short 2 % 5 % Dynode Type anode height & Note cathode term term deviation deviation structure No. current resolution socket voltage Typ. Typ. Typ. Typ. / stage assembly (V) (mA) (%)(%) (%) (mA) (mA)

For low temperature operation down to -110 °C 900 0.03 — — — 30 60 MC / 10 E678-32B 25 Low radioactivity material R8520-406 For low temperature operation down to -186 °C 900 0.03 — — — 30 60 MC / 10 E678-32B 25 Low radioactivity material R8520-506 900 0.1 — 1.0 2.0 30 *5 60 MC / 10 E678-32B 26 UV type (R7600U-03) is available R7600U

900 0.1 — — — 30 *5 60 MC / 10 E678-32B 26 SBA type R7600U-100 900 0.1 — — — 30 *5 60 MC / 10 E678-32B UBA type R7600U-200

900 0.1 — — — 30 *5 — MC / 10 E678-32B 26 EGBA type R7600U-300

900 0.1 — — — 10/ch 30/ch MC / 10 E678-32B 27 SBA type R7600U-100-M4

900 0.1 — — — 10/ch 30/ch MC / 10 E678-32B 27 UBA type R7600U-200-M4

900 0.1 — — — 10/ch 30/ch MC / 10 E678-32B 27 EGBA type R7600U-300-M4

900 0.1 — — — 10 30 MC / 10 E678-32B 27 *4 R7600U-00-M4

900 0.1 — — — 0.8/ch 1.2/ch MC / 10 E678-32B 28 *4 R5900U-00-L16

900 0.1 — — — 0.8/ch 1.2/ch MC / 10 E678-32B 28 SBA type *4 R5900U-100-L16

900 0.1 — — — 0.8/ch 1.2/ch MC / 10 E678-32B 28 UBA type *4 R5900U-200-L16 1100 0.1 — — — 10 30 MC / 10 E678-12-01 ‹0 SBA type R9880U-110 1100 0.1 — — — 10 30 MC / 10 E678-12-01 ‹1 UBA type R9880U-210 1000 0.1 — — — 20 *5 60 MC / 12 E678-19K ‹0 SBA type R11265U-100 1000 0.1 — — — 20 *5 60 MC / 12 E678-19K ‹0 UBA type R11265U-200 1000 0.1 — — — 20 *5 60 MC / 12 E678-19K ‹0 EGBA type R11265U-300

2300 0.01 9.5 2.0 2.0 180 250 FM / 15 E678-17D* . For +HV operation R5505-70 2300 0.01 9.5 2.0 2.0 320 450 FM / 19 — For +HV operation R7761-70 2300 0.1 9.5 2.0 2.0 500 700 FM / 19 — For +HV operation R5924-70

1500 0.03 23 / BGO *1 1.0 2.0 3 7 LINE / 8 E678-11N* z R2248 1500 0.1 6.3 (8.5) *3 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 Semiflexible lead type (R6236-01) is available R6236 1500 0.1 6.3 (8.5) *3 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 Semiflexible lead type (R6237-01) is available R6237 1750 0.1 20 / BGO *1 1.0 2.0 10 15 LINE / 10 E678-17D* , *4, Dual (2) channel R1548-07 1600 0.1 16 / BGO *1 2.0 2.0 4 10 L+VB / 10 E678-20B* *4, Quadrant (4) channel R8997 1600 0.1 — — — 10 30 LINE / 8 E678-20B* *4, Quadrant (4) channel R10550

1500 0.1 6.3 (8.5) *3 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 Semiflexible lead type (R6234-01) is available R6234 1500 0.1 6.3 (8.5) *3 0.5 0.5 5 10 B+L / 8 E678-14W ⁄9 Semiflexible lead type (R6235-01) is available R6235

1250 0.1 7.8 1.0 2.0 15 30 LINE / 10 E678-12A* R7373A-01 1250 0.1 8 1.0 2.0 0.2 0.5 BOX / 11 E678-14C* R8143

Note 1: This data is measured with 22Na source and BGO scintillator. Note 3: This data in parenthese is measured with 57Co. Note 4: Dark current, time response and pulse linearity data is typical value for channel. Note 5: Tapered divider type is available.

25 Photomultiplier tubes assemblies q Spectral response w Cathode characteristics Anode characteristics er tyyo!u i Dark current 0 Time response !1 Blue Out- Spectral Q.E. Lumi- Anode to Lumi- Tube Type Curve sensitivity Gain line response at peak nous Radiant cathode nous Radiant Rise Transit T.T.S. diameter No. code index Typ. No. range Typ. Typ. Typ. supply Typ. Typ. Typ. Max. time time Typ. (CS 5-58) voltage Typ. Typ. (FWHM) (nm) (%) (µA/lm)Typ. (mA/W) (V) (A/lm) (A/W) (nA) (nA) (ns) (ns) (ns) H8711 &2 300 to 650 A-D 24 80 9.5 80 -800 #9 280 2.8 × 105 3.5 × 106 0.8/ch 4/ch 0.83 12 0.33

H8711-100 &2 300 to 650 F 35 105 13.5 110 -800 #9 210 2.2 × 105 2.0 × 106 0.8/ch 4/ch 0.83 12 0.33

H8711-200 &2 300 to 650 G 43 135 15.5 130 -800 #9 270 2.6 × 105 2.0 × 106 0.8/ch 4/ch 0.83 12 0.33

H8711-300 &2 300 to 700 H 39 160 14 125 -800 #9 400 3.1 × 105 2.5 × 106 0.8/ch 4/ch 0.83 12 0.33

H7546B &3 300 to 650 A-D 24 80 9.5 80 -800 $2 50 4.8 × 104 6.0 × 105 0.2/ch 2/ch 1.0 12 0.38

H7546B-100 &3 300 to 650 F 35 105 13.5 110 -800 $2 53 5.5 × 104 5.0 × 105 0.2/ch 2/ch 1.0 12 0.38

H7546B-200 &3 300 to 650 G 43 135 15.5 130 -800 $2 68 6.5 × 104 5.0 × 105 0.2/ch 2/ch 1.0 12 0.38

H7546B-300 &3 300 to 700 H 39 160 14 125 -800 $2 80 6.2 × 104 5.0 × 105 0.2/ch 2/ch 1.0 12 0.38

H8804 &4 300 to 650 A-D 24 80 9.5 80 -800 $2 50 5.0 × 104 6.0 × 105 0.2/ch 2/ch 1.0 12 0.38

H8804-100 &4 300 to 650 F 35 105 13.5 110 -800 $2 53 5.5 × 104 5.0 × 105 0.2/ch 2/ch 1.0 12 0.38 30 mm square H8804-200 &4 300 to 650 G 43 135 15.5 130 -800 $2 68 6.5 × 104 5.0 × 105 0.2/ch 2/ch 1.0 12 0.38 type H8804-300 &4 300 to 650 H 39 160 14 125 -800 $2 80 6.2 × 104 5.0 × 105 0.2/ch 2/ch 1.0 12 0.38

H11934-100 &5 300 to 650 F 35 105 13.5 110 -900 $1 126 1.3 × 105 1.2 × 106 2 20 1.3 5.8 0.27

H11934-200 &5 300 to 650 G 43 135 15.5 130 -900 $1 162 1.6 × 105 1.2 × 106 2 20 1.3 5.8 0.27

H11934-300 &5 300 to 700 H 39 160 14 130 -900 $1 192 1.5 × 105 1.2 × 106 2 20 1.3 5.8 0.27

H13226A-100 &6 300 to 650 F 35 105 13.5 110 -1000 %6 105 1.1 × 105 1.0 × 106 1/ch 4/ch 1.1 5.3 0.39

H13226A-200 &6 300 to 650 G 43 135 15.5 130 -1000 %6 135 1.3 × 105 1.0 × 106 1/ch 4/ch 1.1 5.3 0.39

H12445-100 &7 300 to 650 F 35 105 13.5 110 -1000 %6 105 1.1 × 105 1.0 × 106 0.4/ch 4/ch 0.52 5 0.34

H12445-200 &7 300 to 650 G 43 135 15.5 130 -1000 %6 135 1.3 × 105 1.0 × 106 0.4/ch 4/ch 0.52 5 0.34

H12428-100 &8 300 to 650 F 35 105 13.5 110 -1000 %6 105 1.1 × 105 1.0 × 106 0.4/ch 4/ch 0.6 5.1 0.35

H12428-200 &8 300 to 650 G 43 135 15.5 130 -1000 %6 135 1.3 × 105 1.0 × 106 0.4/ch 4/ch 0.6 5.1 0.35

H10515B-100 &9 300 to 650 F 35 105 13.5 110 -800 !6 105 1.1 × 105 1.0 × 106 0.2/ch 2/ch 0.6 7.4 0.18

H10515B-200 &9 300 to 650 G 43 135 15.5 130 -800 !6 135 1.3 × 105 1.0 × 106 0.2/ch 2/ch 0.6 7.4 0.18

H12700A *0 300 to 650 A-D 32 95 12 100 -1000 %5 142 1.5 × 105 1.5 × 106 0.1/ch — 0.52 4.9 0.35

H12700A-10 *0 300 to 650 A-D 32 95 12 100 -1000 %5 38 4.0 × 104 4.0 × 105 0.1/ch — 0.52 4.9 0.35 51 mm square H12700B *1 300 to 650 A-D 32 95 12 100 -1000 %5 142 1.5 × 105 1.5 × 106 0.1/ch — 0.52 4.9 0.35 type H12700B-10 *1 300 to 650 A-D 32 95 12 100 -1000 %5 38 4.0 × 104 4.0 × 105 0.1/ch — 0.52 4.9 0.35

H13700 *2 300 to 650 A-D 29 75 12 90 -1000 %5 110 1.4 × 105 1.5 × 106 0.02/ch — 0.45 5.2 0.38 106 mm square H13974-00-1616 *3 300 to 650 A-D 32 95 12 100 -1000 %5 142 1.5 × 105 1.5 × 106 0.1/ch — 0.52 4.9 0.35 type H7260 *4 300 to 650 A-D 21 70 8.5 72 -800 !6 140 1.4 × 105 2.0 × 106 0.2/ch 2/ch 0.60 6.8 0.18 Rectangle H7260-100 *4 300 to 650 F 35 105 13.5 110 -800 !6 210 2.2 × 105 2.0 × 106 0.2/ch 2/ch 0.60 6.8 0.18 type H7260-200 *4 300 to 650 G 43 135 15.5 130 -800 !6 270 2.6 × 105 2.0 × 106 0.2/ch 2/ch 0.60 6.8 0.18

26 (at 25 °C) Max. ratings !2 !3 Stabirity !4 Pulse linearity ! 5 Remarks Typical !6 Anode Average pulse to Long Short 2 % 5 % Dynode Built-in PMT Type anode height Note cathode term term deviation deviation structure (Type No. No. current resolution voltage Typ. Typ. Typ. Typ. / stage for referring) (V) (mA) (%) (%) (%) (mA) (mA) -1000 0.017 — — — 0.5/ch 1/ch MC / 12 R7600-00-M16 *4 H8711

-1000 0.017 — — — 0.5/ch 1/ch MC / 12 R7600-100-M16 SBA type H8711-100

-1000 0.017 — — — 0.5/ch 1/ch MC / 12 R7600-200-M16 UBA type H8711-200

-1000 0.017 — — — 0.5/ch 1/ch MC / 12 R7600-300-M16 EGBA type H8711-300

-1000 0.023 — — — 0.3/ch 0.6/ch MC / 12 R7600-00-M64 *4 H7546B

-1000 0.023 — — — 0.3/ch 0.6/ch MC / 12 R7600-100-M64 SBA type H7546B-100

-1000 0.023 — — — 0.3/ch 0.6/ch MC / 12 R7600-200-M64 UBA type H7546B-200

-1000 0.023 — — — 0.3/ch 0.6/ch MC / 12 R7600-300-M64 EGBA type H7546B-300

-1000 0.023 — — — 0.3/ch 0.6/ch MC / 12 R7600-00-M64 *4 H8804

-1000 0.023 — — — 0.3/ch 0.6/ch MC / 12 R7600-100-M64 SBA type H8804-100

-1000 0.023 — — — 0.3/ch 0.6/ch MC / 12 R7600-200-M64 UBA type H8804-200

-1000 0.023 — — — 0.3/ch 0.6/ch MC / 12 R7600-300-M64 EGBA type H8804-300

-1000 0.018 — — — 20 *5 60 MC / 12 R11265-100 SBA type H11934-100

-1000 0.018 7.4 / 3.1 — — 20 *5 60 MC / 12 R11265-200 UBA type H11934-200

-1000 0.018 — — — 20 *5 60 MC / 12 R11265-300 EGBA type H11934-300

-1100 0.018 — — — 4/ch *5 7/ch MC / 12 R11265-100-M4 SBA type *4 H13226A-100

-1100 0.018 — — — 4/ch *5 7/ch MC / 12 R11265-200-M4 UBA type *4 H13226A-200

-1100 0.018 — — — 0.8/ch 2/ch MC / 12 R11265-100-M16 SBA type *4 H12445-100

-1100 0.018 — — — 0.8/ch 2/ch MC / 12 R11265-200-M16 UBA type *4 H12445-200

-1100 0.018 — — — 0.2/ch 0.4/ch MC / 12 R11265-100-M64 SBA type *4 H12428-100

-1100 0.018 — — — 0.2/ch 0.4/ch MC / 12 R11265-200-M64 UBA type *4 H12428-200

-900 0.1 — — — 0.8/ch 1.2/ch MC / 10 R5900-100-L16 SBA type *4 H10515B-100

-900 0.1 — — — 0.8/ch 1.2/ch MC / 10 R5900-200-L16 UBA type *4 H10515B-200

-1100 0.1 — — — 1/ch — MC / 10 R12699-00-M64 UV types (H12700A-03) H12700A

-1100 0.1 — — — 3/ch — MC / 10 R12699-00-M64 Tapered divider type *4 H12700A-10

-1100 0.1 — — — 1/ch — MC / 10 R12699-00-M64 UV types (H12700A-03) *4 H12700B

-1100 0.1 — — — 3/ch — MC / 10 R12699-00-M64 Tapered divider type *4 H12700B-10

-1100 0.1 — — — 0.15/ch — MC / 10 R12699-00-M256 UV types (H13700A-03) *4 H13700

-1100 0.1 — — — 1/ch — MC / 10 R12699-00-M64 2×2 PMT array, UV type (H13974-03-1616) *4 H13974-00-1616

-900 0.1 — — — 0.6/ch 0.8/ch MC / 10 R7259 *4 H7260

-900 0.1 — — — 0.6/ch 0.8/ch MC / 10 R7259-100 SBA type *4 H7260-100

-900 0.1 — — — 0.6/ch 0.8/ch MC / 10 R7259-200 UBA type *4 H7260-200

Note 4: Dark current, time response and pulse linearity data is typical value for channel. Note 5: Tapered divider type is available.

27 Photomultiplier tubes assemblies q Spectral response w Cathode characteristics Anode characteristics er tyyo!u i Dark current 0 Time response !1 Blue Out- Spectral Q.E. Lumi- Anode to Lumi- Tube Type Curve sensitivity Gain line response at peak nous Radiant cathode nous Radiant Rise Transit T.T.S. diameter No. code index Typ. No. range Typ. Typ. Typ. supply Typ. Typ. Typ. Max. time time Typ. (CS 5-58) voltage Typ. Typ. (FWHM) (nm) (%) (µA/lm)Typ. (mA/W) (V) (A/lm) (A/W) (nA) (nA) (ns) (ns) (ns)

*5 4 6 10 mm H3164-10 300 to 650 A-D 25 100 10 80 -1250 100 8.0 × 10 1.0 × 10 1 50 0.8 9.0 0.5 (3/8") H3695-10 *6 160 to 650 C-D 25 100 10 80 -1250 100 8.0 × 104 1.0 × 106 2 50 0.7 9 0.5

H3165-10 *7 300 to 650 A-D 25 110 10 80 -1000 150 1.1 × 105 1.4 × 106 1 2 2.1 22 2.0

13 mm *8 5 6 (1/2") H12690 300 to 650 A-D 25 110 10 80 -1000 220 1.6 × 10 2.0 × 10 0.5 2 1.2 14 1.4 H12690-300 *8 300 to 700 H 31 160 14 105 -1000 320 2.1 × 105 2.0 × 106 1 5 1.2 14 1.4

H6520 *9 300 to 650 A-D 26 110 10.5 85 -1000 110 8.5 × 104 1.0 × 106 1 5 2.5 27 2.8

H6524 (0 300 to 650 A-D 27 115 11.0 88 -1500 200 1.5 × 105 1.7 × 106 3 50 1.8 19 0.76 19 mm (1 5 6 (3/4") H6612 300 to 650 A-D 27 115 11.0 88 -1700 200 1.5 × 10 1.7 × 10 10 300 1.3 14 0.36 H6613 (2 160 to 650 C-D 27 115 11.0 88 -1700 120 8.6 × 104 1.0 × 106 10 300 1.3 14 0.36

H8135 (3 300 to 650 A-D 26 90 10.5 85 -1000 50 4.7 × 104 5.5 × 105 3 20 1.3 12 0.8

H6533 (4 300 to 650 A-D 23 80 9.5 76 -2250 400 3.8 × 105 5.0 × 106 10 200 0.7 10 0.16

25 mm H6152-70 (5 300 to 650 A-D 23 80 9.5 76 +2000 40 3.8 × 104 5.0 × 105 5 30 1.5 5.6 0.35 (1") H8643 (6 300 to 650 A-D 27 95 11.0 88 -1500 160 1.5 × 105 1.7 × 106 2 20 1.6 16 0.7

H10580 (7 300 to 650 A-D 27 95 11.0 88 -1300 100 9.3 × 104 1.1 × 106 5 50 1.0 11 0.27

28 mm (8 5 6 (1-1/8") H7415 300 to 650 A-D 27 100 11.0 88 -1500 500 4.4 × 10 5.0 × 10 10 200 1.7 16 0.5 (9 4 5 38 mm H3178-51 300 to 650 A-D 27 95 11.0 88 -1500 75 7.0 × 10 7.9 × 10 2 15 2.7 40 4.5 (1-1/2") H8409-70 100 300 to 650 A-D 23 80 9.5 76 +2000 800 7.6 × 105 1.0 × 107 15 100 2.1 7.5 0.35

H6410 101 300 to 650 A-D 26 90 10.5 85 -2000 270 2.5 × 105 3.0 × 106 10 100 2.7 40 1.1

H7195 102 300 to 650 A-D 26 90 10.5 85 -2000 270 2.5 × 105 3.0 × 106 10 100 2.7 40 1.1

6 7 51 mm H1949-50 103 300 to 650 A-D 26 90 10.5 85 -2500 1800 1.7 × 10 2.0 × 10 50 400 1.3 28 0.55 (2") H1949-51 104 300 to 650 A-D 26 90 10.5 85 -2500 1800 1.7 × 106 2.0 × 107 50 400 1.3 28 0.55

H2431-50 105 300 to 650 A-D 25 80 10.0 80 -3000 200 2.0 × 105 2.5 × 106 100 800 0.8 16 0.37

H6614-70 106 300 to 650 A-D 22 70 9.0 72 +2000 700 7.2 × 105 1.0 × 106 30 200 2.5 9.5 0.44

76 mm 107 5 7 (3") H6559 300 to 650 A-D 26 90 10.5 85 -2000 900 8.5 × 10 1.0 × 10 30 120 2.7 40 1.5

127 mm 6 7 (5") H6527 108 300 to 650 A-D 22 70 9.0 72 -3000 1000 1.0 × 10 1.4 × 10 50 300 2.5 54 1.2

28 (at 25 °C) Max. ratings !2 !3 Stabirity !4 Pulse linearity ! 5 Remarks Typical !6 Anode Average pulse to Long Short 2 % 5 % Dynode Built-in PMT Type anode height Note cathode term term deviation deviation structure (Type No. No. current resolution voltage Typ. Typ. Typ. Typ. / stage for referring) (V) (mA) (%) (%) (%) (mA) (mA) -1500 0.03 23/BGO *1 1.0 2.0 3 7 LINE / 8 R1635 H3164-10

-1500 0.03 23/BGO *1 1.0 2.0 3 7 LINE / 8 R2496 H3695-10

-1250 0.1 7.8 1.0 2.0 3 7 LINE / 10 R647-01 H3165-10

-1250 0.1 — — — 3 12 LINE / 10 R12421 H12690

-1250 0.1 — — — 3 12 LINE / 10 R12421-300 EGBA type H12690-300

-1250 0.1 7.8 1.0 2.0 4 7 LINE / 10 R1166 H6520

-1800 0.1 7.8 1.0 2.0 4 8 LINE / 10 R1450 H6524

-1800 0.1 7.8 1.0 2.0 4 8 LINE / 8 R3478 H6612

-1800 0.1 7.8 1.0 2.0 4 8 LINE / 8 R2076 H6613

-1250 0.1 8.0 1.0 2.0 10 20 C+L/10 R5611A H8135

-2500 0.1 8.0 1.0 2.0 40 70 LINE / 10 R4998 Silica type H6610 (R5320) H6533

+2300 0.01 9.5 2.0 2.0 180 250 FM/15 R5505-70 For +HV operation H6152-70

-1800 0.1 7.8 1.0 2.0 100 150 LINE / 10 R7899-01 H8643

-1500 0.1 7.8 1.0 2.0 30 50 LINE / 8 R9800 H10580

-2000 0.2 7.8 1.0 2.0 10 30 LINE / 10 R6427 Silica type H7416 (R7056) H7415

-1750 0.1 7.7 1.0 1.0 150 200 LINE / 10 R580 H3178-51

+2300 0.01 9.5 2.0 2.0 320 450 FM/19 R7761-70 For +HV operation H8409-70 UV type H6522 (R5115-02) -2700 0.2 7.6 1.0 1.0 100 200 LINE / 12 R329-02 Silica type H6521 (R2256-02) H6410 -2700 0.2 7.6 1.0 1.0 80 110 LINE / 12 R329-02 H7195 UV type H4022-50 (R4004) -3000 0.2 7.8 1.0 1.0 100 200 LINE / 12 R1828-01 Silica type H3177-50 (R2059) H1949-50 UV type H4022-51 (R4004) -3000 0.2 7.8 1.0 1.0 100 200 LINE / 12 R1828-01 Silica type H3177-51 (R2059) H1949-51 -3500 0.2 7.8 1.0 2.0 100 150 LINE / 8 R2083 Silica type H3378-50 (R3377) H2431-50

+2300 0.1 9.5 2.0 2.0 500 700 FM/19 R5924-70 For +HV operation H6614-70

-2500 0.2 7.8 1.0 1.0 100 200 LINE / 12 R6091 H6559

-3000 0.2 8.3 1.0 1.0 100 150 LINE / 14 R1250 H6527

Note 1: This data is measured with 22Na source and BGO scintillator.

29 Dimensional outline and basing diagrams For photomultiplier tubes q R1635, R2496 w R4124

A 13.5 ± 0.5

FACEPLATE 8 MIN. FACEPLATE 10 MIN. P P DY9 DY10 DY7 DY8 6 6 7 8 5 7 DY7 DY8 5 9 PHOTOCATHODE DY5 DY6 PHOTOCATHODE 4 8 DY5 4 10 DY6 DY3 3 9 DY4 3 11

50 ± 2 DY3 DY4 45.0 ± 1.5 2 10 2 12 DY2 DY1 1 11 DY2 DY1 1 13 IC K IC K SHORT PIN SHORT PIN 11 PIN BASE

10 MAX. 13 PIN BASE 13 MAX.

A

R1635 9.7 ± 0.4

R2496 10.5 ± 0.5

R2496 has a plano-concave faceplate.

TPMHA0343EB TPMHA0102EA

e R647-01, R4177-06 r R12421, R12421-300

A 13.5 ± 0.5 10 MIN. FACEPLATE 10 MIN. BASING DIAGRAM FACEPLATE (BOTTOM VIEW) DY10 DY10 P DY8 P DY8 PHOTOCATHODE 7 7 DY9 6 8 PHOTOCATHODE 6 8 DY6 DY9 DY6 5 9 5 9 DY7 4 10 DY4 DY7 4 10 DY4

3 11 43 ± 2 DY5 DY2 DY5 3 11 DY2

B 2 12 2 12 DY3 1 13 IC DY3 1 13 IC DY1 K DY1 K SHORT PIN SHORT PIN 13 PIN BASE 13 PIN BASE 13 MAX.

AB 13 MAX. R647-01 13.5 ± 0.5 71 ± 2

R4177-06 14.5 ± 0.7 61 ± 2

TPMHA0120EA TPMHA0593EA

t R1166 y R1450, R4125

18.6 ± 0.7 18.6 ± 0.7 15 MIN. FACEPLATE FACEPLATE 15 MIN.

DY10 DY8 DY10 DY8 P 6 7 DY6 P 6 7 DY6 PHOTOCATHODE 5 8 5 8 DY9 4 9 DY4 PHOTOCATHODE DY9 4 9 DY4

DY7 3 10 DY2 DY7 3 10 DY2 2 11 2 11 DY5 K DY5 K 1 12 1 12

88 ± 2 DY3 DY1

DY3 DY1 88 ± 2

SHORT PIN SHORT PIN

12 PIN BASE 12 PIN BASE 13 MAX. 13 MAX.

TPMHA0344EA TPMHA0307EA 30 (Unit: mm) u R3478 i R3991A-04, R5611A-01

18.6 ± 0.7 A GLASS BASE 15 MIN. 18.6 ± 0.7 (360/14)° FACEPLATE FACEPLATE 15 MIN. PHOTOCATHODE IC DY8

P 6 7 DY6 A PHOTOCATHODE 5 8 (12) SEMIFLEXIBLE IC 4 9 DY4 LEADS A TEMPORARY BASE REMOVED DY7 3 10 DY2 A P 6 DY10 65 ± 2 2 11 DY9 DY5 K 1 12 12PIN BASE 5 9

DY3 DY1 13 MAX. JEDEC DY7 4 10 DY8 No.B12-43 SHORT PIN DY5 3 11 DY6

B LEAD LENGTH 45 MIN. 2 12 DY3 1 13 DY4 37.3 ± 0.5 14 DY1 K DY2 12 PIN BASE

13 MAX. B BOTTOM VIEW P DY10 6 A DY9 7 DY8 5 8 R3991A-04 28 ± 1.5 DY7 4 9 DY6

R5611A-01 30 ± 1.5 DY5 3 10 DY4 2 11 DY3 1 12 DY2 TPMHA0431EB DY1 K TPMHA0117ED o R1288A-06, R1924A ! 0 R4998

25.4 ± 0.5 26 ± 1 A GLASS BASE ° 20° FACEPLATE 20 MIN. 40 FACEPLATE 22 MIN.

