Ecography ECOG-03462 Heinen, J

Total Page:16

File Type:pdf, Size:1020Kb

Ecography ECOG-03462 Heinen, J Ecography ECOG-03462 Heinen, J. H., van