PIC DY9 7 8 IC 6 9 PHOTOCATHODE 7 PHOTOCATHODE DY7 5 10 DY10 DY5 4 11 DY8 (17.3) 43.0 ± 1.5 3 12 A TEMPORARY BASE REMOVED

DY3 DY6 71 ± 2 2 13 IC IC DY1 1 14 DY4 P 9 IC HA TREATMENT 10 K DY2 7 11 DY10 12 DY9 SHORT PIN SMA 5 13 DY8

14 PIN CONNECTOR 13 MAX. DY7 4 14 DY6 GLASS BASE (Acc) 13 MAX. 3 15 DY5 DY4 2 16 SEMIFLEXIBLE DY3 1 18 17 DY2 LEADS DY1 K G A B BOTTOM VIEW DY10 DY8 12 PIN BASE P DY9 6 7 DY6 JEDEC 5 8 No. B12-43 DY4 LEAD LENGTH 52 MIN. DY7 4 9 B (Acc) 10 DY5 3 DY2 37.3 ± 0.5 2 11 DY3 1 12 G DY1 K

TPMHA0040EC TPMHA0093EF

! 1 R7899-01 ! 2 R8619

25.4 ± 0.5 25.4 ± 0.5 A GLASS BASE FACE PLATE FACEPLATE 22 MIN. 22 MIN. 20°

A TEMPORARY BASE REMOVED 6.5 MAX. DY10 PHOTO- P DY8 CATHODE 10 PHOTOCATHODE DY9 7 11 DY6 6 12 DY7 5 13 DY4 (17.3) DY5 4 14 DY2 ATEMPORARY BASE REMOVED 3 79 ± 2

68.0 ± 1.5 DY3 P DY10 18 17 6 12 DY9 DY8 DY1 K 5 13 DY7 4 14 DY6 3 15 13 MAX.

13 MAX. DY5 DY4 SEMIFLEXIBLE SEMIFLEXIBLE 2 16 1 LEADS B BOTTOM VIEW LEADS DY3 18 DY2 DY1 A K A P DY10 B DY9 6 7 DY8 BOTTOM VIEW 5 8 P DY10 12 PIN BASE DY7 DY6 12 PIN BASE JEDEC 4 9 JEDEC DY9 6 7 DY8 5 8 No. B12-43 No. B12-43 DY5 3 10 DY4 DY7 4 9 DY6 2 11 LEAD LENGTH 50 MIN. DY3 DY2 B LEAD LENGTH 50 MIN. 10 B 1 12 DY5 3 DY4 DY1 K 2 11 DY2 37.3 ± 0.5 37.3 ± 0.5 DY3 1 12 DY1 K TPMHA0474EB TPMHA0551ED 31 ! 3 R9800, R9800-100 ! 4 R13478

25.4 ± 0.5 A GLASS BASE 25.4 ± 0.5 A GLASS BASE FACEPLATE FACE PLATE 22 MIN. 20° 22 MIN. 20° 6.5 MAX.

PHOTOCATHODE PHOTOCATHODE

(17.3) (17.3) 55 ± 2 55 ± 2 ATEMPORARY BASE REMOVED ATEMPORARY BASE REMOVED Acc P SEMIFLEXIBLE SEMIFLEXIBLE 9

LEADS 0.7 13 MAX. DY8 LEADS DY7 10 DY8 13 MAX. 11 8 12 P DY6 DY5 DY6 6 12 7 13 A A 13 DY4 DY3 6 14 DY4 DY7 4 14 DY2 12 PIN BASE DY1 5 15 DY2 20 PIN BASE 3 15 JEDEC JEDEC DY5 G No. B12-43 2 No. B20-102 DY3 1 1 18 DY1 K K B

B LEAD LENGTH 55 MIN. LEAD LENGTH 55 MIN. BBOTTOM VIEW BBOTTOM VIEW IC Acc P DY8 P IC 10 11 37.3 ± 0.5 IC 9 12 DY6 IC 8 13 6 7 DY8 51.2 ± 0.5 DY7 IC 5 8 7 14 DY5 DY4 DY7 4 9 DY6 6 15 IC 5 16 DY2 3 10 17 DY5 DY4 DY3 4 IC 2 11 3 18 DY1 2 19 G DY3 DY2 1 20 1 12 IC IC IC K DY1 K TPMHA0521ED TPMHA0619EA

! 5 R3998-02, R3998-100-02 ! 6 R6427

28.5 ± 0.5 28.5 ± 0.5 FACEPLATE 25 MIN. FACEPLATE 25 MIN.

PHOTO- P DY9 P DY10 CATHODE DY8 DY7 IC DY8 7 8 PHOTOCATHODE 7 8 6 9 6 9 DY9 DY6 DY6 5 10 DY5 5 10 IC 4 11 IC DY7 4 11 DY4 3 12 60 ± 2 3 12 DY5 DY2 DY4 DY3 2 13 2 13 DY3 K DY2 1 14 DY1 1 14 85 ± 2 G K IC DY1 SHORT PIN SHORT PIN

14 PIN BASE 13 MAX.

14 PIN BASE 13 MAX.

TPMHA0114EA TPMHA0387EB

! 7 R7111 ! 8 R7525

28.5 ± 0.5 28.5 ± 0.5 25 MIN. 25 MIN. FACEPLATE FACEPLATE P IC DY9 7 8 IC P DY8 6 9 IC 7 8 DY6 PHOTOCATHODE PHOTOCATHODE DY7 5 10 DY10 6 9 DY7 5 10 IC DY5 4 11 DY8 DY5 4 11 DY4 DY3 3 12 DY6

43.0 ± 1.5 3 12 2 13 IC DY2 DY1 1 14 DY4 2 13 K DY2 DY3 1 14 K 85 ± 2 IC DY1 SHORT PIN SHORT PIN 14 PIN BASE 13 MAX.

14 PIN BASE 13 MAX.

TPMHA0506EA TPMHA0450EB 32 (Unit: mm) ! 9 R13449 @ 0 R580

28.7 ± 0.5 A GLASS BASE FACEPLATE 25 MIN. 24° FACEPLATE 38 ± 1 34 MIN.

7.5 MAX. P DY10 PHOTO- PHOTOCATHODE DY9 6 7 DY8 CATHODE 5 8 DY7 4 9 DY6 (19.05) 55 ± 2 3 10 ATEMPORARY BASE REMOVED DY5 DY4 SEMIFLEXIBLE Acc 2 11

13 MAX. DY8 DY3 LEADS P 7 1 12 DY2 6 9 DY7 DY6 DY1 K 5 10 R580 A 109 ± 2 DY5 4 11 DY4 127 MAX. DY3 3 12 DY2 2 13 DY1 G 12 PIN BASE 20 PIN BASE 15 K JEDEC JEDEC No. B12-43 No. B20-102 BBOTTOM VIEW

LEAD LENGTH 70 MIN. IC Acc B P DY8 IC 9 10 11 12 DY6 8 13 DY7 IC 7 14 DY5 6 15 DY4 51.2 ± 0.5 IC 5 16 DY2 17 37.3 ± 0.5 DY3 4 IC 3 18 DY1 2 19 G 1 20 IC IC IC K TPMHA0620EA TPMHA0121EB

@ 1 R11102 @ 2 R3886A

38.0 ± 0.7 A GLASS BASE 38 ± 1 FACEPLATE FACEPLATE 34 MIN. 22.5° 34 MIN.

PHOTO- P DY10 PHOTO- CATHODE CATHODE DY9 6 7 DY8 5 8 DY7 4 9 DY6

3 10 DY5 DY4 63.5 ± 1.5 (23) 2 11 DY3 DY2 A 1 12 TEMPORARY BASE REMOVED DY1 K DY10 P 9 DY8

99 ± 2 SEMIFLEXIBLE 6 10 LEADS DY9 5 11 DY6 116 MAX. 12 PIN BASE A DY7 4 12 DY4 JEDEC 3 13 No. B12-43 DY5 DY2 13 MAX. 2 DY3 15 12 PIN BASE 1 JEDEC DY1 K No. B12-43 BBOTTOM VIEW

LEAD LENGTH 70 MIN. P DY10 B DY9 6 7 DY8 5 8 37.3 ± 0.5 DY7 4 9 DY6 37.3 ± 0.5 3 10 DY5 DY4 2 11 DY3 1 12 DY2 TPMHA0228EA DY1 K TPMHA0104EC

@ 3 R9420, R9420-100 @ 4 R13408

38 ± 1 A GLASS BASE 38 ± 1 A GLASS BASE FACE PLATE FACEPLATE 34 MIN. 22.5° 34 MIN. 22.5° 7.5 MAX.

PHOTOCATHODE PHOTOCATHODE

(23) 73 ± 2 (23) 87 ± 2 ATEMPORARY BASE REMOVED ATEMPORARY BASE REMOVED Acc DY8 P DY8 SEMIFLEXIBLE P 8 9 711 DY6 LEADS 13 MAX. 6 10 DY7 DY6 DY4 612 DY7 5 11 DY5 513DY4 DY5 412DY2 A 4 14 SEMIFLEXIBLE DY3 DY2 DY3 3 13 G LEADS 2 2 DY1 1 16 DY1 20 PIN BASE A K K JEDEC B 13 MAX. BBOTTOM VIEW No. B20-102 BOTTOM VIEW IC Acc P IC P DY8 12 PIN BASE IC 10 11 IC 6 7 DY8 LEAD LENGTH 73 MIN. 9 12 DY6 JEDEC 8 13 5 8 DY7 IC No. B12-43 B 7 14 DY7 DY6 4 9 DY5 6 15 DY4 LEAD LENGTH 70 MIN. IC 5 16 DY5 3 10 DY4 DY2 B 4 17 2 11 51.2 ± 0.5 DY3 IC DY3 3 18 1 12 DY2 DY1 2 19 G 1 20 37.3 ± 0.5 IC IC DY1 K TPMHA0519EE IC K TPMHA0621EE 33 @ 5 R329-02 @ 6 R331-05

53.0 ± 1.5 53.0 ± 1.5 FACEPLATE FACEPLATE 46 MIN. 46 MIN.

IC PHOTO- SH DY10 SH IC DY10 IC DY8 CATHODE IC DY8 10 11 12 10 11 12 DY12 9 13 DY6 DY12 9 13 DY6 8 14 PHOTO- P DY4 P 8 14 DY4 7 15 CATHODE 50.0 ± 0.2 7 15 DY11 6 16 DY2 DY11 6 16 DY2 DY9 5 17 G HA TREATMENT DY9 5 17 G 4 18 DY7 IC DY7 4 18 IC 3 19 127 ± 2 19 2 20 IC 3 DY5 1 21

DY5 2 20 IC 126 ± 2 1 21 HA TREATMENT DY3 IC DY3 IC DY1 K DY1 K SHORT PIN *CONNECT SH TO DY5 *CONNECT SH TO DY5 LIGHT TIGHT SHIELD

21 PIN BASE

14 MAX. 21 PIN BASE 13 MAX.

TPMHA0123EG TPMHA0072EF

@ 7 R1306 @ 8 R1828-01

51.0 ± 0.5 53.0 ± 1.5 FACEPLATE FACEPLATE 46 MIN. 46 MIN.

DY7 DY8 PHOTO- P DY12 DY6 8 IC IC DY10 CATHODE 7 DY11 10 11 DY8 6 9 PHOTO- 9 12 DY5 IC DY9 8 13 DY6 5 10 CATHODE 7 14 DY7 DY4 DY4 4 11 P 6 15 DY5 5 16 DY4 3 12 DY3 IC IC 4 17 DY2 3 18 2 13 DY3 IC DY2 G 2 19 114 ± 2 1 14 DY1 1 20 G 137 MAX. DY1 K HA TREATMENT IC K 170 ± 3 192 MAX.

56.5 ± 0.5

14 PIN BASE JEDEC No. B14-38 20 PIN BASE JEDEC No. B20-102

51.2 ± 0.5

TPMHA0089EC TPMHA0064EE

@ 9 R2083 # 0 R2154-02

53.0 ± 1.5 51.0 ± 0.5 FACEPLATE 46 MIN. FACEPLATE 46 MIN.

IC IC IC PHOTO- DY7 DY8 DY8 DY6 DY9 PHOTO- 9 10 11 CATHODE 7 8 CATHODE P 8 12 DY6 6 9 13 7 DY4 DY5 5 10 DY10 6 14 DY7 5 15 DY4 DY4 4 11 P 4 16 DY2 DY5 DY3 3 12 IC 3 17 HA TREATMENT 121 ± 2 DY3 2 18 IC 2 13

1 19 124 ± 2 IC DY1 G DY2 1 14 ACC K DY1 K 14 PIN BASE 147 MAX. JEDEC SHORT PIN No. B14-38

19 PIN BASE

SMA CONNECTOR 13 MAX. 56.5 ± 0.5

TPMHA0185EE TPMHA0296EB 34 (Unit: mm) # 1 R4607A-06 # 2 R6041

52 ± 1 BOTTOM VIEW 46 MIN. FACEPLATE 20°

IC IC DY10

PHOTOCATHODE P 7 8 9 DY8 8.5 MAX. 6 10 DY9 DY6 5 11 45 MIN. 80 ± 2 DY7 4 12 DY4 57.0 ± 0.5 DY5 3 13 DY2 2 14 55.0 ± 0.5 DY3 1 15 IC 34.0 ± 0.3 53.0 ± 0.5 DY1 K METAL 47.0 ± 0.5 SHORT PIN (CONNECTED 45 MIN. 15 PIN BASE WITH CATHODE) 13 MAX. (Ni PLATING) BASING DIAGRAM

DY7 DY8 DY9 PHOTOCATHODE DY6 9 DY10

32 ± 1 8 10 7 11 P.C.D. 34.0 ± 0.3 29.5 ± 0.5 SEMI-FLEXIBLE DY5 5 13 DY11 LEADS DY4 4 14 DY12 (Ni PLATING) 3 15 18- 0.75 ± 0.10 9 MAX. DY3 70 ± 10 P 2 DY2 1 18 DY1 K

TPMHA0003EC TPMHA0578EB

# 3 R6041-406, R6041-506 # 4 R6231, R6231-100

51.0 ± 0.5 FACEPLATE 46 MIN. BOTTOM VIEW 20° DY6 IC PHOTO- DY5 7 8 IC CATHODE 6 9 DY4 5 10 DY7 8.5 MAX. DY3 4 11 DY8 45 MIN. 90 ± 3 DY2 3 12 P 2 13 113 MAX. IC 1 14 G 57.0 ± 0.5 DY1 K 55.6 ± 0.5 34.0 ± 0.3 50.5 ± 0.5 47.0 ± 0.5 METAL 45 MIN. (CONNECTED 56.5 ± 0.5 WITH CATHODE) (Ni PLATING) BASING DIAGRAM 14 PIN BASE JEDEC No. B14-38 DY7 DY8 DY9 PHOTOCATHODE DY6 8 9 10 DY10 7 11 32.5 ± 1.0 31.0 ± 0.5

DY5 5 13 DY11 SEMI-FLEXIBLE DY4 4 14 DY12 LEADS 3 15 DY3 P 9 MAX. (Ni PLATING) 70 ± 10 2 DY2 1 18 DY1 K

TPMHA0579EB TPMHA0388EB

# 5 R7723, R7724, R7724-100, R7725 # 6 R13089

51 ± 1 AGLASS BASE 52 ± 1 FACEPLATE 20° FACEPLATE 46 MIN. 46 MIN. R7723 IC IC DY6 PHOTO- IC IC 10 11 12 PHOTO- CATHODE DY8 9 13 IC CATHODE P 8 14 DY4 7 15 DY7 6 16 DY2 DY5 5 17 IC (34) IC 4 18 IC 112 ± 2 ATEMPORARY BASE REMOVED 3 19 Acc IC 2 20 IC 112 ± 2 1 21 P 9 DY3 IC DY8 DY1 K SEMIFLEXIBLE 7 11 DY6 LEADS 12 DY7 5 13 DY4 R7724/-100 R7725 A DY5 4 14 DY4 IC IC DY8 IC IC DY10 IC DY6 IC DY8 20 PIN BASE 15 10 11 12 10 11 12 DY2 DY10 9 13 IC DY12 9 13 DY6 JEDEC 2 8 14 8 14 13 MAX. DY3 1 18 17 P DY4 P DY4 No. B20-102 21 PIN BASE 7 15 7 15 DY1 K G DY9 DY2 DY11 DY2 B 13 MAX. 6 16 6 16 LEAD LENGTH 70 MIN. B 5 17 5 17 BOTTOM VIEW DY7 IC DY9 IC IC Acc 4 18 4 18 P DY8 IC IC DY7 IC 3 19 3 19 51.2 ± 0.5 IC 9 10 11 12 DY6 DY5 2 20 IC DY5 2 20 IC 1 21 1 21 DY7 8 13 DY4 DY3 IC DY3 IC 7 14 DY1 K DY1 K DY5 6 15 DY4 IC 5 16 DY2 17 DY3 4 3 18 IC DY1 2 1 20 19 G IC IC TPMHA0509EC IC K TPMHA0606EA 35 # 7R13435 # 8R6232

52 ± 1 FACEPLATE AGLASS BASE 46 MIN. 59.5 ± 0.5 20° FACEPLATE 55 MIN.

DY6 IC DY5 IC 7.5 MAX. 7 8 PHOTOCATHODE 6 9 DY4 5 10 DY7 PHOTO- DY3 4 11 DY8 CATHODE DY2 3 12 P (34) 51.5 ± 1.5 2 13 120 ± 2

100 ± 3 IC 1 14 G ATEMPORARY BASE REMOVED DY1 K

IC Acc 123 MAX. P 8 9 DY10 7 11 DY8 12 DY9 5 13 DY6 14 PIN BASE JEDEC DY7 4 14 DY4 SEMIFLEXIBLE No. B14-38

13 MAX. 3 15 LEADS DY5 DY2 2 DY3 1 18 17 56.5 ± 0.5 DY1 K G A BBOTTOM VIEW IC Acc 20 PIN BASE P DY10 JEDEC IC 9 10 11 12 DY8 8 13 No. B20-102 DY9 DY6 7 14 DY7 6 15 DY4

LEAD LENGTH 70 MIN. DY5 5 16 DY2 B 17 DY3 4 IC 3 18 DY1 2 19 G 1 20 IC IC IC K 51.2 ± 0.5 TPMHA0627EA TPMHA0510EA

# 9R1307 $ 0R6091

76.0 ± 0.8 76 ± 1 FACEPLATE 70 MIN. FACEPLATE 65 MIN.

DY7 DY8 SH IC DY10 DY6 IC DY8 7 8 IC 10 11 12 6 9 DY12 9 13 DY6 8 14 PHOTO- DY5 5 10 IC P DY4 PHOTO- 7 15 CATHODE DY4 4 11 P CATHODE DY11 6 16 DY2 DY9 5 17 G 3 12 51.5 ± 1.5 DY3 IC DY7 4 18 IC 2 13 3 19 DY5 2 20 IC 14 PIN BASE 127 ± 3 DY2 1 14 G 1 21 137 ± 2 JEDEC 150 MAX. DY1 K DY3 IC DY1 K No. B14-38 SHORT PIN * CONNECT SH TO DY5

56.5 ± 0.5 21 PIN BASE 51.5 ± 1.5 13 MAX.

TPMHA0078EA TPMHA0285EE

$ 1R6233, R6233-100 $ 2R11065, R11410

77.5 ± 1.0 76.0 ± 0.8 76 ± 1 FACEPLATE 70 MIN ( 64 MIN.)

DY6 IC DY5 7 8 IC 6 9 PHOTOCATHODE ATEMPORARY BASE REMOVED DY4 5 10 DY7 PHOTO- IC IC IC DY10 CATHODE DY3 11 DY8 4 DY12 9 10 11 12 DY8 51.5 ± 1.5 813 14 PIN BASE P DY6 DY2 3 12 P 7 14 JEDEC 100 ± 3 2 13 DY11 615DY4 No. B14-38 123 MAX. IC 1 14 G DY9 5 16 METAL TUBE DY2 DY1 K 4 17 (Ni PLATING) 123.0 ± 1.5 DY7 G 318 DY5 2 12019 IC 53.3 ± 1.0 DY3 IC DY1 K

BBOTTOM VIEW SEMIFLEXIBLE IC IC 56.5 ± 0.5 LEADS IC DY10 (Ni PLATING) DY12 9 10 11 12 DY8 813 P DY6 A 7 14 DY11 615DY4 DY9 5 16

15 MAX. DY2 20 PIN BASE 4 17 DY7 G JEDEC No. B20-102 318 2 19 IC Operating Ambient DY5 120 DY3 IC Temperature for DY1 K B JEDEC BASE LEAD LENGTH 65 MIN. and E678-20B : -30 °C to +50 °C 51.2 ± 0.5 Note: E678-20B will be supplied with PMT TPMHA0389EB TPMHA0573EA 36 (Unit: mm) $ 3R12199 $ 4R10233, R10233-100

80 MIN. 90 MIN. FACEPLATE 72 MIN. 85 MIN.

DY6 IC DY5 7 8 IC DY6 DY7 6 9 DY5 7 8 IC DY4 DY7 R50 5 10 6 9 PHOTO- PHOTO- DY4 DY8 5 10 CATHODE DY3 4 11 DY8 CATHODE DY3 4 11 DY9 3 12 51.5 ± 1.5 DY2 P 12 2 13

3 104.5 ± 3.0 51.9 ± 2.0 DY2 DY10 IC 1 14 G 115 ± 3 2 13 127.5 MAX. DY1 K DY1 1 14 P 14 PIN BASE 138 MAX. IC K JEDEC 14 PIN BASE No. B14-38 JEDEC No. B14-38

56.5 ± 0.5 56.5 ± 0.5

TPMHA0615EB TPMHA0580EB

$ 5R10806, R10806-100 $ 6R877, R877-100

102 ± 1 133.0 ± 1.5 FACEPLATE 95 MIN 111 MIN.

DY7 DY8 DY6 IC DY6 7 8 DY9 DY5 7 8 IC 6 9 6 9 DY5 5 10 DY10 DY4 5 10 DY7 DY4 4 11 P PHOTO- DY3 4 11 DY8 CATHODE DY3 3 12 IC DY2 3 12 P 2 13 2 13 55 MAX. FACEPLATE DY2 1 14 G 14 PIN BASE IC 1 14 G 119 ± 3 DY1 K JEDEC DY1 K 138 MAX. PHOTO- No. B14-38 171 ± 3 CATHODE 55 MAX. 194 MAX.

14 PIN BASE 56.5 ± 0.5 JEDEC No. B14-38

56.5 ± 0.5

TPMHA0628EA TPMHA0074EC

$ 7R1250 $ 8R6594

133 ± 2 FACEPLATE 128 ± 2 120 MIN. 110 MIN.

P DY14 IC DY12 A TEMPORARY BASE REMOVED DY13 9 10 11 12 DY10 DY11 8 13 DY8 DY10 PHOTO- 7 14 P DY9 DY6 DY9 10 DY8 CATHODE 6 15 9 .5 14 16 DY4 DY7 8 DY6 DY7 5 2 7 15 17 DY5 4 DY2 R8 DY5 6 16 DY4 3 18 DY3 2 19 IC 1 20 G2 & DY1 G1 PHOTOCATHODE DY3 4 IC K 19 2 20 G1 1 21 G3 23 DY2 DY1 G2 178 ± 2 K

84.5 ± 2 265 MAX. B BOTTOM VIEW 259 ± 5

276 ± 5 NC NC NC DY10 78.0 ± 1.5 P 9 10 11 12 DY8 SEMIFLEXIBLE DY9 8 13 14 DY6 LEADS 7 NC 6 15 NC DY7 5 16 DY4 HA TREATMENT 54.0 ± 1.5 4 17 DY5 G1 A 3 18 DY3 2 19 DY2 20 PIN BASE 1 20 20 PIN BASE G3 G2 JEDEC No. B20-102 13 MAX. K JEDEC DY1 No. B20-102

B LEAD LENGTH 70 MIN.

51.2 ± 0.5 51.2 ± 0.5 TPMHA0018EE TPMHA0373EF 37 $ 9 R11833-03, R11833-100-03 % 0 R5912, R5912-20, R5912-100

134 ± 2 202 ± 5 111 MIN. INPUT WINDOW 190 MIN. R5912/-100 IC DY8 IC IC P 7 8 DY6 IC DY10 6 9 P 9 10 11 12 DY8 R131 13 IC 5 10 IC DY9 8 7 14 DY6 DY7 4 11 DY4 IC 6 15 IC DY7 5 16 DY4 DY3 3 12 DY2 PHOTOCATHODE DY5 4 17 DY2 2 13 FACEPLATE 3 18 DY2 1 14 G DY3 2 19 G1 1 20 DY1 K G3 G2 PHOTO- 142 ± 3 DY1 K 220 ± 5

CATHODE 165 MAX. 55 MAX. (Bottom view)

HA 250 ± 7 TREATMENT 275 MAX. R5912-20 IC DY14 P 14 PIN BASE 84.5 ± 2.0 DY12 DY13 9 10 11 12 JEDEC DY10 DY11 8 13 No. B14-38 7 14 DY8 DY9 6 15 DY6 DY7 5 16 G1 56.5 ± 0.5 DY5 4 17 DY4 20-PIN BASE 3 18 G3 2 19 DY2 1 20 JEDEC No. B20-102 DY3 G2 51.2 ± 0.5 DY1 K (Bottom view) IC: Internal connection (Do not use) TPMHA0629EA TPMHA0500EC

% 1 R7081, R7081-20, R7081-100 % 2 R12860

508 ± 8 253 ± 5 460 MIN. INPUT 220 MIN. WINDOW R7081/-100 IC IC IC DY10 10 11 R1 P 9 12 DY8 8 13 36.7 DY9 7 14 DY6 IC 6 15 IC 5 DY7 5 16 DY4 R325 R22 PHOTOCATHODE DY5 4 17 DY2 3 18 DY3 2 19 G1 1 20 IC P G3 G2 ACC DY9 210 DY1 K IC 9 10 11 12 DY7 DY10 8 13 DY5 (Bottom View) 7 14 245 ± 5 DY8 6 15 DY3 275 ± 7 R7081-20 DY6 5 16 DY1 300 MAX. IC DY14 DY4 4 17 IC

P DY12 610 ± 10 3 18

10 11 640 ± 10 DY2 2 19 IC DY13 9 12 DY10 1 20 84.5 ± 2.0 660 MAX. DY11 8 13 IC G 7 14 DY8 IC K DY9 6 15 DY6 DY7 5 16 G1 254 ± 8 DY5 4 17 DY4 65 3 18 G3 2 19 DY2 1 20 DY3 G2 20-PIN BASE DY1 K JEDEC No. B20-102 (Bottom View) 51.2 ± 0.5 IC: Internal Connection 20-PIN BASE 75 ± 2 (Do not use) JEDEC No. B20-102

51.2 ± 0.5 TPMHA0501EC TPMHA0630EA

% 3 R8520-406, -506 % 4 R7600U, R7600U-100/-200/-300

30.0 ± 0.5 Ni PLATING

25.7 ± 0.5 22.0 ± 0.5 4.4 ± 0.7 K IC (Dy10) IC Dy1 Dy2 Dy3 Dy4 IC (Dy10) CUT (K)

25.7 ± 0.4 AL RING 28.25 ± 1.00 7.0 ± 0.5 8×2.54=20.32 G CUT (Dy10) K Dy1 Dy2 Dy3 Dy4 CUT (Dy10) CUT (G) GUIDE 1.2 5 MAX. MARK 2.54 PITCH 18 MIN. 0.6 ± 0.4 2.54 PITCH 20.5 MIN. QUARTZ GLASS CUT 123456789 123456789 45° ± 10° (Dy10) 23 10 CUT IC 32 10 IC P 22 (Dy10) IC IC 12.0 ± 0.5 5 MAX. 31 11 P 30 12 IC 5.08 24

15.24 20.32 IC 29GUIDE 13 IC IC 28 CORNER 14 IC CUT 21 24 IC 25 IC 11 CUT 1.2 MAX. IC 27 15 IC 4-R3.2 EFFECTIVE AREA 25- 1.5 10.16 (Dy10) 2019 18 17 16 15 14 13 12 (Dy10) IC IC 2.5 MAX. 4 MAX. 26 16 PHOTOCATHODE 2524 23 22 21 20 19 18 17

13- 0.45 29- 0.45 PHOTOCATHODE Dy9 Dy8 Dy7 Dy6 Dy5

TOP VIEW SIDE VIEW BOTTOM VIEW Dy10 EFFECTIVE AREA INSULATION CUT (G) CUT (G)

COVER Dy9 Dy8 Dy7 Dy6 Dy5 Dy10 CUT (Dy10)

BASING DIAGRAM CUT (K) CUT (K) IC (Dy10) K : Photocathode TOP VIEW SIDE VIEW BOTTOM VIEW Dy : Dynode BASING DIAGRAM P : Anode CUT : Cut Pin K : Photocathode IC : Internal connection Dy : Dynode (Don't use) P : Anode CUT : Short pin IC : Internal connection (Don't use)

TPMHA0575EA TPMHA0278EJ 38 (Unit: mm) % 5 R7600U-00-M4, R7600U-100-M4/-200-M4/-300-M4 % 6 R5900U-00-L16, R5900U-100-L16/-200-L16

30.0 ± 0.5 30.0 ± 0.5 25.7 ± 0.5 22.0 ± 0.5 4.4 ± 0.7 20.32 K Dy6 P13 P11 P9 P7 P5 Dy7 CUT (K) 25.7 ± 0.5 22.0 ± 0.5 4.4 ± 0.7 20.32 K CUT (IC) CUT (IC) Dy1 Dy2 Dy3 Dy4 CUT (IC) CUT (K) 15.8 0.6 ± 0.4. 2.54 PITCH 8 2 9 7 6 3 5 4 18 MIN. 0.6 ± 0.4 2.54 PITCH 1 Dy9

Dy2 32 123456789 10

12.0 ± 0.5 P3 31 CUT (IC) 32 10 CUT (IC) Dy4 11 P1 30 12.0 ± 0.5 P1 31 11 P2 IC 12 P2 29 P15 13 CUT (IC) 30 12 CUT (IC) PHOTO- GUIDE 20.32

28 IC P16 CORNER 14 CUT (IC) 29 GUIDE 13 CUT (IC) CATHODE

20.32 CORNER 27 CUT (IC) 28 14 CUT (IC) P14 15 Dy3 PHOTO- 26 P4 27 15 P3 Dy10 16 Dy1

CATHODE 4 21

23 20

25 2 18 22 19 CUT (IC) 26 16 CUT (IC) 4 MAX. 17 2524 23 22 21 20 19 18 17 30- 0.45 4 MAX. 15- 0.45 PHOTOCATHODE K

PHOTOCATHODE INSULATION COVER P8 P6 P4 Dy5 Dy8 P12 P10

P2 P1 INSULATION COVER Dy9 Dy8 Dy7 Dy6 Dy5 CUT (K) 16 Dy10 SIDE VIEW BOTTOM VIEW CUT (K) CUT (K) P1 CUT (IC) P16 BASING DIAGRAM

18 MIN. SIDE VIEW BOTTOM VIEW P3 P4 BASING DIAGRAM 1.0 PITCH 0.8 K : Photocathode Dy : Dynode 18 MIN. K : Photocathode 15.8 P : Anode Dy : Dynode CUT : Short pin P : Anode TOP VIEW TOP VIEW IC : Internal connection CUT : Short pin (Do not use) IC : Internal connection (Do not Use)

TPMHA0297EJ TPMHA0298EH

% 7 R9880U-110, R9880U-210 % 8 R11265U-100, R11265U-200, R11265U-300

30.0 ± 0.5 12.4 ± 0.4 4.6 ± 0.8 10.16 +0 26.2 -0.5 18.7 ± 0.5 3.5 ± 0.7 19- 0.45 PHOTOCATHODE 0.5 ± 0.2 5.08 23 0.6 ± 0.4 22.95 GUIDE MARK K 1 12- 0.45 IC (P) 28 7 P 2.22 PITCH Dy1 27 8 Dy12

12.0 ± 0.5 Dy2 26 9 Dy11 Dy3 25 10 Dy10 IC (P) 24 11 IC (P) 5.08 AREA 8.0 22.2 10.16 Dy4 23 12 Dy9 EFFECTIVE WINDOW 9.4 ± 0.3 16.0 ± 0.3 Dy5 22 13 Dy8 Dy6 21 14 Dy7 4.2 MAX. 4-R3.5 IC (P) 20 15 IC (P) 4-R1.35 22.56 INSULATION COVER EFFECTIVE AREA PHOTOCATHODE

SIDE VIEW BOTTOM VIEW TOP VIEW SIDE VIEW BOTTOM VIEW BASING DIAGRAM

K : Photocathode Dy : Dynode DY3 DY5 DY7 GUIDE MARK P : Anode IC : Internal connection 123 (Don't use) K 12 4 DY9

DY1 11 5 P

DY2 10 6 DY10 987 DY4 DY6 DY8 TPMHA0539EC TPMHA0577EB

% 9 R5505-70 ^ 0 R7761-70

25.8 ± 0.7 39 ± 1 GLASS BASE FACEPLATE 27 MIN. FACEPLATE 17.5 MIN. 2)° DY 15 (360/2 DY 13 P 8 9 10 DY 14 DY 11 7 11 PHOTO- DY 12 PHOTO- DY 9 6 12 CATHODE CATHODE DY 7 5 13 DY 10 DY 5 4 14 DY 8 2 ±

DY 3 3 15 DY 6 HA 50 40.0 ± 1.5 2 16 HA TREATMENT DY 1 1 17 DY 4 TREATMENT K DY 2 (27) SHORT PIN

17 PIN BASE DY19 DY17 P

13 MAX. DY15 DY18 SEMIFLEXIBLE 10 11 12 LEADS DY13 9 13 DY16 8 14 13 MAX. DY11 7 15 DY14 DY9 6 16 DY12 DY7 5 17 DY10 LEAD LENGTH 45 MIN. 4 18 DY5 DY8 3 19 27 DY3 2 20 DY6 1 21 DY1 DY4 K DY2

TPMHA0236EB TPMHA0469EE 39 ^ 1 R5924-70 ^ 2 R2248

52 ± 1 GLASS BASE FACEPLATE 39 MIN. 9.8 ± 0.4 (360/26)° 8 MIN.

PHOTO- CATHODE

9.8 ± 0.4 8 MIN. 50 ± 2 FACEPLATE

HA P TREATMENT DY7 DY8 6 5 7 PHOTOCATHODE DY5 DY6 4 8 (31) DY3 3 9 DY4 45.0 ± 1.5

SEMIFLEXIBLE 13 MAX. 2 10 LEADS DY18 DY16 DY1 1 11 DY2 DY14 P 14 IC K 15 16 DY12 DY19 11 17 DY10 10 DY17 18 DY8 SHORT PIN 9 19 11 PIN BASE DY15 8 20 DY6 10 MAX. LEAD LENGTH 80 MIN. DY13 7 21 DY4 6 22 DY11 5 DY2 4 DY9 3 31 DY7 2 1 26 DY5 DY3 DY1 K

TPMHA0490EC TPMHA0098EC

^ 3 R6236 ^ 4 R6237 54 MIN. 59.5 ± 1.0 70 MIN. 76 ± 1.5

59.5 ± 1.0 FACEPLATE 54 MIN. 76 ± 1.5 FACEPLATE 70 MIN. PHOTO- DY6 IC CATHODE DY6 IC DY5 7 8 IC 6 9 DY5 7 8 IC 6 9 DY4 5 10 DY7 DY4 5 10 DY7 DY3 4 11 DY8 PHOTO- 51.5 ± 1.5 CATHODE DY3 4 11 DY8

100 ± 3 DY2 3 12 P 51.5 ± 1.5 DY2 3 12 P

14 PIN BASE 2 13 100 ± 3 123 MAX. 13 JEDEC IC 1 14 G 2 IC 1 14 G No. B14-38 DY1 K 14 PIN BASE 123 MAX. DY1 K JEDEC No. B14-38

56.5 ± 0.5 56.5 ± 0.5

TPMHA0392EB TPMHA0393EC

^ 5 R1548-07 ^ 6 R8997

33 MIN. A GLASS BASE 8 MIN. 8 MIN. 18° 33 MIN. 16 MIN. 18 MIN. 24.0 ± 0.5 16 MIN.

FACEPLATE 38.8 ± 0.3 ( 26) 24.0 ± 0.5 FACEPLATE A TEMPORARY BASE REMOVED DY10 DY9 11 DY8 PHOTOCATHODE 8 12 DY10 DY7-D DY7-B P2 DY8 7 13 PHOTOCATHODE P-D P1 8 9 10 DY7-2 6 14 P-B 7 11 P-C 515P-A DY9 DY6 6 12 16 37.7 ± 1.0 DY7-C 4 DY7-A

84 ± 2 3 17 DY7-1 5 13 DY4 DY5 2 18 DY6 DY5 4 14 DY2 DY3 1 20 19 DY4 70 ± 2 DY1 K DY2 DY3 3 15 2 16 IC B DY1 1 17 IC SEMI-FLEXIBLE BOTTOM VIEW LEADS 13 MAX. IC DY10 IC K IC DY8 10 11 DY9 912DY7-B SHORT PIN A 813 DY7-D 714P-B P-D 20 PIN BASE 6 15 P-A JEDEC -C 5 16 DY7-A No. B20-102 P 417 DY7-C DY6 17 PIN BASE 318 DY5 219120 DY4 B LEAD LENGTH 45 MIN. DY3 13 MAX. DY1 K DY2

51.2 ± 0.5 TPMHA0511EA TPMHA0552EC 40 (Unit: mm) ^ 7 R10550 ^ 8 R6234

16 MIN.

AGLASS BASE 18° 33 MIN. 16 MIN. 60 MIN. 67.5 ± 0.6

FACEPLATE 38.8 ± 0.3

( 26) 59.5 ± 0.5 ATEMPORARY BASE REMOVED PHOTOCATHODE FACEPLATE 55 MIN. DY7 DY8 DY5 9 11 8 DY6-D DY6-B 7 13 P-D 6 14 P-B

P-C 515P-A PHOTO- 37.7 ± 1.0 DY6 IC

87.5 ± 2.0 4 16 CATHODE DY6-C DY6-A DY5 IC 3 17 7 8 DY4 6 9 2 18 DY4 DY3 1 20 19 DY3 DY4 5 10 DY7 DY1 K DY2 51.5 ± 1.5 SEMIFLEXIBLE DY3 4 11 DY8 100 ± 3 123 MAX. LEADS 13 MAX. B BOTTOM VIEW 3 12 NC DY8 14 PIN BASE DY2 P A DY7 NC 10 11 JEDEC 2 13 DY5 912DY6-B 813 No. B14-38 IC 1 14 G DY6-D 20 PIN BASE 714P-B DY1 K JEDEC P-D 6 15 P-A No. B20-102 P-C 5 16 DY6-A 417 DY6-C DY4 56.5 ± 0.5 B LEAD LENGTH 45 MIN. 318 DY4 219120 DY3 DY3 DY1 K DY2

51.2 ± 0.5 TPMHA0576EC TPMHA0390EB

^ 9 R6235 & 0 R7373A-01

25.4 ± 0.5 A TEMPORARY BASE REMOVED R13 ± 1 FACEPLATE P DY9 8 DY10 6 10 DY7 DY8 5 11 85 ± 1 79 MIN. PHOTOCATHODE DY5 4 12 DY6 DY3 3 13 DY4 43.0 ± 1.5 DY1 2 14 DY2

13 MAX. 17 76.0 ± 1.5 SEMIFLEXIBLE FACEPLATE LEADS K 70 MIN. DY6 IC A B BOTTOM VIEW DY5 7 8 IC P DY10 6 9 12 PIN BASE 6 PHOTO- DY9 7 DY8 DY4 5 10 DY7 JEDEC 5 8 CATHODE No. B12-43 DY3 4 11 DY8 DY7 4 9 DY6 3 12 DY2 P B LEAD LENGTH 50 MIN. DY5 3 10 DY4 51.5 ± 1.5 2 13

100 ± 3 IC 1 14 G 2 11 DY3 DY2 DY1 K 1 12

123 MAX. 37.3 DY1 K 14 PIN BASE JEDEC No. B14-38

56.5 ± 0.5

TPMHA0391EB TPMHA0460EB

& 1 R8143

28.5 ± 0.5

FACEPLATE 25 MIN. P DY10 DY11 DY8 7 8 6 9 DY9 DY6 PHOTOCATHODE 5 10

20 MIN. DY7 4 11 DY4 3 12 DY5 DY2 2 13 DY3 1 14 K IC DY1 SHORT PIN 29.0 ± 0.7 112 ± 2

HA TREATMENT

14 PIN BASE 13 MAX.

TPMHA0507EA 41 & 2H8711, H8711-100, H8711-200, H8711-300 & 3H7546B, H7546B-100, H7546B-200, H7546B-300

25.7 4 × 16 4.5 PITCH 4- 0.3 GUIDE MARKS P1 ANODE1 OUTPUT

2 P2 ANODE2 OUTPUT

GND GND GND GND 2.54 PITCH 75 906 2364 6263 61 5960 58 57 . 4- 0.3 0.3 . . 16 4 GUIDE MARKS . . ( 0.64) 15 3 P63 ANODE63 OUTPUT 8 × 8 14 2 25.7 18.1

25.7 18.1 X P64 ANODE64 OUTPUT

13 1

12345678 0.95 Y 45 Dy12 OUTPUT

0.3 TERMINAL PIN ( 0.64) 4.2 TOP VIEW 4- 0.3 GND TERMINAL PIN TOP VIEW GUIDE R20 ( 0.64) × 2 MARKS ANODE1 OUTPUT ANODE2 OUTPUT GND ANODE8 OUTPUT ANODE9 OUTPUT ANODE15 OUTPUT ANODE16 OUTPUT GND DY12 OUTPUT GND -HV INPUT GND TERMINAL PINS 30.0 ± 0.5 R16 30.0 ± 0.5 C4 C3 TERMINAL PINS TERMINAL PINS TERMINAL PINS PMT: SOFT TAPE R19 R15 R7600-M16 SERIES R34 Dy12 R14 INSULATING C2 PMT: R18 R13 TAPE 0.8 MAX. R7600-M64 SERIES Dy11 0.8 MAX. C1 P1 P2 P8 P9 P15 P16 R18 45 ± 0.8 R17 R12 POM CASE Dy10

45.0 ± 0.8 C4 R13 C3 R11 DIVIDER R17 Dy9 ASSEMBLY Dy12 POM CASE R10 R16 R12 C2 Dy8 Dy11 2.54 R9 R1, R5 to R14: 100 kΩ 5.2 4.2 R15 R11 C1 R2 to R4, R15: 200 kΩ 2.54×7=17.78 Dy7 2.8 SIDE VIEW Dy10 R8 R16: 300 kΩ R10 Ω Dy9 SIDE VIEW Dy6 R17 to R19: 51 R9 R7 R20: 10 kΩ 2.54 5.08 2.54 Ω Dy8 4-SCREWS (M2) -HV INPUT Dy5 R21: 1 M 7.62 R8 TERMINAL PINS R6 C1 to C3: 22 nF 4-SCREWS Dy7 Dy12 OUTPUT ( 0.64) Dy4 C4: 10 nF R7 P8 P1 (M2) R5 TERMINAL PIN Dy6 ( 0.46) ANODE OUTPUT Dy3 DY

P1 R6 P9 Dy5 2.54 TERMINAL PINS ( 0.64) R4 N -HV GND

7=17.78 R5 2.54 PITCH 8 × 8 Dy2

GND 2.54×9=22.86 2.54 P16 P64 P57 12.7 Dy4 R3 P8 R4 Dy1 2.54 × Dy3 Dy12 OUTPUT -HV INPUT R2 R3 TERMINAL PIN GND TERMINAL F TERMINAL PINS ANODE OUTPUT Dy2 ( 0.64) PIN ( 0.64) TERMINAL PIN ( 0.46) R2 R21 R1 -HV INPUT Dy1 K ( 0.46, R1 to R3: 360 kΩ BOTTOM VIEW TERMINAL PIN 2.54 PITCH 8 × 4) Ω ( 0.64) R4 to R13: 180 k F R1 BOTTOM VIEW R14: 1 MΩ K R14 R15 to R17: 51 Ω R18: 10 kΩ C1 to C4: 0.01 μF

TPMHA0487EE TPMHA0223EC

& 4H8804, H8804-100, H8804-200, H8804-300 & 5H11934-100, H11934-200, H11934-300

2- 3.5 SIGNAL OUTPUT: RG-174/U (BLACK) -HV TERMINAL PINS ( 0.64) 4- 0.3 2 2.54×9=22.86 ASP-23882-A-1, SAMTEC -HV: RG-174/U (RED) GUIDE 0.3 PMT: 2.54 MARKS R7600-M64 SERIES POM CASE POM CASE 5-SCREWS(M2) DIVIDER ASSEMBLY ANODE OUTPUT TERMINAL PINS ( 0.64, 2.54 PITCH, 8 × 8) 75 906 2364 6263 61 5960 58 57 12345678 TD-108-T-A-1, SAMTEC × 4 PCS SIG

-HV

P64 P57 GND TERMINAL PIN ( 0.64) 2.54 23 MIN. 30.0 ± 0.5 2.54×7=17.78 40.0 ± 0.3 48.0 ± 0.5 P8 P1 TS-101-T-A-1, SAMTEC PHOTOCATHODE DY12 OUTPUT +50 26.2 0.8 MAX.32.5 ± 0.5 1500 -0 10 5 TERMINAL PIN ( 0.64) +0.5 30 -0 4.2 TS-101-T-A-1, SAMTEC 30.0 ± 0.5 25.7 4-SCREWS (M2) +0.5 5 -0 5.2 TOP VIEW BOTTOM VIEW TOP VIEW SIDE VIEW BOTTOM VIEW 45.0 ± 0.8

FILLED 45 SIDE VIEW WITH X K P INSULATOR 4- 0.3 (PINS CONNECTION: BOTTOM VIEW) GUIDE P1 P9 P17 P25 P33 P41 P49 P57 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 0.95 MARKS -HV GND Y *A R19 GND R16 R17 R18 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

DY12 OUT C1 C2 C3 P8 P16 P24 P32 P40 P48 P56 P64 *A: THROUGH HOLE (NO CONNECTION) R1: 300 kΩ R2, R7 to R14: 200 kΩ K F -HV R3, R4: 130 kΩ SIGNAL OUTPUT Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 P64 P63 . . . P2 P1 RG-174/U (RED) R5, R6: 160 kΩ RG-174/U (BLACK) R15: 100 kΩ C4 R17 R18 R19 R20 R16 to R18: 51 Ω R19: 1 MΩ R21 C1C2 C3 C1 to C3: 0.01 μF

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 NOTE: DIVIDER RATIO=2.5: 1.3: 0.8: 0.8: 1: 1: .....1: 0.5 TOTAL RESISTANCE=2.78 MΩ, DIVIDER CURRENT=359.7 μA at -1000 V (MAX.)

-HV INPUT R1, R5 to R14: 100 kΩ . . . TERMINAL PIN R2 to R4, R15: 200 kΩ ( 0.64) R16: 300 kΩ R17 to R19: 51 Ω R20: 10 kΩ R21: 1 MΩ ANODE64 OUTPUT ANODE63 OUTPUT ANODE2 OUTPUT ANODE1 OUTPUT Dy12 OUTPUT TERMINAL PIN ( 0.64) C1 to C3: 22 nF GND TERMINAL PIN ( 0.64) × 2 C4: 10 nF 2.54 PITCH ( 0.64) 8 × 8

TPMHA0550EB TPMHA0586EA 42 (Unit: mm) & 6H13226A-100, H13226A-200 & 7H12445-100, H12445-200

-HV: RG-174/U (RED) GUIDE SIGNAL OUTPUT: RG-174/U (BLACK) MARK 2 ANODE OUTPUT TERMINAL PIN POM CASE 5-SCREWS(M2) -HV TERMINAL PIN ( 0.64)

3 ASP-23882-A-1, SAMTEC ( 0.64, 2.54 PITCH, 4 × 4) TD-104-T-A-1, SAMTEC × 2 PCS 0.275 POM CASE -HV DY12 OUTPUT 4 1 SIG SIG P1 P4 TERMINAL PIN ( 0.64) SIG SIG

P2 P3 13 ASP-23882-A-1, SAMTEC 1 P1 P5 P9 P13

3 2 GND 23 MIN. 4-SCREW PHOTOCATHODE GND -HV DY12

16 (M2) P4 P8 4

+20 P12 P16 23 MIN. 26.2 0.8 MAX.32.5 ± 0.5 450 -0 10 5 5.75 × 4=23 2.54 × 3=7.62

PHOTO CATHODE (PIN CONNECTION: BOTTOM VIEW) 30.0 ± 0.5 5.75 × 4=23 1 REF. 4.2 5.08 5.08 -HV P1 P5 P9 P13 GND 23.55 39.0 ± 0.8 2.54 × 3=7.62 TOP VIEW SIDE VIEW BOTTOM VIEW *A P2 P6 P10 P14 *A 26.2 GND P3 P7 P11 P15 DY12 ANODE1 OUTPUT P1 RG-174/U (BLACK) 30.0 ± 0.5 P4 P8 P12 P16 ANODE2 OUTPUT *A: THROUGH HOLE (NO CONNECTION) P2 TOP VIEWSIDE VIEW BOTTOM VIEW K GR RG-174/U (BLACK) ANODE3 OUTPUT DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 P3 RG-174/U (BLACK) ANODE4 OUTPUT P4 P1 ANODE1 OUTPUT R19 RG-174/U (BLACK) R16 R17 R18 P2 ANODE2 OUTPUT TERMINAL PIN R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 K GR (2.54 mm PITCH, P15 ANODE15 OUTPUT 0.64, 4 × 4) C1 C2 C3 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 P16 ANODE16 OUTPUT C4 R20 DY12 OUTPUT TERMINAL PIN ( 0.64) R1, R3: 240 kΩ R16 to R18: 51 Ω R16 R17 R18 R19 Ω Ω R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 -HV R2: 220 k R19: 1 M Ω μ RG-174/U R4 to R14: 200 k C1 to C3: 0.01 F Ω (RED) R15: 100 k C1 C2 C3 GND TERMINAL PIN ( 0.64) NOTE: DIVIDER RATIO=2.3: 1.2: 1: 1: .....1: 0.5 GND TERMINAL PIN ( 0.64) TOTAL RESISTANCE=3 MΩ, DIVIDER CURRENT=367 μA at -1000 V (MAX.) -HV TERMINAL PIN ( 0.64) R1, R3: 240 kΩ R16 to R18: 51 Ω R2: 220 kΩ R19: 10 kΩ R4 to R14: 200 kΩ R20: 1 MΩ R15: 100 kΩ C1 to C4: 0.01 μF

TPMHA0623EA TPMHA0591EA

& 8H12428-100, H12428-200 & 9H10515B-100, H10515B-200

ANODE OUTPUT TERMINAL PIN 30.0 ± 0.5 (BDL-108-G-F, Mfg. SAMTEC) GUIDE PHOTO- MARK ANODE OUTPUT TERMINAL PIN 213 12 P1 CATHODE 16 45 -HV TERMINAL PIN ( 0.64) ( 0.64, 2.54 PITCH, 8 × 8) P1 P2

ASP-23882-A-1, SAMTEC TD-108-T-A-1, SAMTEC × 4 PCS 1.0 PITCH INSULATING TAPE P3 P4 0.25 GND TERMINAL PIN ( 0.64) POM CASE TS-101-T-A-1, SAMTEC P5 P6 DY12 OUTPUT TERMINAL PIN ( 0.64) 15.8 57 1 TS-101-T-A-1, SAMTEC -HV GND P7 P8 P57

P64 (PINS CONNECTION: BOTTOM VIEW)

GND P9 P10 2.54 16 TOP VIEW 0.8 64 8 23 MIN. DY P8 P1

2.88 × 8=23.04 P1 P9 P17 P25 P33 P41 P49 P57 P16 P11 P12 PHOTO CATHODE -HV GND PMT: 2.88 × 8=23.04 1 REF. 4.2 2.54 *A R5900 SERIES P13 P14 26.2 39.0 ± 0.8 2.54 × 9=22.86 GND 0.8 MAX. 30.0 ± 0.5 4-SCREW (M2) P15 P16 2.54 × 7=17.78

TOP VIEWSIDE VIEW BOTTOM VIEW DY12 OUT P8 P16 P24 P32 P40 P48 P56 P64 GND

*A: THROUGH HOLE (NO CONNECTION) P1 P2 P3 P4 P5 P6 P7 P8 P9 TERMINAL PIN 45.0 ± 0.5 P10 P11 P12 P13 P14 P15 P16 R11 POM CASE DY10 R10 DY9 P1 ANODE1 OUTPUT

R9 DIVIDER DY8 5.7 0.64 GND INPUT

P2 ANODE2 OUTPUT ACTIVE VOLTAGE TERMINAL PIN TERMINAL PIN (2.54 mm PITCH, SIDE VIEW ( 0.46) DY7 K GR 0.64, 8 × 8) P63 ANODE63 OUTPUT R7

P16 P15 DY6 ANODE OUTPUT

DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 DY11 DY12 P14 P13 P64 ANODE64 OUTPUT R6

P12 P11 DY5 P9 P10 P16 C4 P15 R5

DY12 OUTPUT P8 P7

R20 GND DY4

TERMINAL PIN ( 0.64) 7=17.78 24

P6 P5 R16 R17 R18 R19 GND R4 ANODE OUTPUT ANODE OUTPUT

P4 P3 DY3 -HV -HV

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 P2 P1 2.54 ×

P2 P1 R3 DY2 C1 C2 C3 4-SCREW (M2) ANODE #1 to #16 GND TERMINAL PIN ( 0.64) 6.35 2.54 R2 OUTPUT ( 0.46) DY1 GND TERMINAL PIN ( 0.64) 24 -HV INPUT G R1 -HV TERMINAL PIN ( 0.64) TERMINAL PIN K R8 Ω Ω BOTTOM VIEW R1, R3: 240 k R16 to R18: 51 ( 0.46) -HV INPUT R2: 220 kΩ R19: 10 kΩ TERMINAL PIN R4 to R14: 200 kΩ R20: 1 MΩ Ω R15: 100 kΩ C1 to C4: 0.01 μF R1 to R7: 220 k R8: 1 MΩ R9 to R11: 51 Ω DIVIDER CURRENT: 0.37 mA (at -900 V)

TPMHA0592EA TPMHA0534EB 43 * 0H12700A, H12700A-10

32.7 ± 1.0 27.4 ± 0.9 12 × 3=36 CONNECTION FOR SIGNAL CONNECTORS 4 4.5 ± 0.3 START MARK 16.4 ± 0.5 (BOTTOM VIEW) 2 1.5 4 GND P7 GND P5 GND P3 GND P1 GND P8 GND P6 GND P4 GND P2 P1 P2 P3 P4 P5 P6 P7 P8 GND P15 GND P13 GND P11 GND P9 GND ANODE GND ANODE GND ANODE GND ANODE GND P16 GND P14 GND P12 GND P10 P9 P10 P11 P12 P13 P14 P15 P16 GND P23 GND P21 GND P19 GND P17 2 P17 P18 P19 P20 P21 P22 P23 P24 GND P24 GND P22 GND P20 GND P18 GND P31 GND P29 GND P27 GND P25 30.29.22.21.14.13.6.5 P25 P26 P27 P28 P29 P30 P31 P32 +0.5 -0.1 GND P32 GND P30 GND P28 GND P26 36 38.37 GND P39 GND P37 GND P35 GND P33 48.5 P33 P34 P35 P36 P37 P38 P39 P40 0.5 51.0 ± 0.3 6 × 6=36 6.25 51.0 2 × 17=34

51.7 ± 0.3 GND P40 GND P38 GND P36 GND P34 P41 P42 P43 P44 P45 P46 P47 P48 GND P47 GND P45 GND P43 GND P41 P49 P50 P51 P52 P53 P54 P55 P56 GND P48 GND P46 GND P44 GND P42 DY.64.63.56.55.48.47.39.32.31.24.23.16.15.8.7 62.61.54.53.46.45 60.59.52.51.44.43.36.35.28.27.20.19.12.11.4.3 58.57.50.49.42.41.34.33.26.25.18.17.10.9.2.1 GND P55 GND P53 GND P51 GND P49

P57 P58 P59 P60 P61 P62 P63 P64 SIG4 SIG3 SIG2 SIG1 PHOTOCATHODE (EFFECTIVE AREA)

6.25 GND P56 GND P54 GND P52 GND P50 GND P63 GND P61 GND P59 GND P57 6.25 6 × 6=36 6.25 M3 DEPTH 2.5 INSULATING TAPE GND P64 GND P62 GND P60 GND P58 GND DY12 GND GND *B GND GND *B PLASTIC BASE 4-SIGNAL OUTPUT CONNECTOR B B 450 ± 20 * GND GND * GND GND GND GND HSA-200-D36P-X PC BOARD SIG4 SIG3 SIG2 SIG1 mfg. JC ELECTRONICS CORPORATION TOP VIEW SIDE VIEW NOTE *B: No pin. TPMHA0601EB

-HV: SHV-P (SHIELD CABLE, GRAY) BOTTOM VIEW H12700A H12700A-10 P8 P64 P8 P64 P7 P63 P7 P63 P6 P62 P6 P62 P5 P61 P5 P61 P4 P60 P4 P60 GR GR P3 P59 P3 P59 K P2 P58 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 P2 P58 K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 P1 P57 P1 P57

C10 C10 R16 R17 R18 R19 R16 R17 R18 R19 R21 R20 R21 R20 C1 C2 C3 C4 C1 C2 C3 C4

R1 R2 R3 R4 R5 R6 R7 R8 R1 R2 R3 R4 R5 R6 R7 R8 ACTIVE VOLTAGE ACTIVE VOLTAGE DIVIDER DIVIDER C12 C12 C11 C11 R23 R23

R22 R22 ......

R1 to R8: 390 kΩ C1, C2: 0.01 µF R1 to R8: 390 kΩ C1, C2: 0.01 µF R16, R20: 10 kΩ C3: 0.022 µF R16, R20: 10 kΩ C3: 0.022 µF SHV-P SHV-P R17 to R19: 51 Ω C4: 0.033 µF R17 to R19: 51 Ω C4: 0.033 µF (SHIELD CABLE, GRAY) (SHIELD CABLE, GRAY) R21: 1 MΩ C10: 0.01 µF R21: 1 MΩ C10: 0.01 µF SIGNAL GND SIGNAL GND DY10 OUTPUT R22, R23: 4.99 kΩ C11, C12: 0.0015 µF R22, R23: 4.99 kΩ C11, C12: 0.0015 µF DY10 OUTPUT

DIVIDER CURRENT 225 µA at -1100 V ANODE OUTPUT P1 ANODE OUTPUT P2 ANODE OUTPUT P3 ANODE OUTPUT P4 ANODE OUTPUT P5 ANODE OUTPUT P6 ANODE OUTPUT P7 ANODE OUTPUT P8 ANODE OUTPUT P57 ANODE OUTPUT P58 ANODE OUTPUT P59 ANODE OUTPUT P60 ANODE OUTPUT P61 ANODE OUTPUT P62 ANODE OUTPUT P63 ANODE OUTPUT P64 DIVIDER CURRENT 225 µA at -1100 V ANODE OUTPUT P1 ANODE OUTPUT P2 ANODE OUTPUT P3 ANODE OUTPUT P4 ANODE OUTPUT P5 ANODE OUTPUT P6 ANODE OUTPUT P7 ANODE OUTPUT P8 ANODE OUTPUT P57 ANODE OUTPUT P58 ANODE OUTPUT P59 ANODE OUTPUT P60 ANODE OUTPUT P61 ANODE OUTPUT P62 ANODE OUTPUT P63 ANODE OUTPUT P64 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR

* 1H12700B, H12700B-10

32.7 ± 1.0 A 27.4 ± 0.9 -HV CONNECTOR * 12 × 3=36 CONNECTION FOR SIGNAL CONNECTORS HSA-200-S02P 16.4 ± 0.5 4 4.5 ± 0.3 (BOTTOM VIEW) START MARK mfg. JC ELECTRONICS 1.5 4 2 CORPORATION GND P7 GND P5 GND P3 GND P1 GND P8 GND P6 GND P4 GND P2 P1 P2 P3 P4 P5 P6 P7 P8 GND P15 GND P13 GND P11 GND P9 GND ANODE GND ANODE GND ANODE GND ANODE GND P16 GND P14 GND P12 GND P10 P9 P10 P11 P12 P13 P14 P15 P16 GND P23 GND P21 GND P19 GND P17 2 P17 P18 P19 P20 P21 P22 P23 P24 GND P24 GND P22 GND P20 GND P18 GND P31 GND P29 GND P27 GND P25 HV 2 30.29.22.21.14.13.6.5 P25 P26 P27 P28 P29 P30 P31 P32 +0.5 -0.1 GND P32 GND P30 GND P28 GND P26 36 38.37 -HV GND P39 GND P37 GND P35 GND P33 48.5 P33 P34 P35 P36 P37 P38 P39 P40 0.5 51.0 ± 0.3 6 × 6=36 6.25 51.0 2 × 17=34 12 4 51.7 ± 0.3 -HV GND P40 GND P38 GND P36 GND P34 2 P41 P42 P43 P44 P45 P46 P47 P48 GND P47 GND P45 GND P43 GND P41 P49 P50 P51 P52 P53 P54 P55 P56 GND P48 GND P46 GND P44 GND P42 DY.64.63.56.55.48.47.39.32.31.24.23.16.15.8.7 62.61.54.53.46.45 60.59.52.51.44.43.36.35.28.27.20.19.12.11.4.3 58.57.50.49.42.41.34.33.26.25.18.17.10.9.2.1 GND GND P55 GND P53 GND P51 GND P49

P57 P58 P59 P60 P61 P62 P63 P64 SIG4 SIG3 SIG2 SIG1 PHOTOCATHODE (EFFECTIVE AREA)

6.25 GND P56 GND P54 GND P52 GND P50 GND GND P63 GND P61 GND P59 GND P57 6.25 6 × 6=36 6.25 2 M3 DEPTH 2.5 GND GND P64 GND P62 GND P60 GND P58 INSULATING TAPE A NOTE *A: Suitable sockets for the connectors will be attached. GND CONNECTOR * 23.5 GND DY12 GND GND *B GND GND *B PLASTIC BASE HSA-200-S02P For signal output is HSC-200-D36P-X (JC ELECTRONICS B B A * GND GND * GND GND GND GND CORPORATION). PC BOARD mfg. JC ELECTRONICS 4-SIGNAL OUTPUT CONNECTOR * CORPORATION HSA-200-D36P-X SIG4 SIG3 SIG2 SIG1 For -HV, GND is SQT-102-01-L-S (SAMTEC). mfg. JC ELECTRONICS CORPORATION TOP VIEW SIDE VIEW BOTTOM VIEW NOTE *B: No pin. TPMHA0602EB H12700B H12700B-10 P8 P64 P8 P64 P7 P63 P7 P63 P6 P62 P6 P62 P5 P61 P5 P61 P4 P60 P4 P60

GR P3 P59 GR P3 P59 K P2 P58 DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 P2 P58 K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 P1 P57 P1 P57

C10 C10 R16 R17 R18 R19 R16 R17 R18 R19 R21 R20 R21 R20 C1 C2 C3 C4 C1 C2 C3 C4

R1 R2 R3 R4 R5 R6 R7 R8 R1 R2 R3 R4 R5 R6 R7 R8 ACTIVE VOLTAGE ACTIVE VOLTAGE DIVIDER DIVIDER C12 C12 C11 C11 R23 R23

R22 R22 ......

R1: 430 kΩ R22, R23: 4.99 kΩ -HV GND R1 to R8: 390 kΩ C1, C2: 0.01 µF SHV-P R2: 360 kΩ R16, R20: 10 kΩ C3: 0.022 µF (SHIELD CABLE, GLAY) R3: 51 kΩ 1, C2: 0.01 µF R17 to R19: 51 Ω C4: 0.033 µF R4 to R8: 330 kΩ C3: 0.022 µF R21: 1 MΩ C10: 0.01 µF R16, R20: 10 kΩ C4: 0.033 µF SIGNAL GND SIGNAL GND DY10 OUTPUT R22, R23: 4.99 kΩ C11, C12: 0.0015 µF R17, R19: 51 Ω C10: 0.01 µF DY10 OUTPUT R21: 1 MΩ C11, C12: 0.0015 µF ANODE OUTPUT P1 ANODE OUTPUT P2 ANODE OUTPUT P3 ANODE OUTPUT P4 ANODE OUTPUT P5 ANODE OUTPUT P6 ANODE OUTPUT P7 ANODE OUTPUT P8 ANODE OUTPUT P57 ANODE OUTPUT P58 ANODE OUTPUT P59 ANODE OUTPUT P60 ANODE OUTPUT P61 ANODE OUTPUT P62 ANODE OUTPUT P63 ANODE OUTPUT P64 DIVIDER CURRENT 225 µA at -1100 V ANODE OUTPUT P1 ANODE OUTPUT P2 ANODE OUTPUT P3 ANODE OUTPUT P4 ANODE OUTPUT P5 ANODE OUTPUT P6 ANODE OUTPUT P7 ANODE OUTPUT P8 ANODE OUTPUT P57 ANODE OUTPUT P58 ANODE OUTPUT P59 ANODE OUTPUT P60 ANODE OUTPUT P61 ANODE OUTPUT P62 ANODE OUTPUT P63 ANODE OUTPUT P64 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR DIVIDER CURRENT 214 µA at -1100 V (MAX.) 4-(DOUBLE-ROW 2 mm Pitch) CONNECTOR 44 (Unit: mm) * 2H13700

9984B-140Y901 CONNECTION FOR SIGNAL CONNECTORS INSULATING TAPE IRISO ELECTRONICS CO., LTD 51.8 ± 0.3 (BOTTOM VIEW) START MARK 32.1 47.5 GND 1 71 GND GND 1 71 GND GND 2 72 GND GND 2 72 GND GND 3 73 GND GND 3 73 GND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 P49 4 74 P65 P177 4 74 P193 P33 5 75 P81 P161 5 75 P209 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 10 P17 6 76 P97 P145 6 76 P225 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 P1 7 77 P113 P129 7 77 P241

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 3.0 P50 8 78 P66 P178 8 78 P194 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 P34 9 79 P82 P162 9 79 P210 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 SIG1 P18 10 80 P98 P146 10 80 P226 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 P2 11 81 P114 P130 11 81 P242 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 P51 12 82 P67 P179 12 82 P195

31 P35 13 83 P83 P163 13 83 P211 18.3 29.9 48.2 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 48.5 SIG2 P19 14 84 P99 P147 14 84 P227

51.8 ± 0.3 P3 15 85 P115 P131 15 85 P243

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 3.0 × 14=42.0 P52 16 86 P68 P180 16 86 P196 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 R1.8

SEPARATION MARK P36 17 87 P84 P164 17 87 P212 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 P20 18 88 P100 P148 18 88 P228 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

ON FOCUSING ELECTRODE P4 19 89 P116 P132 19 89 P244 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 P53 20 90 P69 P181 20 90 P197 6 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 PHOTOCATHODE (EFFECTIVE AREA) P37 21 91 P85 P165 21 91 P213 P21 22 92 P101 P149 22 92 P229 3.0 3 3 P5 23 93 P117 P133 23 93 P245 CASE (POM) 3.0 × 14=42.0 4 P54 24 94 P70 P182 24 94 P198 +20 -0 4 × M2 DEPTH: 8 P38 25 95 P86 P166 25 95 P214 ( 48.5) 2 P22 26 96 P102 P150 26 96 P230

450 51 P6 27 97 P118 P134 27 97 P246 P55 28 98 P71 P183 28 98 P199 P39 29 99 P87 P167 29 99 P215 TOP VIEW SIDE VIEW BOTTOM VIEW P23 30 100 P103 P151 30 100 P231 P7 31 101 P119 P135 31 101 P247 P56 32 102 P72 P184 32 102 P200 P40 33 103 P88 P168 33 103 P216 P24 34 104 P104 P152 34 104 P232 P8 35 105 P120 P136 35 105 P248 P16 P256 P9 36 106 P121 P137 36 106 P249 P25 37 107 P105 P153 37 107 P233 P15 P255 P41 38 108 P89 P169 38 108 P217 P57 39 109 P73 P185 39 109 P201 -HV: SHV-P P10 40 110 P122 P138 40 110 P250 (SHIELD CABLE, GRAY) P26 41 111 P106 P154 41 111 P234 P42 42 112 P90 P170 42 112 P218 ......

PIN ASSIGNMENT FOR PMT ANODE P58 43 113 P74 PIN ASSIGNMENT FOR PMT ANODE PIN ASSIGNMENT FOR PMT ANODE P186 43 113 P202 PIN ASSIGNMENT FOR PMT ANODE P2 P242 P11 44 114 P123 P139 44 114 P251 P27 45 115 P107 P155 45 115 P235 K DY1 DY2 DY3 DY4 DY5 DY6 DY7 DY8 DY9 DY10 GR P1 P241 P43 46 116 P91 P171 46 116 P219 P59 47 117 P75 P187 47 117 P203 P12 48 118 P124 P140 48 118 P252 C10 P28 49 119 P108 P156 49 119 P236

P44 50 PIN ASSIGNMENT FOR CONNECTOR (9984B-140Y901) 120 P92 P172 50 PIN ASSIGNMENT FOR CONNECTOR (9984B-140Y901) 120 P220 P60 51 121 P76 P188 51 121 P204 R19 R14 R15 R16 R17 R18 P13 52 122 P125 P141 52 122 P253 C1 C2 C3 C4 P29 53 123 P109 P157 53 123 P237 P45 54 124 P93 P173 54 124 P221 P61 55 125 P77 P189 55 125 P205 R1 R2 R3 R4 R5 R6 R7 P14 56 126 P126 P142 56 126 P254 P30 57 127 P110 P158 57 127 P238 TRANSISTOR CIRCUIT P46 58 128 P94 P174 58 128 P222 C12 P62 59 129 P78 P190 59 129 P206 P15 60 130 P127 P143 60 130 P255 C11 P31 61 131 P111 P159 61 131 P239 P47 62 132 P95 P175 62 132 P223 P63 63 133 P79 P191 63 133 P207 R21 .... P16 64 134 P128 P144 64 134 P256 P32 65 135 P112 P160 65 135 P240 R20 P48 66 136 P96 P176 66 136 P224 (P17 to P32)

(P225 to P240) P64 67 137 P80 P192 67 137 P208 GND 68 138 GND GND 68 138 GND GND 69 139 GND GND 69 139 GND SHV-P DY10 70 140 GND GND 70 140 GND (SHIELD CABLE, GRAY) SIG1 SIG2 Ω ......

R1, R19: 1 M C1, C2: 0.01 µF SIGNAL GND

R2-R7: 470 kΩ C3: 0.022 µF DY10 OUTPUT R14, R18: 10 kΩ C4: 0.033 µF R15 to R17: 51 Ω C10: 0.01 µF Ω

R20, R21: 4.99 k C11, C12: 0.0015 µF ANODE OUTPUT (P1) ANODE OUTPUT (P2) ANODE OUTPUT (P15) ANODE OUTPUT (P16) ANODE OUTPUT (P241) ANODE OUTPUT (P242) ANODE OUTPUT (P255) ANODE OUTPUT (P256) DIVIDER CURRENT 185 µA at -1100 V (MAX.) 2-(DOUBLE-ROW 0.5 PITCH) CONNECTOR TPMHA0618EB

* 3H13974-00-1616 * 4H7260, H7260-100, H7260-200

8 × 2 LINE Silicone (CLEAR): Between PMT and PMT 36 (12 PITCH) 52.0 ± 0.5 2.54 PITCH Silicone (BLACK): Between PMT and case 4 31.8 ALUMINUM CASE 1 48.5(3) 48.5 (No electric potential) 2 15.5 TERMINAL PIN ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE GND GND GND GND GND GND GND GND 1.2. 9.10. 17.18. 25.26. 33. 34. 41.42. 49.50. 57.58 7.8. 15.16. 23.24. 31.32. 39.40. 47.48. 55.56. 63.64. Dy 5.6. 13.14. 21.22. 29.30. 37.38. 45.46. 53.54. 61.62 3.4. 11.12. 19.20. 27.28. 35.36. 43.44. 51.52. 59.60 TERMINAL PIN 7

12 36 -HV INPUT 24.0 ± 0.5 51.0 ± 0.3 ANODE1 OUTPUT ANODE2 OUTPUT ANODE31 OUTPUT ANODE32 OUTPUT DY10 OUTPUT GND SIG4 SIG3 SIG2 SIG1 SIG4 SIG3 SIG2 SIG1 (0.5) -HV ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE

(3) ANODE ANODE

GND GND GND GND GND GND GND GND 0.8 15.5 HAMAMATSU WINDOW #32 WINDOW #1 105.7 ± 0.3

34 FLAT PANEL PMT ARRAY TOP VIEW 48.5 48.5 51.0 ± 0.3

SIG4 SIG3 SIG2 SIG1 SIG4 SIG3 SIG2 SIG1 SHIELD 0.8 TYP. +20 P1 P2 P31 P32 (0.5) 32.5 ± 0.5 450 -0 15 SHIELD 51.0 ± 0.3 51.0 ± 0.3 R11 -HV: SHV-P (SHIELD CABLE, GRAY) 16 × SIGNAL OUTPUT CONNECTOR 105.7 ± 0.3 HSA-200-D36P-X mfg. JC ELECTRONICS CORPORATION C3 * 2 × 2 array of 51 mm (efective area 48.5) PMT C4 R9 TOP VIEW SIDE VIEW BOTTOM VIEW

35.0 ± 0.5 DY10 TPMHA0625EA HOUSING (POM) C2 R8 DY9 1.27 2.54 × 15 = 38.1 2.54 C1 3.3 PMT-1 PMT-2 PMT-3 PMT-4 DY8

SIDE VIEW ACTIVE BASE CIRCUIT DY7 VOLTAGE VOLTAGE VOLTAGE VOLTAGE R7 DIVIDER CIRCUIT DIVIDER CIRCUIT DIVIDER CIRCUIT DIVIDER CIRCUIT DY6 (ACTIVE BASE) (ACTIVE BASE) (ACTIVE BASE) (ACTIVE BASE) R6 DY10 OUTPUT DY5 ANODE #31 PIN ( 0.5) R5 GND TERMINAL DY4

ANODE #1 PIN ( 0.5) R4 VOLTAGE DIVIDER CURRENT = 0.37 mA at -900 V (MAX. RATING) INPUT DY3 R3

P1 to P64 P1 to P64 P1 to P64 P1 to P64 DY OUT A31-ANODE - A1 GND DY2 7.5

SIGNAL GND SIGNAL GND SIGNAL GND SIGNAL GND R2 Dy10 OUTPUT Dy10 OUTPUT Dy10 OUTPUT Dy10 OUTPUT

ANODE OUTPUT ANODE OUTPUT ANODE OUTPUT ANODE OUTPUT A32-ANODE - A2 -HV -HV: SHV-P -HV: SHIELD CABLE (GRAY) DY1 16- (DOUBLE-ROW 2 mm PITCH) CONNECTOR-P ANODE #32 R1 2.54 5.08

7.62 G ANODE #2 K TPMHC0269EA -HV INPUT R10 ANODE #1 to #32 OUTPUT ( 0.46) TERMINAL ( 0.5) (16 PIN × 2 LINE 2.54 PITCH) R1 to R7 : 220 kΩ BOTTOM VIEW R8, R9 : 51 Ω R10 : 1 MΩ R11 : 10 kΩ C1 to C4 : 0.01 μF

TPMHA0455ED 45 * 5H3164-10 * 6H3695-10

10.5 ± 0.6 11.3 ± 0.7 8 MIN. 8 MIN.

SIGNAL OUTPUT SIGNAL OUTPUT : RG-174/U (BLACK) : RG-174/U (BLACK) PHOTOCATHODE PHOTOCATHODE P P R11 C3 R10 C3 PMT: R1635 DY8 PMT: R2496 DY8 WITH HA TREATMENT R10 C2 WITH HA TREATMENT R9 C2 DY7 DY7 R9 C1 R8 C1 MAGNETIC DY6 MAGNETIC DY6 SHIELD (t=0.2 mm) R8 SHIELD (t=0.2 mm) R7 WITH HEAT DY5 DY5 95.0 ± 2.5 95.0 ± 2.5 WITH HEAT SHRINKABLE TUBE R7 R6 DY4 SHRINKABLE TUBE DY4 R6 R5 DY3 DY3 R5 R4 DY2 DY2 R4 R3 DY1 R3 R2 DY1 R2 K R1 -HV : SHIELD CABLE (GRAY) 10.6 ± 0.2 K R1 -HV 10.6 ± 0.2 : SHIELD CABLE (GRAY) R1 to R4 : 510 kΩ *TO MAGNETIC R5 to R10 : 330 kΩ SHIELD CASE *TO MAGNETIC C1 to C3 : 0.01 μF 1500

-HV 1500 R1 to R11 : 330 kΩ SHIELD CASE -HV : SHIELD CABLE (GRAY) μ : SHIELD CABLE (GRAY) C1 to C3 : 0.01 F * MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT. SIGNAL OUTPUT SIGNAL OUTPUT * MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE ** HIGH VOLTAGE SHIELDED CABLE CAN BE : RG-174/U (BLACK) : RG-174/U (BLACK) OF THIS PRODUCT. CONNECTED TO A CONNECTOR FOR RG-174/U. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

TPMHA0309EE TPMHA0310EE

* 7H3165-10 * 8H12690, H12690-300

14.3 ± 0.6 14.3 ± 0.7 10 MIN. 10 MIN.

SIGNAL OUTPUT RG-174/U (BLACK) PHOTOCATHODE P PHOTOCATHODE PMT: R12421 SIGNAL OUTPUT R12 C3 WITH HA TREATMENT DY10 : RG-174/U (BLACK) PMT: R647-01 R11 C2 P MAGNETIC SHIELD WITH HA TREATMENT DY9 R11 C3 CASE (t=0.2) R10 C1 DY10 WITH HEAT DY8

R10 C2 88 ± 3 MAGNETIC SHIELD SHRINKABLE TUBE R9 CASE (t=0.2 mm) DY9 DY7 R9 C1 WITH HEAT R8 DY8 DY6 SHRINKABLE TUBE R8 R7 DY7 DY5 R7 116.0 ± 3.0 R6 DY6 DY4 R6 R5 DY5 DY3 R5 12.4 ± 0.5 R4 DY4 DY2 R4 R3 DY3 DY1 R3 SIGNAL OUTPUT R2 DY2 RG-174/U (BLACK) R2 K R1 DY1 -HV K R1 SHIELD CABLE (RED) -HV 1500 : SHIELD CABLE (RED) * TO MAGNETIC 12.4 ± 0.5 -HV: R1 to R12: 330 kΩ SHIELD CASE * TO MAGNETIC Ω SHIELD CABLE (RED) C1 to C3: 0.01 μF R1 to R11: 330 k SHIELD CASE -HV C1 to C3: 0.01 μF * MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE

1500 : SHIELD CABLE (RED) * MAGNETIC SHIELD IS CONNECTED TO -HV INSIDE OF THIS PRODUCT. OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE SIGNAL OUTPUT 10 : RG-174/U (BLACK) ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U. CONNECTED TO A CONNECTOR FOR RG-174/U. 5 (H12690-300: PMT: R12421-300)

TPMHA0311EE TPMHA0596EA 46 (Unit: mm) * 9H6520 ( 0H6524

23.5 ± 0.5 23.5 ± 0.5 19.3 ± 0.7 19.3 ± 0.7 15 MIN. 15 MIN.

SIGNAL OUTPUT SIGNAL OUTPUT : RG-174/U (BLACK) : RG-174/U (BLACK) PHOTOCATHODE 1 MAX. 1 MAX. PHOTOCATHODE

P P PMT: R1166 PMT: R1450 WITH HA TREATMENT WITH HA TREATMENT R11 C3 R11 C3 DY10 DY10 R10 C2 R10 C2 MAGNETIC SHIELD DY9 MAGNETIC SHIELD DY9 CASE (t=0.5 mm) R9 C1 CASE (t=0.5 mm) R9 C1 DY8 DY8 R8 R8 DY7 DY7 R7 R7 130.0 ± 0.8 130.0 ± 0.8 DY6 DY6 R6 R6 DY5 DY5 R5 R5 DY4 DY4 R4 R4 DY3 DY3 R3 R3 DY2 DY2 R2 R2 DY1 DY1 K R1 -HV K R1 -HV : SHIELD CABLE (GRAY) : SHIELD CABLE (GRAY)

R1 : 510 kΩ * TO MAGNETIC R1 : 680 kΩ * TO MAGNETIC R2 to R11 : 330 kΩ SHIELD CASE R3 : 510 kΩ SHIELD CASE μ -HV Ω -HV C1 to C3 : 0.01 F R2, R4 to R11 : 330 k : SHIELD CABLE (GRAY) μ : SHIELD CABLE (GRAY) 1500 C1 to C3 : 0.01 F 1500 * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. * MAGNETIC SHIELD IS CONNECTED TO GND ** HIGH VOLTAGE SHIELDED CABLE CAN BE INSIDE OF THIS PRODUCT. CONNECTED TO A CONNECTOR FOR RG-174/U. SIGNAL OUTPUT ** HIGH VOLTAGE SHIELDED CABLE CAN BE SIGNAL OUTPUT : RG-174/U (BLACK) CONNECTED TO A CONNECTOR FOR RG-174/U. : RG-174/U (BLACK)

TPMHA0312ED TPMHA0313EC

( 1H6612 ( 2H6613

23.5 ± 0.5 23.5 ± 0.5 19.3 ± 0.7 18.7 ± 1.0 15 MIN. 15 MIN.

SIGNAL OUTPUT : RG-174/U (BLACK) SIGNAL OUTPUT : RG-174/U (BLACK) 1 MAX. PHOTOCATHODE 1 MAX. PHOTOCATHODE P PMT: R3478 R11 C3 PMT: R2076 P WITH HA TREATMENT DY8 WITH HA TREATMENT R10 C2 R11 C3 DY7 DY8 R9 C1 R10 C2 MAGNETIC SHIELD DY6 MAGNETIC SHIELD DY7 CASE (t=0.5 mm) R8 CASE (t=0.5 mm) R9 C1 DY5 DY6 R7 R8 DY4 DY5 R6 R7 130.0 ± 0.8 DY3 130.0 ± 0.8 DY4 R5 R6 DY2 DY3 R4 R5 DY1 DY2 R3 R4 DY1 R2 R3

K R1 -HV R2 : SHIELD CABLE (GRAY) K R1 -HV R1 : 1 MΩ * TO MAGNETIC : SHIELD CABLE (RED) R2 : 750 kΩ SHIELD CASE R3 : 560 kΩ R1 : 1 MΩ * TO MAGNETIC R4, R6 to R11 : 330 kΩ R2 : 750 kΩ SHIELD CASE Ω R3 : 560 kΩ -HV R5 : 510 k μ -HV R4, R6 to R11 : 330 kΩ

1500 C1 to C3 : 0.01 F : SHIELD CABLE (GRAY) : SHIELD CABLE (RED) R5 : 510 kΩ C1 to C3 μ 1500 MIN. : 0.01 F * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE * MAGNETIC SHIELD IS CONNECTED SIGNAL OUTPUT CONNECTED TO A CONNECTOR FOR RG-174/U. TO GND INSIDE OF THIS PRODUCT. : RG-174/U (BLACK) SIGNAL OUTPUT : RG-174/U (BLACK) THE H6613-01 IS A VARIANT OF H6613 WITH A TERMINAL RESISTOR (50Ω).

TPMHA0315EC TPMHA0314EC 47 ( 3H8135 ( 4H6533

24.0 ± 0.5 31.0 ± 0.5 SIGNAL OUTPUT 19.3 ± 1.0 26 ± 1 P : RG-174/U (BLACK) 15 MIN. SIGNAL OUTPUT : RG-174/U (BLACK) 20 MIN. R19 PHOTOCATHODE C4 R22 R18 P DY10 MAGNETIC SHIELD R17 CASE (t=0.5 mm) PHOTOCATHODE R11 C3

1 MAX. R16 C3 DY10 1 MAX. R10 C2 PMT: R4998 (H6533) R21 R15 DY9 R5320 (H6610) DY9 PMT: R5611A R9 C1 R14 WITH HA TREATMENT DY8 WITH HA TREATMENT

60.0 ± 0.8 C2 R8 R20 R13 DY7 R1: 1 MΩ DY8 R7 R2 to R11: 330 kΩ R12 C1 DY6 C1 to C3: 0.01 μF MAGNETIC SHIELD DY7 Ω R6 R11 R1, R3, R19 : 430 k DY5 CASE (t=0.8 mm) DY6 R2, R7 to R12, R5 R10 R15 to R17 : 330 kΩ DY4 DY5 R4 : 820 kΩ R4 120.0 ± 0.8 R9 Ω DY3 R5, R18 : 390 k DY4 Ω R3 R8 R6, R14 : 270 k DY2 DY3 R13 : 220 kΩ R2 R7 R20 to R22 : 51 Ω -HV DY1 C1 to C3 : 0.022 μF : RG-174/U (RED) K R1 R6 1500 MIN. -HV C4 : 0.033 μF : SHIELD CABLE (RED) DY2 R5 DY1 * TO MAGNETIC R4 SHIELD CASE SIGNAL OUTPUT R3 : RG-174/U (BLACK) * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. ACC -HV R2 G : SHIELD CABLE (GRAY) K R1 -HV : SHIELD CABLE (GRAY) 1500 MIN. * TO MAGNETIC SIGNAL OUTPUT SHIELD CASE : RG-174/U (BLACK)

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. ** HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

TPMHA0513EC TPMHA0317ED

( 5H6152-70 ( 6H8643

31.0 ± 0.5 31.0 ± 0.5 25.8 ± 0.7 SIGNAL OUTPUT 26 ± 1 : RG-174/U (BLACK) 17.5 MIN. R23 22 MIN.

C6 C7 ANODE OUTPUT R22 R24 +HV P : RG-174/U (BLACK) PHOTOCATHODE P : SHIELD CABLE R21 R17 C5 R16

(GRAY) 1 MAX. 1 MAX. DY15 PHOTOCATHODE C4 PMT: R5505-70 R20 R16 C4 R19 R15 DY14 WITH HA TREATMENT DY10 R19 R15 C3 R14 DY13 C3 R14 C2 R18 R13 DY12 PMT: R7899-01 DY9 R13 C1 Ω R12 DY11 R1 to R17: 330 k WITH HA TREATMENT Ω C2 R12 R18, R23: 1 M R17 R11 DY10 R19 to R21: 51 Ω 120.0 ± 0.8 DY8 100.0 ± 0.8 R11 R22: 100 kΩ R10 DY9 Ω R24: 10 k R1, R2, R4, R11, R12: 300 kΩ R10 μ R9 C1 POM CASE DY8 C1 to C5: 0.01 F MAGNETIC SHIELD R3, R5 to R10: 200 kΩ μ DY7 R9 C6, C7: 0.0047 F CASE (t=0.8 mm) R8 R13, R14: 360 kΩ DY7 DY6 R15, R16: 330 kΩ R8 R7 R17 to R19: 51 Ω DY6 DY5 C1, C2: 0.01 μF R7 R6 C3: 0.022 μF DY5 DY4 C4: 0.033 μF R6 R5 DY4 DY3 R5 R4 DY3 DY2 R4 +HV R3 DY2 DY1 : SHIELD CABLE (GRAY) R3 1500 R2 DY1 R2 K R1 -HV K R18 R1 SIGNAL OUTPUT : SHIELD CABLE (RED) : RG-174/U (BLACK) -HV

1500 MIN. * TO MAGNETIC

10 : SHIELD CABLE (RED) * HIGH VOLTAGE SHIELDED CABLE CAN BE SHIELD CASE 5 CONNECTED TO A CONNECTOR FOR RG-174/U. ANODE OUTPUT : RG-174/U (BLACK) * MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

TPMHA0470EC TPMHA0514EB 48 (Unit: mm) ( 7H10580 ( 8H7415

31.5 ± 0.5 33.0 ± 0.5 SIGNAL OUTPUT 25.4 ± 0.5 29.0 ± 0.7 : RG-174/U (BLACK) 22 MIN. SIGNAL OUTPUT 25 MIN. : RG-174/U (BLACK) P 1 MAX. R16 R13 C3 P DY10 PHOTOCATHODE R15 R12 C2 PHOTOCATHODE 1 MAX. DY9 PMT: R6427 (H7415) R14 R11 C1 R7056 (H7416) DY8 C3 R10 R1,R2: 430 kΩ R9 WITH HA TREATMENT PMT: R9800 DY8 DY7 R3: 470 kΩ R9 WITH HA TREATMENT C2 R5: 510 kΩ R8 DY6 Ω DY7 R8 R4,R6 to R13: 300 k Ω C1 MAGNETIC SHIELD DY5 R14 to R16: 51 MAGNETIC SHIELD R7 R7 C1 to C3: 0.01 μF DY6 CASE (t=0.8 mm)

ACTIVE VOLTAGE DIVIDER DY4 CASE (±0.8 mm) 130.0 ± 0.8 R6 DY3

120.0 ± 0.8 DY5 R5 R6 DY2 DY4 R4 R5 DY1 R3 DY3 R4 R2 DY2 K R1 -HV R3 : SHIELD CABLE DY1 -HV (GRAY) R2 : SHIELD CABLE (GRAY) * TO MAGNETIC

R1 1500 SHIELD CASE K -HV * MAGNETIC SHIELD IS CONNECTED TO GND : SHIELD CABLE (RED) SIGNAL OUTPUT INSIDE OF THIS PRODUCT. : RG-174/U (BLACK) ** HIGH VOLTAGE SHIELDED CABLE CAN BE SIGNAL OUTPUT * TO MAGNETIC CONNECTED TO A CONNECTOR FOR RG-174/U. 1500 MIN. : RG-174/U (BLACK) R1: 1 MΩ SHIELD CASE WITH BNC R2: 200 kΩ R3, R4: 470 kΩ -HV R5, R6: 300 kΩ : SHIELD CABLE (RED) R7 to R9: 51 Ω WITH SHV C1 to C3: 0.01 μF

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

TPMHA0554EA TPMHA0318ED

( 9H3178-51 100 H8409-70

47.0 ± 0.5 SIGNAL OUTPUT * TO MAGNETIC 45.0 ± 0.5 : RG-174/U (BLACK) R28 39 ± 1 SHIELD CASE 39 ± 1 SIGNAL OUTPUT 34 MIN. 27 MIN. C7 C6 : BNC-R R27 R26 P +HV 1 MAX. PHOTOCATHODE P R13 1 MAX. R25 R21 C5 : SHIELD CABLE C4 DY19 (GRAY) R14 R12 R24 R20 C4 DY10 PHOTOCATHODE PMT: R7761-70 DY18 R11 R23 R19 C3 C3 WITH HA TREATMENT DY17 R10 R18 C2 PMT: R580 DY9 DY16 WITH HA TREATMENT R9 C2 R17 C1 80.0 ± 0.8 DY8 POM CASE DY15 Ω R8 C1 R1 to R21 : 330 k R16 Ω DY7 DY14 R22, R28 : 1 M MAGNETIC SHIELD R7 R15 R23 to R25 : 51 Ω CASE (t=0.8 mm) DY6 DY13 R26 : 10 kΩ 162.0 ± 0.8 R6 R14 R27 : 100 kΩ DY5 +HV DY12 R5 C1 to C5 : 0.01 μF : SHIELD CABLE (GRAY) R13 μ DY4 DY11 C6, C7 : 0.0047 F R4 R12 DY3 1500 DY10 R3 SIGNAL OUTPUT R11 DY2 C5 DY9 R2 : RG-174/U (BLACK) R10 DY1 K DY8 R1 R15 -HV R9 : SHV-R DY7

510 R8 R1, R10, R12 : 300 kΩ DY6 R2 to R6, R13 : 150 kΩ R7 SIG -HV R7 : 180 kΩ DY5 R8 : 220 kΩ R6 DY4 SIGNAL R9 : 330 kΩ Ω R5 OUTPUT -HV R11 : 240 k R14 : 51 Ω DY3 : BNC-R : SHV-R Ω R4 R15 : 10 k DY2 C1 : 0.01 μF μ R3 C2 : 0.022 F DY1 C3 : 0.047 μF R2 C4 : 0.1 μF C5 : 4700 pF K R22 R1

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT. * HIGH VOLTAGE SHIELDED CABLE CAN BE CONNECTED TO A CONNECTOR FOR RG-174/U.

TPMHA0320EC TPMHA0476EC 49 101 H6410 102 H7195

60.0 ± 0.5 * TO MAGNETIC 60.0 ± 0.5 * TO MAGNETIC SHIELD CASE SHIELD CASE 53.0 ± 1.5 53.0 ± 1.5 SIGNAL OUTPUT ANODE OUTPUT 2 46 MIN. : BNC-R 46 MIN. : BNC-R P R18 C5 ANODE OUTPUT 1 R21 R17 1 MAX. DY12 : BNC-R R16 C4 DYNODE OUTPUT R20 R15 DY11 R25 : BNC-R PHOTOCATHODE R14 C3 P R21 R19 R13 PHOTOCATHODE C7 C6 DY10 R24 R20 R12 C2 DY12 DY9 PMT: R329 R19 PMT: R329 (H6410) R11 C1 DY8 WITH HA TREATMENT R18 C5 R5113 (H6522) R10 DY7 R23 R17 R9 DY11 R2256 (H6521) DY6 R16 R8 MAGNETIC SHIELD C4 WITH HA TREATMENT DY5 R22 R15 CASE (t=0.8 mm) DY10 R14 C3 SH R7 DY9 R13 C2 MAGNETIC SHIELD DY8 DY4 R12 CASE (t=0.8 mm) R6 DY3 DY7

200 ± 1 1 MAX. R11 R5 DY6 DY2 R10 R4 215 ± 1 DY5 DY1 C6 R9 R3 DY4 G R8 R2 DY3 K R7 R1 R22 -HV DY2 R6 : SHV-R DY1 R5 R1, R5 : 240 kΩ G R4 Ω R2, R10, R16 : 220 k R3 R3, R9 : 180 kΩ R1 Ω K R2 -HV R4, R6 to R8, R14, R18 : 150 k : SHV-R R11, R13, R17 : 300 kΩ C1 R12, R15 : 360 kΩ R19 : 51 Ω R20, R21 : 100 Ω R1, R25 : 10 kΩ R22 : 10 kΩ R2 to R4, R17 to R19 : 110 kΩ C1 : 0.022 μF R5, R6, R8 to R13, R15 μ C2 : 0.047 F DYNODE 12 OUTPUT R16, R20, R21 : 100 kΩ μ ANODE Ω C3 : 0.1 F : BNC-R R7, R14 : 160 k -HV SIG OUTPUT 1 C4 : 0.22 μF R22 : 51 Ω SIGNAL C5 : 0.47 μF : BNC-R R23, R24 : 100 Ω

OUTPUT -HV C6 : 470 pF DY C1 : 470 pF -HV A1 μ : BNC-R : SHV-R * MAGNETIC SHIELD IS CONNECTED C2 : 0.022 F

A2 C3 : 0.047 μF TO GND INSIDE OF THIS PRODUCT. ANODE - HV C4 : 0.1 μF OUTPUT 2 : SHV-R C5 : 0.22 μF μ : BNC-R C6 : 0.47 F C7 : 0.01 μF

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

TPMHA0324ED TPMHA0323ED

103 H1949-50 104 H1949-51

60.0 ± 0.5 60.0 ± 0.5 * TO MAGNETIC * TO MAGNETIC 53.0 ± 1.5 SHIELD CASE 53.0 ± 1.5 SHIELD CASE 46 MIN. ANODE OUTPUT 2 46 MIN. SIGNAL OUTPUT : BNC-R : BNC-R 1 MAX. ANODE OUTPUT 1 1 MAX. P R17 : BNC-R C6 C9 R20 R16 DYNODE OUTPUT DY12 : BNC-R PHOTOCATHODE R21 PHOTOCATHODE R15 P C5 C8 R17 C10 C11 C7 C10 R19 R14 R20 R16 DY11 DY12 R19 R15 C6 C9 C12 R18 R13 C4 C7 PMT: R1828-01 (H1949-50) DY11 PMT: R1828-01 (H1949-51) DY10 R2059 (H3177-50) R18 R14 C5 C8 R2059 (H3177-51) DY10 R12 C3 R4004 (H4022-50) R13 C4 R4004 (H4022-51) DY9 DY9 R11 WITH HA TREATMENT R12 C3 WITH HA TREATMENT C2 DY8 DY8 R11 C2 R10 C1 DY7 R10 DY7 DY6 R9 R9 DY5 DY6 MAGNETIC SHIELD R8 MAGNETIC SHIELD R8 235 ± 1 CASE (t=0.8 mm) DY4 235 ± 1 CASE (t=0.8 mm) R7 DY5 DY3 R7 R6 DY2 DY4 R5 R6 DY1 C1 DY3 R4 Acc R5 R3 DY2 G R2 R1 R4 K -HV DY1 : SHV-R R3 Ω R1, R21 : 10 k C11 R2, R5 : 120 kΩ Acc R2 R3, R7 to R12, R16 : 100 kΩ G1 Ω K R4, R6 : 180 k R1 R21 -HV R13, R14, R17 : 150 kΩ : SHV-R R15 : 300 kΩ R1, R4 : 240 kΩ R18 to R20 : 51 Ω R2, R5 : 360 kΩ C1 : 470 pF R3, R6 to R11, R17 : 200 kΩ DYNODE C2 to C4, C10 to C12 : 0.01 μF R12 to R16 : 300 kΩ OUTPUT C5, C6 : 0.022 μF R18 to R20 : 51 Ω : BNC-R C7 : 0.033 μF R21 : 10 kΩ C8, C9 : 4700 pF C1 to C7 : 0.01 μF DY μ ANODE C8 : 0.022 F -HV A1 MAGNETIC SHIELD IS CONNECTED -HV * A1 μ OUTPUT 1 C9 : 0.033 F A2 TO GND INSIDE OF THIS PRODUCT. SIGNAL C10 : 0.01 μF : BNC-R -HV -HV OUTPUT C11 : 470 pF : SHV-R : SHV-R ANODE : BNC-R OUTPUT 2 * MAGNETIC SHIELD IS CONNECTED : BNC-R TO GND INSIDE OF THIS PRODUCT.

TPMHA0325ED TPMHA0326ED 50 (Unit: mm) 105 H2431-50 106 H6614-70

60.0 ± 0.5 * TO MAGNETIC 60.0 ± 0.5 SIGNAL OUTPUT SHIELD CASE R29 : RG-174/U (BLACK) 53.0 ± 1.5 52 ± 1 SIGNAL OUTPUT 46 MIN. 39 MIN. C7 C6 : BNC-R R28 R27

1 MAX. P +HV P R26 R21 C5 : SHIELD CABLE (GRAY) R16 DY19 PHOTOCATHODE C8 C9 C10 C11 R25 R20 C4 R17 R15 DY18 PHOTOCATHODE DY8 PMT: R5924-70 R24 R19 C3

R14 0 WITH HA TREATMENT -1 DY17 C6 C7 + R23 R18 C2 R13 C13 80 1 MAX. DY16 DY7 LIGHT SHIELD STEM R17 C1 PMT: R2083 (H2431-50) R12 DY15 C4 C5 R3377 (H3378-50) POM CASE R16 R11 C12 DY14 WITH HA TREATMENT DY6 R15 R10 C3 DY13 DY5 R1 to R21 : 330 kΩ +HV R14 R9 C2 DY12 R22, R29 : 1 MΩ 200 ± 1 : SHIELD CABLE (GRAY) DY4 R13 R23 to R26 : 51 Ω MAGNETIC SHIELD R8 C1 DY11 R27 : 10 kΩ DY3 CASE (t=0.8 mm) R12 R28 : 100 kΩ

R7 1500 DY10 μ DY2 R11 C1 to C5 : 0.01 F R6 C6, C7 : 0.0047 μF SIGNAL OUTPUT DY9 DY1 R10 R5 : RG-174/U (BLACK) DY8 R9 R4 C14 10 DY7 ACC R8 R3 5 DY6 G R8 K R2 R1 -HV DY5 : SHV-R R6 R1: 33 kΩ DY4 R2, R15: 390 kΩ R5 DY3 R3, R4, R13: 470 kΩ Ω R4 R5: 499 k DY2 R6, R16: 360 kΩ R3 R7: 536 kΩ DY1 R8 to R11: 300 kΩ R2 SIGNAL R12: 150 kΩ OUTPUT -HV -HV Ω SIG R14: 430 k K R22 R1 : BNC-R : SHV-R R17: 51 Ω C1, C2: 4700 pF C3 to C11: 0.01 μF C12, C13: 1000 pF * HIGH VOLTAGE SHIELDED CABLE CAN BE C14: 2200 pF CONNECTED TO A CONNECTOR FOR RG-174/U.

* MAGNETIC SHIELD IS CONNECTED TO GND INSIDE OF THIS PRODUCT.

TPMHA0327EC TPMHA0472EC

107 H6559 108 H6527

83 ± 1 142.0 ± 0.8 * TO MAGNETIC * TO MAGNETIC 77.0 ± 1.5 SHIELD CASE SHIELD CASE 133 ± 2 65 MIN. 120 MIN. SIGNAL OUTPUT SIGNAL OUTPUT : BNC-R 1 MAX. : BNC-R P P R18 C5 R21 R17 R20 R17 C5 PHOTOCATHODE DY12 R16 PHOTOCATHODE DY14 R20 C4 R19 R16 C4

40 ± 1 R15 DY11 DY13 R14 R18 R15 C3 C3 R19 R13 DY12

DY10 140 ± 1 R12 C2 R14 C2 DY9 DY11 R11 C1 DY8 R13 C1 R10 PMT: R6091 DY10 DY7 259 ± 2 R9 PMT: R1250 R12 WITH HA TREATMENT

DY6 56 R8 WITH HA TREATMENT DY9 DY5 R11

356 ± 6 1 MAX. DY8 SH R7 77 R10 DY7 MAGNETIC SHIELD DY4 MAGNETIC SHIELD R9 218 ± 1 R6 CASE (t=0.8 mm) DY3 DY6 R5 CASE (t=0.8 mm) DY2 R8 R4 DY5 DY1 C6 BLACK TAPE R3 R7 G R2 SOCKET ASSY DY4 K R22 HOUSING R6 R1 -HV DY3 : SHV-R R5 DY2 R1, R5 : 240 kΩ R4 R2, R10, R16 : 220 kΩ 74 ± 0.5 DY1 Ω R3 R3, R9 : 180 k G2 R4, R6 to R8, R14, R18 : 150 kΩ C6 R2 R11, R13, R17 : 300 kΩ G1 Ω R12, R15 : 360 k K R1 R21 R19 : 51 Ω -HV : SHV-R -HV R20, R21 : 100 Ω SIG 70 ± 1 Ω R1, R17 : 240 kΩ R22 : 10 k Ω C1 : 0.022 μF R2 : 360 k μ R3 : 390 kΩ C2 : 0.047 F Ω μ SIGNAL OUTPUT -HV R4 : 120 k C3 : 0.1 F Ω : BNC-R : SHV-R R5 : 180 k C4 : 0.22 μF Ω μ R6 to R13 : 100 k C5 : 0.47 F R14, R15 : 150 kΩ C6 : 470 pF R16 : 300 kΩ H6527=Flat window, Borosilicate Ω -HV

SIG R18 : 51 * MAGNETIC SHIELD IS CONNECTED R19, R20 : 100 Ω TO GND INSIDE OF THIS PRODUCT. R21 : 10 kΩ C1 : 0.022 μF SIGNAL * MAGNETIC SHIELD IS CONNECTED C2 : 0.047 μF OUTPUT -HV TO GND INSIDE OF THIS PRODUCT. C3 : 0.1 μF : BNC-R : SHV-R C4 : 0.22 μF C5 : 0.47 μF C6 : 470 pF

TPMHA0331EC TPMHA0332EF 51 Typical gain characteristics

● 10 mm (3/8") Dia. and TO-8 types ● 19 mm (3/4") Dia. types ● 13 mm (1/2") Dia. types

TPMHB0963EA TPMHB0097EG 108 108

R12421

7 R12421-300 7 10 10 R1166 R1450 R647-01

106 106 R5611A-01

R4124 R1635 5 5 10 R2496 10 R3478 GAIN GAIN

R4125 R4177-06 104 104

R3991A-04 103 103

102 102 500 700 1000 1500 2000 2500 3000 500 700 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

● 25 mm (1") Dia. types ● 28 mm (1-1/8") Dia. types

TPMHB0099EE TPMHB0100EF 108 108 R7899-01 R7111

R8619 R4998 107 107 R3998-02

R3998-100-02

106 106 R1924A

R9800 R9800-100 5 10 105 GAIN GAIN R6427

R13449 104 104 R7525 R1288A-06

3 10 103

2 10 102 500 700 1000 1500 2000 2500 3000 500 700 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

52 ● 38 mm (1-1/2") Dia. types ● 51 mm (2") Dia. types

108 TPMHB0101EF 108 TPMHB0858EB R331-05 R580 R6041 R6041-406 107 107 R7725 R11102 R6041-506 R329-02 R3886A R1306 106 106 R7723 R9420 R6231

105 R9420-100 105 GAIN GAIN R1828-01

R13408 R2083 104 104

R6231-100 103 103

102 102 500 700 1000 1500 2000 2500 3000 500 700 1000 1500 2000 2500 30003500

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

● 76 mm (3") Dia. types ● 80 mm Dia. types ● 51 mm (2") Dia. types ● 90 mm (3.5") Dia. types ● 60 mm (2.5") Dia. types ● 102 mm (4") Dia. types

TPMHB0859EB 108 108 TPMHB0107EF R12199 R10806 R7724 R6091 7 7 R10233 10 R2154-02 10 R6233 R6235 R6237 R7724-100 R10806-100 R1307 106 106 R6233-100 R10233-100

5 5 10 R6232 10 GAIN GAIN

R4607A-06 104 104 R13089 R11410 R11065

103 103

102 102 500 700 1000 1500 2000 2500 3000 500 700 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

53 ● 127 mm (5"), 204 mm (8"), 254 mm (10") and 508 mm (20") Dia. types

TPMHB0860EB 108 1010 TPMHB0657EC

9 R6594 10 107 R5912-20 R877 R7081-20 R877-100 8 R1250 10

106 R5912 R5912-100 R7081 7 R7081-100 10 GAIN GAIN

105 106 R11833-03 R11833-100-03 R12860

104 105

4 103 10 500 700 1000 1500 2000 2500 3000 500 700 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

● Metal package types ● Metal package types and assembly type

108 TPMHB0788EC 108 TPMHB0789EC R5900U-00-L16

107 107 H8711 R7600U H12700A H13700 106 106 R8520-406 R8520-506 H7260

105 R7600U-00-M4 105 GAIN GAIN H12700A-10

R11265 104 104

H7546B H8804

103 103

102 102 500 700 1000 1500 2000 2500 3000 500 700 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

54 ● SBA / UBA / EGBA metal package types ● Fine mesh photomultipliers

TPMHB0854EB TPMHB0964EA 108 108

R5900U-100-L16 R5900U-200-L16 107 107

106 R7600U-100-M4 106 R7600U-200-M4 R7600U-300 R7600U-300-M4 R5924-70 105 105 R11265U-200 R7761-70 GAIN GAIN R11265U-300 R5505-70 4 R7600U-100 4 10 R7600U-200 10

R11265U-100 103 103

102 102 500 700 1000 1500 2000 2500 3000 500 700 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

● Square, Rectangular shape photomultipliers ● Hexagonal shape photomultipliers ● 2π shape photomultipliers

TPMHB0965EA TPMHB0966EA 108 108

R1548-07 R8143

7 107 10 R2248 R7373A-01 R6234

6 6 10 R6232 10

R6235

105 105 R10550 GAIN GAIN R6237

4 104 10

R8997

3 10 103

102 102 500 700 1000 1500 2000 2500 3000 500 700 1000 1500 2000 2500 3000

SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V)

55 Voltage distribution ratios

Interstages for the dynodes of a PMT are supplied by a voltage voltage at a constant value during pulse duration. refer to divider network consisting of series resistors, as shown on the section 11 and 12 on page 8 to 13 for further details. right page. The cathode ground scheme (1) is usually used in To free the user from the necessity of designing voltage divider scintillation counting because it reduces noise resulting from and performing troublesome parts selection, Hamamatsu glass scintillation. In fast-pulse light applications, use of the provides a variety of socket assemblies which enable sufficient anode ground scheme (2) is suggested. Either scheme performance to be derived from PMT's by making simple requires decoupling (charge-storage) capacitors connected to connections only. the last few stages of dynodes in order to maintain the dynode

Voltage distribution ratio Voltage Number Voltage distribution ratios distribution of K: Photocathode G: Grid F: Focusing electrode No. stages KGDy1 Dy2 Dy3 Dy4 Dy5 Dy6Dy7 Dy8 P ΣR Dy: Dynode GR: Guard ring P: Anode Acc: Accelerating electrode q 1 1 1 1 1 1 1 1 1 1 10 w 1.3 4.8 1.5 1.5 1 1 1 1 1 1 15.1 e 2 — 2 1 1 1 1 1 1 1 11 r 2 2 1 1 1 1 1 1 1 1 12 t 3 — 1.5 1.5 1 1 1 1 1 1 12 8 y 4 — 1 1.5 1 1 1 1 1 1 12.5 u 4 — 1 1.5 1 1.2 1.5 2 3.3 3 18.5 i 4 — 1 2 1 1 1 1 2 1 14 o 4 — 1.5 1.5 1 1 1 1 1 1 13 !0 7 — 1 1.5 1 1 1 1 1 1 15.5 !1 4 0 1.2 1.5 1 1 1 1 1 1 12.7

No. stages KGDy1 Dy2 Dy3 Dy4 Dy5 Dy6Acc Dy7 Dy8 P ΣR !2 8 1.3 4.8 1.2 1.8 1 1 1 1 0.5 3 2.5 19.1 Acc: Grid (Accelerating electrode) No. stages KGDy1 Dy2 Dy3 Dy4 Dy5 Dy6Dy7 Dy8 Dy9 P ΣR !3 9 3 1 1 1111.51 111 13.5

No. stages KGDy1 Dy2 Dy3 Dy4 Dy5 Dy6Dy7 Dy8 Dy9 Dy10 P ΣR !4 1 — 1 1 1 1 1 1 1 1 1 0.5 10.5 !5 0.5 1.5 2 1 1 1 1 1 1 1 1 0.5 12.5 !6 1 — 1 1 1 1 1 1 1 1 1 1 11 !7 1 1 1 1 1 1 1 1 1 1 1 1 12 (Note 1) !8 1.3 4.8 1.5 1.5 1 1 1 1 1 1 1 1 17.1 !9 1.3 4.8 1.2 1.8 1 1 1 1 1 1.5 3 2.5 21.1 @0 1.5 — 1 1 1 1 1 1 1 1 1 1 11.5 @1 1.5 — 1 1 1 1 1 1 1.2 1.8 3.6 3.3 17.4 @2 1.5 — 1.5 1.5 1 1 1 1 1 1 1 1 12.5 @3 10 2 — 1 1 1 1 1 1 1 1 1 1 12 @4 2 — 1 1 1 1 1 1.2 1.5 2.2 3.6 3 18.5 @5 2 — 1 1.5 1 1 1 1 1 1 1 0.75 12.25 @6 3 — 1 1 1 1 1 1 1 1 1 1 13 @7 3 — 1 1.5 1 1 1 1 1 1 1 1 13.5 @8 3 — 1 1.5 1 1 1 1 2 3 3.6 3.3 21.4 @9 3 — 1.5 1 1 1 1 1 1 1 1 1 13.5 #0 4 — 1 1.5 1 1 1 1 1 1 1 1 14.5 #1 4 — 1 1.5 1 1 1 1.2 1.5 2 3.3 3 20.5 #2 4 — 1 2 1 1 1 1 1 1 2 1 16 Note 1: Acc should be connected to Dy7 except R4998.

56 Schematic diagram of voltage divider networks (1) Cathode ground scheme (+HV) (2) Anode ground scheme (-HV)

CATHODE CATHODE ANODE Cc ANODE DY.1 DY.… DY.n DY.1 DY.2… DY.n

Rd RL R R R R R R R R R R R R R R R R R R R R

CCC C -HV CCC C R: 100 kΩ — 1 MΩ Rd: — 1 MΩ R: 100 k — 1 MΩ C: 0.01 μF — 0.1 μF Cc: — 0.005 μF +HV C: 0.01 μF — 0.1 μF

TPMOC0043EB TPMOC0044EB

Voltage distribution ratio Voltage Number distribution of Voltage distribution ratios No. stages K Dy1 G1 G3 G2 Dy2 Dy3 Dy4 Dy5 Dy6Dy7 Dy8 Dy9 Dy10 P ΣR #3 8 0.18 0 0.17 0.85 1.5 1 1 1 1 1 1 1 1 18.7 10 #4 8 0.18 0 0.17 0.85 1.5 1 1 1 1.2 1.5 2.1 3 2.4 23.9

No. stages K Dy1 G Dy2 Dy3 Dy4 Dy5 Dy6 Dy7(Acc) Dy8 Dy9 Dy10 P ΣR #5 10 11.5 1 3.5 42211 111 1 30

No. stages KGDy1 Dy2 Dy3 Dy4 Dy5 Dy6Dy7 Dy8 Dy9 Dy10 Dy11 P ΣR #6 11 2 — 1 11111 111 1 113

No. stages K G Dy1 Dy2 Dy3 Dy4 Dy5Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 P ΣR #7 1 3 1.2 1.8 1 1 1 1 1.5 2.5 3.6 4.5 8.6 4 35.7 #8 1.2 2.8 1.2 1.8 1 1 1 1 1 1 1.5 1.5 3 2.5 21.5 #9 2 — 2 2 1 1 1 1 1 1 1 1 1 1 16 $0 2 — 2 2 1 1 1 1 1 1 1 1 1 1.2 16.2 $1 2.5 — 1.3 0.8 0.8 1 1 1 1 1 1 1 1 0.5 13.9 $2 12 3 — 2 2 1 1 1 1 1 1 1 1 2 5 22 $3 3.3 — 1.6 1 1 1 1 1 1 1 1 1 2.7 1.3 17.1 $4 4 0 1 1.4 1 1 1 1 1 1 1 1 1 1 16.4 (Note 2) $5 4 — 1 2 1 1 1 1 1 1 1 1 2 1 18 $6 4 — 1.5 2 1 1 1 1 1 1 1 1 2 1 18.5 $7 4.3 0 1 1.6 1 1 1 1.2 1.5 2 2.4 3 3.9 3 26.9 (Note 2)

No. stages K Dy1 Dy2 Dy3 Dy4 Dy5 Dy6Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 P ΣR $8 12 4 1.5 2 11111 111 2 1 18.5

No. stages K G Dy1 Dy2 Dy3 Dy4 Dy5Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 P ΣR $9 2.5 7.5 1.2 1.8 1 1 1 1 1 1 1 1 1.5 1.5 3 2.5 29.5 14 %0 2.5 7.5 1.2 1.8 1 1 1 1 1.2 1.5 2 2.8 4 5.7 8 5 47.2

No. stages K Dy1 G2 G1 G3 Dy2 Dy3 Dy4 Dy5Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 P ΣR %1 10 16.8 0 0.6 0 3.4 5 3.33 1.67 1 1.2 1.5 2.2 3 — — — — 2.4 42.2 %2 14 11.3 0 0.6 0 3.4 5 3.33 1.67 1 1 1 1 1 1.2 1.5 2.2 3 2.4 40.6

No. stages K Dy1 Dy2 Dy3 Dy4 Dy5 Dy6 Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 Dy13 Dy14 Dy15 Dy16 Dy17 Dy18 Dy19 P ΣR %3 15 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 — — — — 1 17 %4 19 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 21

No. stages K Dy1 Dy2 Dy3 Dy4 Dy5 Dy6Dy7 Dy8 Dy9 Dy10 Dy11 Dy12 GR P ΣR %5 10 2 1 1 1 1 1 1 1 1 1 — — 1 0.5 12.5 %6 12 2.3 1.2 1 1 1 1 1 1 1 1 1 1 1 0.5 15 Note 2: Shield should be connected to Dy5.

57 Quick reference for PMT socket assemblies

PMT characteristics Assembly characteristics Tube type No. Refe- Standard Maximum Assembly H.V Signal Tube / rence Outline rating rating type input output diameter Voltage page for No. 1 2 Notes No. terminal terminal Overall Divider Overall distribution PMT voltage current voltage ratio feature (V) (mA) (V) R1635 20 E1761-21 10 mm e z SHV BNC -1250 0.35 -1500 R2248 24 (3/8") E1761-22 R2496 t 20 z SHV BNC -1250 0.32 -1500 E849-90 R647-01 !6 20 x SHV BNC -1000 0.28 -1250 13 mm E849-99 R12421 @3 20 c AWG22 RG-174/U -1000 0.32 -1250 (1/2") E849-68 R4124 @7 20 c AWG22 RG-174/U -1000 0.23 -1250 E974-17 R1166 @0 20 v SHV BNC -1000 0.27 -1800 E974-22 19 mm R1450 @5 20 b SHV BNC -1500 0.37 -1800 E2253-05 (3/4") R3478 !0 20 n SHV BNC -1700 0.34 -1800 E974-19 R4125 @1 20 m AWG22 RG-174/U -1500 0.27 -1800 E2037-02 25 mm R1548-07 #0 24 , AWG24 AWG24 -1250 0.13 -1750 6 µA is for total of 2 anodes. E6133-04 (1") R5505-70 %3 24 . SHV BNC +2000 0.36 +2300 R3998-02 20 E990-29 !3 ⁄0 AWG22 RG-174/U -1000 0.23 -1500 25 mm R3998-100-02 26 (1") R1924A 20 28 mm E2924-500 @6 ⁄1 SHV BNC -1000 0.24 -1250 (1-1/8") R7111 20

E2624-14 28 mm #0 20 ⁄2 SHV BNC -1500 0.32 -2000 R6427 E2624-14 without connector and E2624-04 (1-1/8") #1 20 ⁄3 AWG22 RG-174/U -1500 0.37 -2000 flange, tapered circuit voltage 20 -1250 0.32 -1750 E2183-500 @3 20 ⁄4 SHV BNC -1000 0.26 -1250 R580 38 mm 20 -1000 0.26 -1250 R11102 (1-1/2") 20 -1500 0.54 -1750 R3886A Extended pulse linear E2183-501 @4 20 ⁄4 SHV BNC -1000 0.36 -1250 characteristics 20 -1000 0.36 -1250 E1198-07 51 mm R2154-02 @3 22 ⁄5 AWG22 RG-174/U -1250 0.32 -1750 E2979-500 (2") R1828-01 #8 22 ⁄6 SHV BNC -2500 0.58 -3000 with shield case 22 E1198-05 q ⁄7 AWG22 RG-174/U -1000 0.31 -1500 -HV type R1306 22 R1307 22 SHIELD E1198-20 q ⁄8 RG-174/U +1000 0.31 +1500 +HV type 22 CABLE 51 mm R6231 22 (2") R6231-100 22 60 mm ⁄9 SHIELD E1198-26 R6232 22 RG-174/U -1000 0.25 -1500 -HV type (2.4") CABLE R6233 22 76 mm R6233-100 22 (3") R6234 24 90 mm R6235 r 24 (3.5") R6236 24 102 mm SHIELD R6237 24 ⁄9 E1198-27 (4") RG-174/U +1000 0.25 +1500 +HV type R10233 22 CABLE R10233-100 22 R10806 22 R10806-100 22 Note: 1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained. 2: The maximum average anode current is defined as 5 % of divider current.

58 PMT characteristics Assembly characteristics Tube type No. Refe- Standard Maximum Assembly H.V Signal Tube / rence Outline rating rating type input output diameter Voltage page for No. 1 2 Notes No. terminal terminal Overall Divider Overall distribution PMT voltage current voltage ratio feature (V) (mA) (V) R329-02 22 -2700 shield case is available. E5859 $7 20 SHV BNC -2000 0.5 R6091 22 -2500 +HV type (E5859-02) is available. R329-02 22 51 mm -2700 shield case is available. E5859-01 R331-05 $4 22 20 SHV BNC -1500 0.42 (2") -2500 +HV type (E5859-03) is available. R6091 22 76 mm E5859-11 R7725 $5 22 20 SHV BNC -1750 0.45 -2000 (3") E5859-15 R7723 i 22 20 SHV BNC -1750 0.38 -2000 R7724 E5859-19 #2 22 20 SHV BNC -1750 0.5 -2000 R7724-100

SHIELD shield case is available. E1198-22 21 RG-174/U -1250 0.32 -1500 CABLE -HV type

R877 SHIELD shield case is available. E1198-23 !7 22 21 RG-174/U +1250 0.32 +1500 127 mm R877-100 CABLE +HV type (5") -HV type E6316-01 22 SHV BNC -1250 0.32 -1500 with rear panel connector

E7693 R1250 $9 22 23 SHV BNC -2000 0.68 -3000

204 mm R5912 22 (8") +HV type, E7694-02 %1 24 SHV BNC -1500 0.36 -2000 254 mm (E7694-03) is available R7081 22 (10") 26 mm R8520-406 SHIELD SHIELD E13416 square !5 25 25 +800 0.036 +900 R8520-506 CABLE CABLE type R7600U R7600U-03 SHIELD E5996 R7600U-100 @2 24 26 RG-174/U -800 0.3 -900 CABLE R7600U-200 R7600U-300 R7600U-00-M4 R7600U-100-M4 SHIELD Active base type E7083 @2 24 27 0.8D-QEV -800 0.3 -900 R7600U-200-M4 CABLE (E6572) is available. 30 mm R7600U-300-M4 square R5900U-00-L16 type SHIELD E6736 R5900U-100-L16 !6 24 28 0.8D-QEV -800 0.34 -900 CABLE R5900U-200-L16 R11265U SHIELD E11807 R11265U-100 $1 24 29 RG-174/U -900 0.33 -1000 CABLE R11265U-200 R11265U SHIELD E11807 with tapered voltage E11807-01 R11265U-100 $1 24 29 RG-174/U -900 0.34 -1000 CABLE driver circuit. R11265U-200 16 mm R9880U-110 SHV / BNC connector type E10679-02 !4 24 30 AWG22 RG-174/U -1000 0.29 -1100 TO-8 R9800U-210 E10679-03 is available Note: 1: When overall voltage is negative (-HV), DC and pulse signals are obtained. When it's positive (+HV), pulse signal is obtained. 2: The maximum average anode current is defined as 5 % of divider current.

59 Dimensional outline and circuit diagrams For PMT socket assemblies z E1761-21, E1761-22

E1761-21 E1761-22 (For R1635) (For R2496)

SOCKET SOCKET 10.6 ± 0.2 PMT PIN No. SIGNAL OUTPUT PMT PIN No. SIGNAL OUTPUT 6 : RG-174/U (BLACK) 6 : RG-174/U (BLACK) 3 BNC CONNECTOR BNC CONNECTOR SOCKET: E678-11N P P HOUSING R11 C3 R10 C3 (INSULATOR) DY8 7 DY8 7 R10 C2 R9 C2 DY7 5 DY7 5

50.0 ± 0.5 R9 C1 R8 C1 SIGNAL OUTPUT DY6 8 DY6 8 R8 R7 Ω : RG-174/U (BLACK) R1 to R4: 510 k DY5 4 DY5 4 Ω BNC CONNECTOR R5 to R10: 330 k R7 R1 to R11: 330 kΩ R6 DY4 9 DY4 9 C1 to C3: 10 nF R6 C1 to C3: 10 nF R5 -HV DY3 3 DY3 3 : SHIELD CABLE (GRAY) R5 R4 DY2 10 DY2 10 SHV CONNECTOR R4 R3 2 450 ± 10 R3 DY1 DY1 2 R2 R2 R1 -HV R1 -HV K 11 : SHIELD CABLE (GRAY) K 11 : SHIELD CABLE (GRAY) SHV CONNECTOR SHV CONNECTOR

TACCA0075EB TACCA0076EC

x E849-90

14.0 ± 0.3 PMT SOCKET PIN No.

0.5 MAX. SIGNAL OUTPUT 6 : RG-174/U (BLACK) 5 BNC CONNECTOR 12.6 P 10 R11 C3 12.4 DY10 7 R10 C2 R1 to R11: 330 kΩ DY9 5 45.0 ± 0.5 C1 to C3: 10 nF R9 C1 HOUSING DY8 8 (INSULATOR) R8 DY7 4 POTTING R7 COMPOUND DY6 9 R6 DY5 3

+20 -0 R5 DY4 10 450 R4 DY3 2 R3 DY2 11 R2 DY1 1 R1 -HV K 13 : SHIELD CABLE (RED) SHV CONNECTOR

TACCA0077ED

c E849-68, E849-99

E849-68 E849-99 (For R4124) (For R12421)

SOCKET SIGNAL GND SOCKET PMT PIN No. PMT PIN No. SIGNAL OUTPUT 7 SIGNAL OUTPUT 6 RG-174/U (BLACK) RG-174/U (BLACK) 14.0 ± 0.3 POWER SUPPLY GND P GND P C3 AWG22 (BLACK) C3 AWG22 (BLACK)

0.5 MAX. R11 R12

5 DY10 8 DY10 7 R10 C2 R11 C2 12.6 10 DY9 6 DY9 5 R9 C1 R10 C1 12.4 DY8 9 DY8 8 R8 R9 45.0 ± 0.5 HOUSING DY7 5 DY7 4 (INSULATOR) R7 R8 DY6 10 DY6 9 R6 R1: 1 MΩ R7 R1 to R12: 330 kΩ POTTING Ω DY5 4 R3: 510 k DY5 3 C1 to C3: 0.01 µF COMPOUND R2, R4 to R11: 330 kΩ R5 C1 to C3: 10 nF R6 DY4 11 DY4 10 R4 R5

450 ± 10 DY3 3 DY3 2 R3 R4 DY2 12 DY2 11 R2 R3 DY1 2 DY1 1 K R1 -HV R2 13 AWG22/TFE (VIOLET) K R1 -HV 13 AWG22/TFE TACCA0210EB 60 (VIOLET) (Unit: mm) v E974-17 b E974-22

SOCKET PMT PIN No. SIGNAL OUTPUT SOCKET 5 : RG-174/U (BLACK) PMT PIN No. SIGNAL OUTPUT BNC CONNECTOR 5 : RG-174/U (BLACK) BNC CONNECTOR P R11 C3 21.0 ± 0.3 23.0 ± 0.5 DY10 6 P R10 C2 R11 C3 17.4 ± 0.2 DY9 4 DY10 6 R10 C2 R9 C1 POM DY9 4 DY8 7 HOUSING R9 C1 R1: 680 kΩ R8 DY8 7 R3: 510 kΩ 40.0 ± 0.5 DY7 3 R8 R2, R4 to R11: 330 kΩ DY7 3 R7 C1 to C3: 10 nF 1.0 POTTING R7 0.5

± DY6 8 COMPOUND DY6 8

± Ω HOUSING R6 R1: 510 k R6 Ω +20 -0 47.5 R2 to R11: 330 k DY5 2

43.0 (INSULATOR) 2 DY5 R5

C1 to C3: 10 nF 450 R5 DY4 9 DY4 9 R4 R4 DY3 1 POTTING R3 10 DY3 1 COMPOUND DY2 10 ± R3 R2 DY2 10 DY1 12 450 -HV R2 R1 K 11 : SHIELD CABLE (GRAY) DY1 12 SHV CONNECTOR E974-17, -18 attaches K R1 -HV BNC and SHV connector 11 : SHIELD CABLE (GRAY) at the end of cables. SHV CONNECTOR

TACCA0212EB TACCA0078EC

n E2253-05 m E974-19

SOCKET PMT PIN No. SIGNAL OUTPUT 5 : RG-174/U (BLACK) PMT SOCKET P PIN No. SIGNAL OUTPUT GND 5 : RG-174/U (BLACK) R16 : AWG22 (BLACK) +0 18.6 -0.4 BNC CONNECTOR P 23.0 ± 0.5 R15 C3 R11 C3 17.4 ± 0.2 DY8 7 R14 R10 C2 DY10 6 DY7 3 R1: 1 MΩ SOCKET R13 6.2 R9 C1 Ω 0.5 R2: 750 k

: E678-12H HOUSING DY6 8 R3: 560 kΩ R12 C2 (INSULATOR) R8 R4, R6 to R11: 330 kΩ 2 R11 55.0 ± DY5 Ω HOUSING R7 R5: 510 k DY9 4

DY4 9 C1 to C3: 10 nF 47.5 ± 1.0 (INSULATOR) R10 R6 43.0 ± 0.5 C1 POTTING DY3 1 R9 R5 DY8 7 +20 -0 COMPOUND DY2 10 R8 R4 3 450 -HV DY7 DY1 12 : AWG22 (VIOLET) R7 R3 DY6 8 R1: 499 kΩ R2 GND R6 R2 to R7: 330 kΩ -0 -HV +20 DY5 2 R1 : AWG22 (BLACK) R8,R11 to R13: 390 kΩ K 11 : SHIELD CABLE (GRAY) R5 450 R9, R10: 300 kΩ SHV CONNECTOR DY4 9 SIGNAL OUTPUT R4 R14 to R16: 360 kΩ : RG-174/U (BLACK) DY3 1 C1 to C3: 10 nF R3 DY2 10 R2 5 DY1 12 10 K 5 R1 -HV 11 : AWG22/TFE TACCA0079EB (VIOLET) TACCA0230EB

, E2037-02 . E6133-04

SOCKET SOCKET PMT PIN No. PMT R20 PIN No. C6 SIGNAL OUTPUT 8 SIGNAL OUTPUT2 10 : RG-174/U (BLACK) : AWG24(RED) BNC CONNECTOR SIGNAL OUTPUT1 R19 C7 7 +HV : AWG24(YELLOW) 24.0 ± 0.5 P R1 : SHIELD CABLE (GRAY) 24 ± 0.5 SIGNAL GND 22.0 ± 0.5 R24 R18 C5 SHV CONNECTOR : AWG24(BLACK) DY15 9 21.9 POWER SUPPLY GND R23 R17 C4 P R11 C3 : AWG24(BLACK) DY14 11 2 2 R22 R16 C3 DY10 9 DY13 8 R10 C2 R15 C2

2 HOUSING 0.5 DY9 6 DY12 12 HOUSING Ω ± (INSULATOR) R14 C1 R1: 10 k R9 C1 (INSULATOR) DY11 7 R2 to R18: 330 kΩ DY8 10 55.0 ± 0.5

30.0 R13 R19: 100 kΩ R8 DY10 13 R20, R21: 1 MΩ DY7 11 R12 R22 to R24: 51 Ω POTTING DY9 6 POTTING C1 to C5: 10 nF COMPOUND DY7 5 COMPOUND R11 R1: 2.7 MΩ DY8 14 C6, C7: 4.7 nF R7 R10 10 R2, R4 to R11: 680 kΩ DY6 12 SIGNAL OUTPUT ± 5 R3: 1 MΩ : RG-174/U (BLACK) DY7 R6 R9 C1 to C3: 10 nF BNC CONNECTOR 450 DY5 4 DY6 15 R5 +H.V R8 450 ± 10 DY5 4 DY4 13 : SHIELD CABLE (GRAY) R7 R4 SHV CONNECTOR DY4 16 DY3 3 R6 R3 DY3 3 R5 DY2 14 DY2 17 R2 R4 DY1 2 DY1 2 R1 -HV R3 K K 17 : AWG24/TFE R2 (VIOLET) R21 1 TACCA0028EC TACCA0231EB 61 ⁄ 0E990-29 ⁄ 1E2924-500

44.0 ± 0.3 35.0 ± 0.3 44.0 ± 0.3 35.0 ± 0.3 PMT SOCKET PMT SOCKET SIGNAL GND PIN No. PIN No. SIGNAL OUTPUT SIGNAL OUTPUT 7 7 RG-174/U (BLACK) RG-174/U (BLACK) 2- 3.5 P BNC CONNECTOR POWER SUPPLY GND 30.0 ± 0.3 R13 C3 P Dy10 10 R11 C3 AWG22 (BLACK) R12 C2 DY9 8 26.0 ± 0.3 Dy9 6 30.0 ± 0.3 R11 C1 R10 C2 Dy8

7 11 DY8 6 R10 Dy7 5 2- 3.5 R9 C1 DY7 9 R9 26.0 ± 0.3 0.8 Dy6 12 R8 28.0 ± 0.5 R8 DY6 5 Ω Dy5 4 R1 to R13: 330 kΩ R1: 1 M R7

R7 43.0 ± 0.5 HOUSING C1 to C3: 10 nF 7 R2 to R6,R8 to R11: 330 kΩ Dy4 13 DY5 10 Ω (INSULATOR) R6 C4: 4.7 nF R6 R7: 510 k Dy3 3

0.8 DY4 3 C1 to C3: 10 nF R5 Dy2 14 R5 POTTING R4 DY3 12 COMPOUND Dy1 2 HOUSING R4 R3 43.0 ± 0.5 (INSULATOR) 28.0 ± 0.5 DY2 2 K R2 C4 R3 -HV DY1 13

450 ± 10 R1 R2 1 SHIELD CABLE (GRAY) POTTING G 1 SHV CONNECTOR COMPOUND R1 -HV 14

450 ± 10 K AWG22/TFE (VIOLET)

TACCA0215EC TACCA0081EC

⁄ 2E2624-14 ⁄ 3E2624-04

44.0 ± 0.3 35.0 ± 0.3

PMT SOCKET PIN No. SIGNAL OUTPUT PMT SOCKET SIGNAL GND 7 : RG-174/U (BLACK) PIN No. BNC CONNECTOR 7 SIGNAL OUTPUT 32.0 ± 0.5 : RG-174/U (BLACK)

30.0 ± 0.3 P R11 C3 25.2 ± 0.5 R14 P GND Dy10 8 R1: 1320 kΩ R11 C5 C6 : AWG22 (BLACK) 2- 3.5 R14 R10 C2 R3: 510 kΩ R13 Ω Dy10 8 26.0 ± 0.3 Dy9 5 R2, R4 to R11: 330 k R12 to R14: 51 Ω 4 R10 C4 R1: 800 kΩ R9 C1 R13 R12 C1 to C3: 10 nF Dy9 5 R2, R4 to R6: 200 kΩ Dy8 9 7 C4 Ω R8 : 4.7 nF HOUSING R9 C3 R3, R8: 300 k Dy7 4 R12 Ω (INSULATOR) Dy8 R7: 240 k R7 49.0 ± 0.5 9 0.8 Dy6 10 R8 C2 R9: 400 kΩ R6 Dy7 4 Ω Dy5 3 R10: 660 k R7 C1 Ω 28.0 ± 0.5 HOUSING R5 POTTING Dy6 10 R11: 600 k 43.0 ± 0.5 Dy4 (INSULATOR) 11 R6 R12 to R14: 51 Ω R4 COMPOUND Dy5 Dy3 2 3 C1: 10 nF R3 R5 Dy2 12 Dy4 11 C2, C3: 22 nF POTTING R2 R4 C4 to C6: 33 nF KDy1 14 Dy3 2 COMPOUND C4 R3 -HV Dy2 12 R1 R2 450 ± 10 13 : SHIELD CABLE (GRAY) 450 ± 10 KDy1 14 SHV CONNECTOR R1 -HV 13 : AWG22/TFE (VIOLET) 10 5

TACCA0082EC TACCA0084ED

⁄ 4E2183-500, E2183-501

E2183-500 E2183-501

SOCKET PMT PMT PIN No. SIGNAL OUTPUT SOCKET PIN No. SIGNAL OUTPUT 6 :RG-174/U (BLACK) : RG-174/U (BLACK) BNC CONNECTOR 6 BNC CONNECTOR P R14 C4 R15 R13 Ω Dy10 7 R1: 10 k 52.0 ± 0.5 P R12 C3 R12 R2, R11, R13: 300 kΩ DY10 7 C3 R3 to R7, R14: 150 kΩ 34.0 ± 0.3 R11 R11 C2 Dy9 5 R8: 180 kΩ DY9 5 R10 C2 R9: 220 kΩ 8.2 Dy8 8 R10 C1 R9 C1 R10: 330 kΩ Dy7 4 R12: 240 kΩ HOUSING DY8 8 R8 Dy6 R15: 51 Ω (INSULATOR) R9 R1: 10 kΩ 9 R7 C1:10 nF DY7 4 R2: 660 kΩ Dy5 3 Ω R6 C2: 22 nF 40.0 ± 0.5 R8 R3 to R12: 330 k Dy4 10 DY6 9 C1 to C3: 10 nF C3: 47 nF POTTING R5 R7 C4: 4.7 nF Dy3 2 C4: 100 nF COMPOUND R4 Dy2 C5: 4.7 nF DY5 3 11 C5 R6 R3 KDy1 1 -HV DY4 10 R2 12 : SHIELD CABLE (GRAY) R5 R1 SHV CONNECTOR

450 ± 10 DY3 2 R4 DY2 11 R3 C4 DY1 1 K R2 R1 -HV 12 : SHIELD CABLE (GRAY) SHV CONNECTOR TACCA0166EC TACCA0086EC 62 (Unit: mm) ⁄ 5E1198-07 ⁄ 6E2979-500

62.0 ± 0.5 SOCKET PMT SOCKET SIGNAL GND PIN No. PMT SIGNAL OUTPUT PIN No. 10 11 SIGNAL OUTPUT BNC CONNECTOR P RG-174/U (BLACK) R18 C7 C10 POWER SUPPLY GND R21 R17 P R11 C3 AWG22 (BLACK) DY12 11 R16 DY10 10 C6 C9 R10 C2 R20 R15 C11

164.0 ± 0.5 MAGNETIC DY11 8 DY9 9 SHILD CASE R19 R14 C5 C8 R9 C1 DY10 12 DY8 8 R13 C4 R1: 10 kΩ DY9 7 Ω R8 R12 C3 R2, R5: 240 k DY8 13 R3, R7 to R12, R18: 200 kΩ DY7 7 R11 C2 64.0 ± 0.3 R7 DY7 6 R4, R6: 360 kΩ R10 R13 to R17: 300 kΩ 56.0 ± 0.3 DY6 6 R1: 680 kΩ DY6 14 3-M2 R19 to R21: 51 Ω R6 C4 R2 to R11: 330 kΩ 11 R9 DY5 5 DY5 5 C1: 470 pF C1 to C3: 10 nF R8 R5 C4: 4.7 nF DY4 15 C2 to C8, C11: 10 nF DY4 4 HOUSING R7 C9: 22 nF DY3 3

82.0 ± 0.5 (METAL) 0.5 R4 R6 C10: 33 nF ± DY3 3 DY2 17 R5 R3 DY1 2 38.0 HOUSING (METAL) DY2 2 G2 R4 R2 ACC R3 G1 19 DY1 1 C1

10 R2 -HV ± K R1 -HV K 20 SHV CONNECTOR 14 AWG22/TFE R1 450 (VIOLET) - SIG The housing is internally H.V The housing is internally connected to the GND. SIGNAL connected to the GND. OUTPUT -H.V : BNC-R : SHV-R

TACCA0220EB TACCA0093EB

⁄ 7E1198-05 ⁄ 8E1198-20

SOCKET PMT SOCKET PIN No. PMT SIGNAL GND PIN No. 11 SIGNAL OUTPUT 11 SIGNAL OUTPUT RG-174/U (BLACK) C5 RG-174/U (BLACK) R11 C4 GND P R10 C3 AWG22 (BLACK) +HV SHIELD CABLE (GRAY) DY8 8 P R10 C3 R9 C2 DY8 8 POWER SUPPLY GND DY7 7 R9 C2 R8 C1 DY7 7 DY6 6 R8 C1 R7 DY6 6 64.0 ± 0.3 DY5 5 64.0 ± 0.3 R7 R1 to R11: 330 kΩ R6 DY5 5 C1 to C3: 10 nF 56.0 ± 0.3 56.0 ± 0.3 C4, C5: 4.7 nF DY4 4 R1 to R10: 330 kΩ R6 R5 C4 C1 to C3: 10 nF DY4 4 DY3 3 C4: 4.7 nF R5 R4 DY3 3 DY2 2 R4 0.5 0.5 ± R3 ± DY2 2 DY1 1 R3 38.0

HOUSING 38.0 R2 HOUSING DY1 1 (METAL) G 13 (METAL) R2 K R1 -HV G 13 10 14 AWG22/TFE 10 R1 ±

± K (VIOLET) 14 450 The housing is internally 450 connected to the GND. The housing is internally connected to the GND.

TACCA0221EB TACCA0223EC

⁄ 9E1198-26, E1198-27

E1198-26 E1198-27

SOCKET SOCKET SIGNAL GND R13 SIGNAL GND PMT PIN No. PMT PIN No. 12 SIGNAL OUTPUT 12 SIGNAL OUTPUT RG-174/U (BLACK) C5 RG-174/U (BLACK) R11 C4 R12 +HV P R11 C3 P R10 C3 SHIELD CABLE (GRAY) DY8 11 DY8 11 POWER SUPPLY GND R10 C2 R9 C2 DY7 10 DY7 10 R9 C1 R8 C1 64.0 ± 0.3 DY6 7 DY6 7 Ω R8 R1: 10 k R7 56.0 ± 0.3 Ω DY5 6 R2, R3: 680 k DY5 6 Ω R7 R4 to R11: 330 k R6 C1 to C3: 10 nF DY4 5 DY4 5 Ω C4: 4.7 nF R1 to R2 : 680 k R6 R5 R3 to R11 : 330 kΩ DY3 4 0.5 DY3 4 R12 : 10 kΩ ± R5 R4 R13 : 1 MΩ DY2 3 DY2 3 C1 to C3 : 10 nF 38.0 HOUSING R4 (METAL) R3 C4, C5 : 4.7 nF DY1 1 DY1 1 R3 R2

10 G 13 C4 ± G 13 K R2 R1 K R1 450 14 -HV 14 SHIELD CABLE (GRAY) The housing is internally POWER SUPPLY GND The housing is internally connected to the GND. connected to the GND.

TACCA0224EB TACCA0225EB 63 20 E5859, E5859-01, E5859-11, E5859-15, E5859-19

E5859 taper bleeder circuit E5859-01 standard bleeder circuit (For R329/R331-05/R6091) (For R329/R6091)

PMT SOCKET PMT SOCKET PIN No. SIGNAL OUTPUT PIN No. SIGNAL OUTPUT 7 7 : BNC-R BNC-R P P R24 R24 C6 C7 C4 R27R23 R27R23 Dy12 8 Dy12 8 R22 R22 58.0 ± 0.5 R21 C5 R21 C3 R26R20 R26R20 51.0 ± 0.4 Dy11 6 Dy11 6 R19 R19 C4 C2 R25R18 R25R18 Dy10 12 Ω Dy10 12 9 3-M2 R17 R1: 10 k R17 R1: 10 kΩ C3 (THREADED HOLES R16 R2, R12, R16, R16 R2 to R6, 12.5 Dy9 5 R17, R20, R21: 180 kΩ Dy9 5 R9 to R13: 220 kΩ FOR INSTALLATION R15 R15 OF MAGNETIC C2 R3, R13, R18, R7, R8: 154 kΩ Ω SHIELD CASE) R14 R19, R22 to R24: 226 k R14 R14 to R21, 55.0 ± 0.5 Dy8 13 Ω Dy8 13 R13 R4, R5, R7, R8: 121 k R13 R23, R24: 110 kΩ Dy7 4 Dy7 4 HOUSING R6, R9 to R11, R22: 0 Ω R12 Ω R12 (METAL) Dy6 14 R14, R15: 150 k Dy6 14 R25: 51 Ω R11 Ω R11 Dy5 3 R25: 51 k Dy5 3 R26,R27: 100 Ω R26, R27: 100 Ω C1: 470 pF 60.0 ± 0.5 10 R10 10 R10 SH C1: 470 pF SH C2,C3: 10 nF Dy4 15 C2: 22 nF Dy4 15 R9 R9 C4: 22 nF Dy3 2 C3: 47 nF Dy3 2 R8 C4: 100 nF R8 R7 C5 to C7: 220 nF R7 Dy2 16 Dy2 16 R6 R6

-H.V 1 1 SIG Dy1 Dy1 R5 R5 SIGNAL G 17 G 17 OUTPUT -HV R4 R4 :BNC-R :SHV-R R3 C1 R3 C1 R2 -HV R2 -HV K 21 K 21 R1 SHV-R R1 SHV-R

The housing is internally The housing is internally connected to the GND. connected to the GND.

TACCA0176EC TACCA0178EC

E5859-11 E5859-15 E5859-19 (For R7725) (For R7723) (For R7724)

PMT SOCKET PMT SOCKET PMT SOCKET PIN No. SIGNAL OUTPUT PIN No. SIGNAL OUTPUT PIN No. SIGNAL OUTPUT 7 7 7 BNC-R BNC-R BNC-R P P P R24 R24 R24 C4 C4 C4 R27 R23 R27 R23 R27 R23 Dy12 8 Dy8 8 Dy10 8 R22 R22 R22 R21 C3 R21 C3 R21 C3 R26 R20 R26 R20 R26 R20 Dy11 6 Dy7 6 Dy9 6 R19 CASE GND R19 CASE GND R19 CASE GND C2 C2 C2 R25 R18 R25 R18 R25 R18 Dy10 12 Dy6 12 Dy8 12 R17 R17 R17 Ω Ω Ω R16 R1: 10 k R16 R1: 10 k R16 R1: 10 k Dy9 5 R2 to R13, R20: 220 kΩ Dy5 5 R2 to R9, R15, R16, Dy7 5 R2 to R11, R20: 220 kΩ R15 R15 R15 R14 to R19, R18, R20, R21, R23: 330 kΩ R12, R13: 0 Ω R14 R21 to R24: 110 kΩ R14 R10 to R14, R17, R14 R14 to R19, Dy8 13 Dy6 13 R13 R25: 51 Ω R13 R19, R22, R24: 0 Ω R13 R21 to R24: 110 kΩ Dy7 4 Ω Ω Ω R12 R26, R27: 100 R12 R25 to R27: 51 R12 R25: 51 Dy6 14 C1: 470 pF C1: 470 pF R26, R27: 100 Ω R11 R11 R11 Dy5 3 C2, C3: 10 nF C2, C3: 10 nF Dy5 3 C1: 470 pF R10 C4: 22 nF R10 C4: 22 nF R10 C2, C3: 10 nF Dy4 15 Dy4 15 Dy4 15 R9 R9 R9 C4: 22 nF Dy3 2 Dy3 2 Dy3 2 R8 R8 R8 R7 R7 R7 Dy2 16 Dy2 16 Dy2 16 R6 R6 R6 Dy1 1 Dy1 1 Dy1 1 R5 R5 R5 R4 R4 R4 R3 C1 R3 C1 R3 C1 R2 -HV R2 -HV R2 -HV K 21 K 21 K 21 R1 SHV-R R1 SHV-R R1 SHV-R

TACCA0359EA TACCA0360EA TACCA0361EA

64 (Unit: mm) 21 E1198-22, E1198-23

E1198-22 E1198-23

SOCKET SOCKET PMT PMT PIN No. SIGNAL GND PIN No. C6 SIGNAL GND 11 SIGNAL OUTPUT 11 SIGNAL OUTPUT RG-174/U (BLACK) RG-174/U (BLACK) R13 C5 +HV P R13 C3 SHIELD CABLE (GRAY) P R12 C3 C4 R14 DY10 10 DY10 10 POWER SUPPLY GND R12 C2 R11 C2 DY9 9 DY9 9 R11 C1 R10 C1 DY8 8 DY8 8 R10 R9 DY7 7 DY7 7 R9 R8 64.0 ± 0.3 DY6 6 Ω Ω R1: 10 k DY6 6 R1 to R12: 330 k R8 Ω Ω 56.0 ± 0.3 R2 to R13: 330 k R7 R13: 1 M DY5 5 : 10 nF R14: 10 kΩ C1 to C3 DY5 5 R7 : 4.7 nF C1 to C4: 10 nF C4 R6 DY4 4 C5, C6: 4.7 nF DY4 4 R6 R5 DY3 0.5 3

± DY3 3 R5 R4 DY2 2 38.0 HOUSING DY2 2 R4 (METAL) R3 DY1 1 DY1 1 R3 C4 10 R2

± G 13 13 R2 G K R1 -HV

450 R1 14 K SHIELD CABLE (GRAY) 14 * The housing is internally connected to POWER SUPPLY GND the GND. * The housing is internally connected to the GND. ** High voltage shielded cable can be ** High voltage shielded cable can be connected to connected to a connector for RG-174/U. a connector for RG-174/U.

TACCA0168EB TACCA0169EC

22 E6316-01

PMT SOCKET TO AL HOUSING PIN No. SIGNAL OUTPUT 11 : BNC-R P R13 C3 Dy10 10 64.0 ± 0.5 R12 C2 Dy9 9 R11 C1 Dy8 8 THREADED HOLES R10 FOR INSTALLATION Dy7 7 R1: 10 kΩ OF MAGNETIC R9 Ω Dy6 6 R2 to R13: 330 k SHIELD CASE R8 C1 to C3: 10 nF (e. g; E989-60 FOR R877 Dy5 5 C4: 4.7 nF

51.5 ± 0.5 R7 E989-61 FOR R878) Dy4 4 R6 Dy3 3 HOUSING R5 (METAL) Dy2 2 R4 Dy1 1 C4 G R3 13 R2 -HV K 14 R1 : SHV-R -H.V SIG The housing is internally SIGNAL connected to the GND. OUTPUT -HV : BNC-R : SHV-R Note: Magnetic shield case is available to order separately.

TACCA0089EB

65 23 E7693 24 E7694-02

PMT SOCKET PIN No. 8 SIGNAL OUTPUT PMT SOCKET : BNC-R PIN No. P 10 SIGNAL OUTPUT R24 R21 C3 : BNC-R Dy10 12 P R23 R20 C2 R21 R18 C5 Dy9 7 Dy14 11 R22 R19 C1 CASE GND R20 R17 C4 Dy8 13 Dy13 8 R18 Dy7 5 74.0 ± 0.5 R19 R16 C3 74.0 ± 0.5 Dy12 12 R17 R15 C2 Dy6 14 R1: 10 kΩ R16 Dy11 7 R2 to R4 Ω R14 C1 R1: 10 kΩ Dy5 4 : 510 k Dy10 13 R2, R18: 240 kΩ R15 R5, R18: 150 kΩ R13 Ω R6, R13: 33 kΩ Dy9 6 R3: 360 k R14 R12 R4: 390 kΩ Dy4 16 R7: 27 kΩ Dy8 14 R5: 120 kΩ R13 R8, R21: 240 kΩ R11 R6: 180 kΩ R9, R16: 100 kΩ Dy7 5 Ω R12 R10 R7 to R14: 100 k Dy3 3 R10, R12, R20: 300 kΩ Dy6 Ω R11 15 R15, R16: 150 k R11: 200 kΩ 100.0 ± 0.5 100.0 ± 0.5 R9 R17: 300 kΩ Dy5 4 R10 R14, R17: 120 kΩ R19: 51 Ω Dy2 17 R8 R15: 47 kΩ Dy4 R20, R21: 100 Ω 16 HOUSING R9 Ω HOUSING R7 C1: 22 nF R19: 220 k (METAL) Dy3 3 C2: 47 nF (METAL) R8 R22 to R24: 51 Ω R6 Dy2 17 C3: 100 nF R7 C1 to C3: 10 nF R5 C4: 220 nF C4: 0.47 nF Dy1 2 C5: 470 nF R6 R4 Dy1 1 C6 C6: 0.47 nF R5 R3 F3 2 G1 G2 19 F2 19 R4 C4 R2 R1 -HV F1 18 K 20 R3 -H.V SIG

-H.V : SHV-R SIG K R2 R1 -HV The housing is internally 20 : SHV-R SIGNAL connected to the GND. SIGNAL OUTPUT -HV OUTPUT -HV : BNC-R : SHV-R : BNC-R : SHV-R TACCA0227EC TACCA0229EB

25 E13416 26 E5996

SOCKET SIGNAL GND PMT 30.0 ± 0.5 PIN No. SIGNAL OUTPUT SIGNAL OUTPUT PIN No.1 30 : RG-196A/U RG-174/U (BLACK) R18 P +HV (WHITE) R11 C3 RG-188A/U (WHITE) C4 C5 R14 R17 R19 24 +HV DY10 SIGNAL OUTPUT P : RG-188A/U R13 R10 C2

R13 C3 30.0 ± 0.5 R16 DY9 23

+50 -0 RG-196A/U (WHITE) Dy10 (WHITE) R15 R12 C2 R12 R9 C1 HOUSING 1500 LOCK TIE Dy9 DY8 22 R14 R11 C1 (INSULATOR) (TEFLON) Dy8 R8 R10 DY7 21 Dy7 Ω Ω R1 to R3: 330 k SIG R1, R13: 1 M R7 R9 R4 to R11: 220 kΩ Dy6 Ω 15.0 ± 0.5 DIVIDER PCB R2: 3 M DY6 20 Ω R8 R3 to R12: 2 MΩ R12 to R14: 51 (GLASS EPOXY) Dy5 POTTING R6 R15: 1 MΩ 27.0 ± 0.5 10 5 R14 to R16: 51 Ω +HV R7 DY5 19 PGA SOCKET Dy4 R17, R19: 10 kΩ COMPOUND C1 to C3 : 10 nF R5 27.0 ± 0.5 9.2 ± 0.5 (GLASS EPOXY) R6 R18: 100 kΩ DY4 7 Dy3 C1 to C3: 22 nF R5 Dy2 C4, C5: 10 nF R4 DY3 6 R4 450 ± 10 R3 R3 Dy1 DY2 5 R2 R2 G R1 DY1 4 K K R1 R15 -HV 1 SHIELD CABLE (RED) POWER SUPPLY GND

TACCA0356EA TACCA0234ED

27 E7083 28 E6736

SOCKET PMT SIGNAL GND 30.0 ± 0.5 PIN No. SOCKET PIN No.1 30.0 ± 0.5 PMT 27 P4 PIN No. SIGNAL GND 28 P16 15 P3 SIGNAL OUTPUT 29 • 27 • : 0.8D-QEV (GRAY) 11 P2 3 • 23 • 30.0 ± 0.5 31 P1 4 • HOUSING Pin No.1 22 • P4 P3 P2 P1 30.0 ± 0.5 (INSULATOR) 5 • R14 R11 C3 21 P8 SIGANL OUTPUT DY10 24 6 • : 0.8D-QEV (GRAY) 20 • R10 C2 R13 HOUSING 7 • 15.0 ± 0.5 DY9 23 (INSULATOR) 19 • 15.0 ± 0.5 R12 R9 C1 11 • 13 • 22 DY8 12 P1 R8 P9 P8 P7 P6 P5 P4 P3 P2 P1 P16 P15 P14 P13 P12 P11 P10 DY7 21 450 ± 10 Ω R14 R11 C3 Ω

450 ± 10 R1 to R3: 330 k R1 to R11: 220 k R7 Dy10 26 R4 to R11: 220 kΩ R13 R10 C2 R12 to R14: 51 Ω DY6 20 Ω Dy9 10 Ω R12 to R14: 51 R12 R9 C1 R15: 1 M R6 R15: 1 MΩ Dy8 24 C1 to C3: 10 nF DY5 19 R8 C1 to C3: 10 nF -HV Dy7 8 R5 P3 P1 P2 : SHIELD CABLE (RED) R7 Dy6 2 P2 P3 DY4 7 R6 POTTING Dy5 18 R4 R5 COMPUND P4 Dy4 31 DY3 6 P7 P5 P6 -HV P9 P8 R4 R3 P11 P10 Dy3 15 : SHIELD CABLE P13 P12 R3 DY2 5 Dy2 32 GUIDE (RED) R2 R2 K Dy1 16 MARK 4 GUIDE MARKE R15 R1 -HV DY1 17 P4 K P15 P16 P14 : SHIELD CABLE (RED) P1 R15 R1 -HV 1 : SHIELD CABLE (RED) P1 to P16 : SIGNAL OUTPUT POWER SUPPLY GND P1 to P4: SIGNAL OUTPUT 0.8D-QEV (GRAY) 0.8D-QEV (GRAY) POWER SUPPLY GND

TACCA0162ED TACCA0158EE 66 (Unit: mm) 29 E11807, E11807-01

E11807 E11807-01

PMT SOCKET PMT SOCKET PIN No. PIN No. SIGNAL OUTPUT SIGNAL OUTPUT 26.0 ± 0.5 7 7 RG-174/U (BLACK) RG-174/U (BLACK) R17 R17 P C3 P C3 PIN No.1 R20 R16 R20 R16 DY12 8 DY12 8

26.0 ± 0.5 R15 R15 C2 C2 R19 R14 R19 R14 DY11 9 DY11 9 0.5 ± POM R18 R13 C1 R18 R13 C1 DY10 10 DY10 10 HOUSING 15.0 R12 R1: 300 kΩ R12 R1: 300 kΩ DY9 12 DY9 12 R2, R7 to R13: 200 kΩ R2, R14, R15: 200 kΩ R11 Ω R11 Ω DY8 13 R3, R4: 130 k DY8 13 R3, R4: 120 k Ω Ω R10 R5, R6: 160 k R10 R5 to R13: 150 k DY7 14 R14 to R16: 100 kΩ DY7 14 R16, R17: 100 kΩ 450 ± 10 R9 R17: 0 Ω R9 R18 to R20: 51 Ω DY6 21 R18 to R20: 51 Ω DY6 21 R21: 1 MΩ R8 R21: 1 MΩ R8 C1 to C3 : 10 nF DY5 22 C1 to C3 : 10 nF DY5 22 10 R7 R7 ORIENTATION DY4 23 DY4 23

5 BY MARKING R6 R6 DY3 25 DY3 25 R5 R5 DY2 26 DY2 26 R4 R4 POTTING COMPOUND R3 R3 DY1 27 DY1 27 NOTE: Don't touch socket holes while R2 R2 high voltage is supplied in circuit. K K R1 R1 R21 -HV R21 -HV 1 1 SHIELD CABLE (RED) SHIELD CABLE (RED)

TACCA0314EA

‹ 0 E10679-02

6

SIGNAL OUTPUT GUIDE MARK RG-174/U (BLACK) 5 +0.5 17.5 -0 P GND 2 0.5 AWG22 (BLACK) C3 R13 R11 DY10 6 R10 C2 R12 DY9 4 +0.5 -0 R9 C1 24 DY8 7 HOUSING R8 (INSULATOR) DY7 3 R7 Ω DY6 8 R1 to R10: 330 k 5 % 1/8 W Ω R6 R11: 160 k 5 % 1/8 W R12, R13: 51 Ω 5 % 1/8 W DY5 2 C1 to C3: 0.01 µF, 200 V R5 DY4 9 R4 -HV

450 ± 10 DY3 1 : AWG22 (VIOLET) R3 DY2 10 POWER SUPPLY GND R2 : AWG22 (BLACK) DY1 11 K R1 -HV 5 12 AWG22/TFE 10 (VIOLET) SIGNAL OUTPUT : RG-174/U (BLACK) 5 MAXIMUM HIGH VOLTAGE = -1100 V DIVIDER CURRENT = 318 µA

* E10679-02 with SHV / BNC connector type (E10679-03) is also available.

TACCA0299EA TACCC0165EA

67 Dimensional outlines For E678 series sockets E678-11N E678-12A, E678-12R* E678-12L

47 35 4.3 40 28.6 2- 3.2 17 13 2-R4

360 9

13 6.7 (23.6)

10.5 9.5

18

3 2 2- 3.2 11 3.7 34 2 9.5 3.3 10.5 3 5 15 9.5 (8) 13 8 18

TACCA0043EA * Gold plating type TACCA0009EB TACCA0047EA

E678-12V E678-13E E678-13F

12.4 12.7 11 24 2.54 5.5 18 6.0

2- 2.2 1.83

10.16 13 3 3 2.8 4.2 10.5 10 3.2

0.5 3.4 7 11

TACCA0164EC TACCA0013EB TACCA0005EA

E678-14C E678-14-03 E678-14W

19.8 44 27.5 35 19.1 30 19.1 11.6

2- 3.5 62 26 25.2

3.9 56 7 2.5 9.5 14 2 9 11 6.5 30

25 17 14

24.5 2

TACCA0004EA TACCA0184EA TACCA0200EA 68 (Unit: mm) E678-15CE678-17D E678-19J

60 60 50 50 18.0 24.0 4 4 45 45 40 40

22 5 5

14 40 20 2 11.5 13 2 12 12 5 23 40 6.5

TACCA0201EA TACCA0046EC TACCA0203EA

E678-19K E678-20B

57.8

2.22 × 8=17.76 52.5 GATE 8.88 POSITION 20 22.56 22.95 12.7 +0 -0.3 28 26.2 (WITH GATE)

5-R1.5 8.88 11.1 C5.0 2.22 × 9=19.98 13 (5.1) 3.0 ± 0.1 34

TACCA0313EA TACCA0309EA

E678-21C E678-32B

51

19

22.86 20.32 2.54 12.7 22.86 20.32

R5 56.8

12.7 1.57 5

13 0.51 2.92 4.45 4 MATERIAL: Glass Epoxy 6.5

TACCA0066EC TACCA0094ED 69 Index by type No.

Type number Product PageType number Product Page R329-02 ...... 51 mm (2") dia. PMT ...... 22 R3377 ...... 51 mm (2") dia. PMT ...... 23 R331-05 ...... 51 mm (2") dia. PMT ...... 22 R3478 ...... 19 mm (3/4") dia. PMT ...... 20 R580 ...... 38 mm (1-1/2") dia. PMT ...... 20 R3479 ...... 19 mm (3/4") dia. PMT ...... 21 R647-01 ...... 13 mm (1/2") dia. PMT ...... 20 H3695-10 ...... Hybrid assembly ...... 28 E678 SERIES ...... Socket ...... 68, 69 R3878 ...... 10 mm (3/8") dia. PMT ...... 21 R750 ...... 19 mm (3/4") dia. PMT ...... 21 R3886A ...... 38 mm (1-1/2") dia. PMT ...... 20 R760 ...... 13 mm (1/2") dia. PMT ...... 21 R3991A-04 ...... 19 mm (3/4") dia. PMT ...... 20 R762 ...... 19 mm (3/4") dia. PMT ...... 21 R3998-02 ...... 28 mm (1-1/8") dia. PMT ...... 20 E849-68 ...... Socket assembly ...... 58 R3998-100-02 ...... 28 mm (1-1/8") dia. PMT (SBA type) .. 20 E849-90 ...... Socket assembly ...... 58 R4004 ...... 51 mm (2") dia. PMT ...... 23 E849-99 ...... Socket assembly ...... 58 R4124 ...... 13 mm (1/2") dia. PMT ...... 20 R877 ...... 127 mm (5") dia. PMT ...... 22 R4125 ...... 19 mm (3/4") dia. PMT ...... 20 R877-01 ...... 127 mm (5") dia. PMT ...... 23 R4141 ...... 13 mm (1/2") dia. PMT ...... 21 R877-100 ...... 127 mm (5") dia. PMT (SBA type) .... 22 R4177-04 ...... 13 mm (1/2") dia. PMT ...... 21 R960 ...... 13 mm (1/2") dia. PMT ...... 21 R4177-06 ...... 13 mm (1/2") dia. PMT ...... 20 E974-17 ...... Socket assembly ...... 58 R4607A-06 ...... 51 mm (2") dia. PMT ...... 22 E974-19 ...... Socket assembly ...... 58 R4998 ...... 25 mm (1") dia. PMT ...... 20 E974-22 ...... Socket assembly ...... 58 R5113-02 ...... 51 mm (2") dia. PMT ...... 23 E990-29 ...... Socket assembly ...... 58 R5320 ...... 25 mm (1") dia. PMT ...... 21 R1166 ...... 19 mm (3/4") dia. PMT ...... 20 R5505-70 ...... Fine mesh PMT ...... 24 E1198 SERIES ...... Socket assembly ...... 58, 59 R5611A ...... 19 mm (3/4") dia. PMT ...... 21 R1250 ...... 127 mm (5") dia. PMT ...... 22 R5611A-01 ...... 19 mm (3/4") dia. PMT ...... 20 R1288A-04 ...... 25 mm (1") dia. PMT ...... 21 E5859 SERIES ...... Socket assembly ...... 59 R1288A-06 ...... 25 mm (1") dia. PMT ...... 20 R5900U-00-L16 ...... Metal package PMT ...... 24 R1306 ...... 51 mm (2") dia. PMT ...... 22 R5900U-100-L16 ...... Metal package PMT (SBA type) ...... 24 R1306-15 ...... 51 mm (2") dia. PMT ...... 23 R5900U-200-L16 ...... Metal package PMT (UBA type) ...... 24 R1307 ...... 76 mm (3") dia. PMT ...... 22 R5912 ...... 204 mm (8") dia. PMT ...... 22 R1307-07 ...... 76 mm (3") dia. PMT ...... 23 R5912-20 ...... 204 mm (8") dia. PMT ...... 22 R1450 ...... 19 mm (3/4") dia. PMT ...... 20 R5912-100 ...... 204 mm (8") dia. PMT (SBA type) .... 22 R1548-07 ...... 25 mm (1" Dual) square PMT ...... 24 R5924-70 ...... Fine mesh PMT ...... 24 R1635 ...... 10 mm (3/8") dia. PMT ...... 20 E5996 ...... Socket assembly ...... 59 E1761-21 ...... Socket assembly ...... 58 R6041 ...... 51 mm (2") dia. PMT ...... 22 E1761-22 ...... Socket assembly ...... 58 R6041-406 ...... 51 mm (2") dia. PMT ...... 22 R1828-01 ...... 51 mm (2") dia. PMT ...... 22 R6041-506 ...... 51 mm (2") dia. PMT ...... 22 R1924A ...... 25 mm (1") dia. PMT ...... 20 R6091 ...... 76 mm (3") dia. PMT ...... 22 R1924A-01 ...... 25 mm (1") dia. PMT ...... 21 E6133-04 ...... Socket assembly ...... 58 H1949-50 ...... Hybrid assembly ...... 28 H6152-70 ...... Hybrid assembly ...... 28 H1949-51 ...... Hybrid assembly ...... 28 R6231 ...... 51 mm (2") dia. PMT ...... 22 E2037-02 ...... Socket assembly ...... 58 R6231-01 ...... 51 mm (2") dia. PMT ...... 23 R2059 ...... 51 mm (2") dia. PMT ...... 23 R6231-100 ...... 51 mm (2") dia. PMT (SBA type) ...... 22 R2076 ...... 19 mm (3/4") dia. PMT ...... 21 R6232 ...... 60 mm (2.5") dia. PMT ...... 22 R2083 ...... 51 mm (2") dia. PMT ...... 22 R6232-01 ...... 60 mm (2.5") dia. PMT ...... 23 R2154-02 ...... 51 mm (2") dia. PMT ...... 22 R6233 ...... 76 mm (3") dia. PMT ...... 22 E2183-500 ...... Socket assembly ...... 58 R6233-01 ...... 76 mm (3") dia. PMT ...... 23 E2183-501 ...... Socket assembly ...... 58 R6233-100 ...... 76 mm (3") dia. PMT (SBA type) ...... 22 R2248 ...... 10 mm (3/8") square PMT ...... 24 R6234 ...... 60 mm (2.5") hexagon PMT ...... 24 E2253-05 ...... Socket assembly ...... 58 R6234-01 ...... 60 mm (2.5") hexagon PMT ...... 25 R2256-02 ...... 51 mm (2") dia. PMT ...... 23 R6235 ...... 76 mm (3") hexagon PMT ...... 24 H2431-50 ...... Hybrid assembly ...... 28 R6235-01 ...... 76 mm (3") hexagon PMT ...... 25 R2496 ...... 10 mm (3/8") dia. PMT ...... 20 R6236 ...... 60 mm square PMT ...... 24 E2624-04 ...... Socket assembly ...... 58 R6236-01 ...... 60 mm square PMT ...... 25 E2624-14 ...... Socket assembly ...... 58 R6237 ...... 76 mm (3") square PMT ...... 24 E2924-500 ...... Socket assembly ...... 58 R6237-01 ...... 76 mm (3") square PMT ...... 25 E2979-500 ...... Socket assembly ...... 58 E6316-01 ...... Socket assembly ...... 59 R3149 ...... 51 mm (2") dia. PMT ...... 23 H6410 ...... Hybrid assembly ...... 28 H3164-10 ...... Hybrid assembly ...... 28 R6427 ...... 28 mm (1-1/8") dia. PMT ...... 20 H3165-10 ...... Hybrid assembly ...... 28 H6520 ...... Hybrid assembly ...... 28 H3177-50 ...... Hybrid assembly ...... 29 H6524 ...... Hybrid assembly ...... 28 H3178-51 ...... Hybrid assembly ...... 28 H6527 ...... Hybrid assembly ...... 28

70 Type numberProduct Page Type number Product Page H6533 ...... Hybrid assembly ...... 28 R8997 ...... 38 mm (1-1/2") dia. PMT ...... 24 H6559 ...... Hybrid assembly ...... 28 R9420 ...... 38 mm (1-1/2") dia. PMT ...... 20 E6572 ...... Socket assembly ...... 59 R9420-100 ...... 38 mm (1-1/2") dia. PMT (SBA type) ... 20 R6594 ...... 127 mm (5") dia. PMT ...... 22 R9800 ...... 25 mm (1") dia. PMT ...... 20 H6612 ...... Hybrid assembly ...... 28 R9800-100 ...... 25 mm (1") dia. PMT (SBA type) ...... 20 H6613 ...... Hybrid assembly ...... 28 R9800U-110 ...... Metal package PMT (SBA type) ...... 24 H6614-70 ...... Hybrid assembly ...... 28 R9800U-210 ...... Metal package PMT (UBA type) ...... 24 E6736 ...... Socket assembly ...... 59 R10233 ...... 90 mm (3.5") dia. PMT ...... 22 R7056 ...... 28 mm (1-1/8") dia. PMT ...... 21 R10233-01 ...... 90 mm (3.5") dia. PMT ...... 23 R7081 ...... 254 mm (10") dia. PMT ...... 22 R10233-100 ...... 90 mm (3.5") dia. PMT (SBA type) ... 22 R7081-20 ...... 254 mm (10") dia. PMT ...... 22 H10515B-100 ...... Hybrid assembly (SBA type) ...... 26 R7081-100 ...... 254 mm (10") dia. PMT (SBA type) .... 22 H10515B-200 ...... Hybrid assembly (UBA type) ...... 26 E7083 ...... Socket assembly ...... 59 R10550 ...... 38 mm (1-1/2" quadrant) square PMT .... 24 R7111 ...... 28 mm (1-1/8") dia. PMT ...... 20 H10580 ...... Hybrid assembly ...... 28 H7195 ...... Hybrid assembly ...... 28 E10679-02 ...... Socket assembly ...... 59 H7260 ...... Hybrid assembly ...... 26 R10806 ...... 102 mm (4") dia. PMT ...... 22 H7260-100 ...... Hybrid assembly (SBA type) ...... 26 R10806-100 ...... 102 mm (4") dia. PMT (SBA type) .... 22 H7260-200 ...... Hybrid assembly (UBA type) ...... 26 R11065 ...... 76 mm (3") dia. PMT ...... 22 R7373A-01 ...... 2π shape PMT ...... 24 R11102 ...... 38 mm (1-1/2") dia. PMT ...... 20 H7415 ...... Hybrid assembly ...... 28 R11265U-100 ...... Metal package PMT (SBA type) ...... 24 R7525 ...... 28 mm (1-1/8") dia. PMT ...... 20 R11265U-200 ...... Metal package PMT (UBA type) ...... 24 H7546B ...... Hybrid assembly ...... 26 R11265U-300 ...... Metal package PMT (EGBA type) .... 24 H7546B-100 ...... Hybrid assembly (SBA type) ...... 26 R11410 ...... 76 mm (3") dia. PMT ...... 22 H7546B-200 ...... Hybrid assembly (UBA type) ...... 26 E11807 ...... Socket assembly ...... 59 H7546B-300 ...... Hybrid assembly (EGBA type) ...... 26 E11807-01 ...... Socket assembly ...... 59 R7600U ...... Metal package PMT ...... 24 R11833-03 ...... 127 mm (5") dia. PMT ...... 22 R7600U-100 ...... Metal package PMT (SBA type) ...... 24 R11833-100-03 ...... 127 mm (5") dia. PMT (SBA type) .... 22 R7600U-200 ...... Metal package PMT (UBA type) ...... 24 H11934-100 ...... Hybrid assembly (SBA type) ...... 26 R7600U-300 ...... Hybrid assembly (EGBA type) ...... 24 H11934-200 ...... Hybrid assembly (UBA type) ...... 26 R7600U-00-M4 ...... Metal package PMT ...... 24 H11934-300 ...... Hybrid assembly (EGBA type) ...... 26 R7600U-100-M4 ...... Metal package PMT (SBA type) ...... 24 R12199 ...... 80 mm dia. PMT ...... 22 R7600U-200-M4 ...... Metal package PMT (UBA type) ...... 24 R12421 ...... 13 mm (1/2") dia. PMT ...... 20 R7600U-300-M4 ...... Hybrid assembly (EGBA type) ...... 24 R12421-03 ...... 13 mm (1/2") dia. PMT ...... 21 R7600U-03 ...... Metal package PMT ...... 25 R12421-300 ...... 13 mm (1/2") dia. PMT (EGBA type) ... 20 E7693 ...... Socket assembly ...... 59 H12428-100 ...... Hybrid assembly (SBA type) ...... 26 E7694-02 ...... Socket assembly ...... 59 H12428-200 ...... Hybrid assembly (UBA type) ...... 26 E7694-03 ...... Socket assembly ...... 59 H12445-100 ...... Hybrid assembly (SBA type) ...... 26 R7723 ...... 51 mm (2") dia. PMT ...... 22 H12445-200 ...... Hybrid assembly (UBA type) ...... 26 R7724 ...... 51 mm (2") dia. PMT ...... 22 H12690 ...... 13 mm (1/2") dia. PMT assembly ..... 28 R7724-100 ...... 51 mm (2") dia. PMT (SBA type) ...... 22 H12690-300 ...... 13 mm (1/2") dia. PMT assembly (EGBA type) ... 28 R7725 ...... 51 mm (2") dia. PMT ...... 22 H12700A ...... Hybrid assembly ...... 26 R7761-70 ...... Fine mesh PMT ...... 24 H12700A-10 ...... Hybrid assembly ...... 26 R7899 ...... 25 mm (1") dia. PMT ...... 21 H12700A-03 ...... Hybrid assembly ...... 27 R7899-01 ...... 25 mm (1") dia. PMT ...... 20 H12700B ...... Hybrid assembly ...... 26 H8135 ...... Hybrid assembly ...... 28 H12700B-10 ...... Hybrid assembly ...... 26 R8143 ...... 2π shape PMT ...... 24 R12860 ...... 508 mm (20") dia. PMT ...... 22 H8409-70 ...... Hybrid assembly ...... 28 R13089 ...... 51 mm (2") dia. PMT ...... 22 R8520-406 ...... Metal package PMT ...... 24 H13226A-100 ...... Hybrid assembly (SBA type) ...... 26 R8520-506 ...... Metal package PMT ...... 24 H13226A-200 ...... Hybrid assembly (UBA type) ...... 26 R8619 ...... 25 mm (1") dia. PMT ...... 20 R13408 ...... 38 mm (1-1/2") dia. PMT ...... 20 H8643 ...... Hybrid assembly ...... 28 E13416 ...... Socket assembly ...... 59 H8711 ...... Hybrid assembly ...... 26 R13435 ...... 51 mm (2") dia. PMT ...... 22 H8711-100 ...... Hybrid assembly (SBA type) ...... 26 R13449 ...... 28 mm (1-1/8") dia. PMT ...... 20 H8711-200 ...... Hybrid assembly (UBA type) ...... 26 R13478 ...... 25 mm (1") dia. PMT ...... 20 H8711-300 ...... Hybrid assembly (EGBA type) ...... 26 H13700 ...... Hybrid assembly ...... 26 H8804 ...... Hybrid assembly ...... 26 H13700A-03 ...... Hybrid assembly ...... 27 H8804-100 ...... Hybrid assembly (SBA type) ...... 26 H13974-00-1616 ...... Hybrid assembly ...... 26 H8804-200 ...... Hybrid assembly (UBA type) ...... 26 H13974-03-1616 ...... Hybrid assembly ...... 27 H8804-300 ...... Hybrid assembly (EGBA type) ...... 26

71 CAUTIONS AND WARRANTY WARNING

Take sufficient care to avoid an electric shock hazard A high voltage used in photomultiplier tube opera- ate interlocks to protect the operator and service personnel. tion may present a shock hazard. Photomultiplier The metal housing of the Metal Package PMT R8520-406 HIGH tubes should be installed and handled only by and R8520-506 and R11065 series and R11410 series are VOLTAGE qualified personnel that have been instructed in connected to the photocathode (potential) so that it becomes handling of high voltages. Designs of equipment a high voltage potential when the product is operated at a utilizing these devices should incorporate appropri- negative high voltage (anode grounded).

PRECAUTIONS FOR USE

● Handle tubes with extreme care tube. For example, when fabricating the voltage-divider Photomultiplier tubes have evacuated glass envelopes. circuit, solder the divider resistors to socket lugs while the Allowing the glass to be scratched or to be subjected to shock tube is inserted in the socket. can cause cracks. Extreme care should be taken in handling, especially for tubes with graded sealing of synthetic silica. ● Cooling of tubes When cooling a photomultiplier tube, the photocathode ● Keep faceplate and base clean section is usually cooled. However, if you suppose that the Do not touch the faceplate and base with bare hands. Dirt base is also cooled down to -30 °C or below, please consult and fingerprints on the faceplate cause loss of transmittance our sales office in advance. and dirt the base may cause ohmic leakage. Should they become soiled, wipe it clean using alcohol. ● Helium permeation helium will permeate through the glass bulb, leading to an ● Do not expose to strong light increase in noise. avoid operating or storing tubes in an Direct sunlight and other strong illumination may cause environment where helium is present. Helium permeation damage the Photocathode. They must not be allowed to through silica glass is especially large. strike the photocathode, even when the tube is not operated. Data and specifications listed in this catalog are subject ● Handling of tubes with a glass base to change due to product improvement and other factors. A glass base (also called button stem) is less rugged than a before specifying any of the types in your production plastic base, so care should be taken in handling this type of equipment, please consult our sales office.

WARRANTY

Hamamatsu photomultiplier tubes and related products are not apply to failures or damages caused by misoperation, warranted to the original purchaser for a period of 12 months mishandling, modification or accidents such as natural or after delivery. The warranty is limited to repair or replacement man-made disasters. of a defective product due to defects in workmanship or mate- The customer should inspect and test all products as soon as rials used in its manufacture. they are delivered. However, even if within the warranty period the warranty shall

72 Typical photocathode spectral response and emission spectrum of scintillators

TPMHB0342EE 100 G I F

C D

H 10 A B J E

LSO CsI (Tl) Nal (Tl) BGO LaBr3 1 100 BaF2 80

QUANTUM EFFICIENCY (%) 60

40

20

0.1 10 0 100 200 300 400 500 600 700 RELATIVE INTENSITY (%)

WAVELENGTH (nm)

A: Bialkali photocathode (Borosilicate glass) B: Bialkali photocathode (UV glass) C: Bialkali photocathode (Silica glass) D: Bialkali photocathode E: High temp. bialkali photocathode F: Super bialkali G: Ultra bialkali H: Extended green bialkali I: Low temp. (down to -110 °C) bialkali photocathode J: Low temp. (down to -186 °C) bialkali photocathode

73 K.K., Electron Tube Division 314-5, Shimokanzo, Iwata City, Pref., 438-0193, Telephone: (81)539/62-5248, Fax: (81)539/62-2205 www.hamamatsu.com

Main Products Sales Offices

Electron Tubes Japan: Swiss Office Photomultiplier Tubes HAMAMATSU PHOTONICS K.K. Dornacherplatz 7 4500 Solothurn, Switzerland Photomultiplier Tube Modules 325-6, Sunayama-cho, Naka-ku, Telephone: (41)32-625-60-60, Fax: (41)32-625-60-61 Hamamatsu City, Shizuoka Pref. 430-8587, Japan E-mail: [email protected] Microchannel Plates Telephone: (81)53-452-2141, Fax: (81)53-456-7889 Image Intensifiers E-mail: [email protected] Belgian Office Xenon Lamps / Mercury Xenon Lamps Axisparc Technology, rue Andre Dumont 7 1435 Deuterium Lamps China: Mont-Saint-Guibert, Belgium Light Source Applied Products HAMAMATSU PHOTONICS (CHINA) Co., Ltd. Telephone: (32)10 45 63 34, Fax: (32)10 45 63 67 Main Office E-mail: [email protected] Laser Applied Products 1201 Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Microfocus X-ray Sources Chaoyang District, 100020 Beijing, China Spanish Office X-ray Imaging Devices Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866 C. Argenters, 4 edif 2 Parque Tecnológico del Vallés E-mail: [email protected] 08290 Cerdanyola (Barcelona), Spain Telephone: (34)93 582 44 30, Fax: (34)93 582 44 31 Opto-semiconductors Shanghai Branch E-mail: [email protected] Si photodiodes 4905 Wheelock Square, 1717 Nanjing Road West, APD Jingan District, 200040 Shanghai, China Germany, Denmark, The Netherlands, Poland: Photo IC Telephone: (86)21-6089-7018, Fax: (86)21-6089-7017 HAMAMATSU PHOTONICS DEUTSCHLAND GmbH Image sensors Main Office PSD Taiwan: Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Infrared detectors HAMAMATSU PHOTONICS TAIWAN Co., Ltd. Germany LED Main Office Telephone: (49)8152-375-0, Fax: (49)8152-265-8 Optical communication devices 8F-3, No.158, Section2, Gongdao 5th Road, E-mail: [email protected] East District, Hsinchu, 300, Taiwan R.O.C. Automotive devices Telephone: (886)03-659-0080, Fax: (886)07-811-7238 Danish Office X-ray flat panel sensors E-mail: [email protected] Lautruphøj 1-3, DK-2750 Ballerup, Denmark Mini-spectrometers Telephone: (45)70-20-93-69, Fax: (45)44-20-99-10 Opto-semiconductor modules Kaohsiung Office Email: [email protected] No.6, Central 6th Road, K.E.P.Z. Kaohsiung 806, Netherlands Office Imaging and Processing Systems Taiwan R.O.C. Telephone: (886)07-262-0736, Fax: (886)07-811-7238 Televisieweg 2, NL-1322 AC Almere, The Netherlands Cameras / Image Processing Measuring Systems Telephone: (31)36-5405384, Fax: (31)36-5244948 X-ray Products U.S.A.: E-mail: [email protected] Life Science Systems HAMAMATSU CORPORATION Poland Office Medical Systems Main Office 360 Foothill Road, Bridgewater, NJ 08807, U.S.A. 02-525 , 8 St. A. Boboli Str., Poland Semiconductor Failure Analysis Systems Telephone: (1)908-231-0960, Fax: (1)908-231-1218 Telephone: (48)22-646-0016, Fax: (48)22-646-0018 FPD / LED Characteristic Evaluation Systems E-mail: [email protected] E-mail: [email protected] Spectroscopic and Optical Measurement Systems California Office North Europe and CIS: 2875 Moorpark Ave. San Jose, CA 95128, U.S.A. HAMAMATSU PHOTONICS NORDEN AB Laser Products Telephone: (1)408-261-2022, Fax: (1)408-261-2522 Main Office Semiconductor lasers E-mail: [email protected] Torshamnsgatan 35 16440 Kista, Sweden Applied products of semiconductor lasers Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01 Solid state lasers Chicago Office E-mail: [email protected] 4711 Golf Road, Suite 805, Skokie, IL 60076, U.S.A. Telephone: (1)847-825-6046, Fax: (1)847-825-2189 Russian Office E-mail: [email protected] 11, Christoprudny Boulevard, Building 1, Office 114, 101000, Moscow, Russia Boston Office Telephone: (7)495 258 85 18, Fax: (7)495 258 85 19 20 Park Plaza, Suite 312, Boston, MA 02116, U.S.A. E-mail: [email protected] Telephone: (1)617-536-9900, Fax: (1)617-536-9901 E-mail: [email protected] Italy: HAMAMATSU PHOTONICS ITALIA S.r.l. United Kingdom: Main Office HAMAMATSU PHOTONICS UK Limited Strada della Moia, 1 int. 6, 20020 Arese (Milano), Italy Main Office Telephone: (39)02-935-81-733, Fax: (39)02-935-81-741 2 Howard Court, 10 Tewin Road, Welwyn Garden City, E-mail: [email protected] Hertfordshire AL7 1BW, UK Telephone: (44)1707-294888, Fax: (44)1707-325777 Rome Office REVISED APR. 2017 E-mail: [email protected] Viale Cesare Pavese, 435, 00144 Roma, Italy Telephone: (39)06-50513454, Fax: (39)02-935-81-741 Information in this catalog is South Africa Office: E-mail: [email protected] believed to be reliable. However, 9 Beukes Avenue, Highway Gardens, Edenvale, 1609, South Africa no responsibility is assumed for Telephone/Fax: (27)11-609-0367 possible inaccuracies or omission. Specifications are subject to France, Portugal, Belgium, Switzerland, Spain: change without notice. No patent HAMAMATSU PHOTONICS FRANCE S.A.R.L. Main Office rights are granted to any of the 19, Rue du Saule Trapu Parc du Moulin de Massy, circuits described herein. 91882 Massy Cedex, France © 2017 Hamamatsu Photonics K.K. Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: [email protected] TPMZ0003E01 Quality, technology and service are part of every product. APR. 2017 IP (2000)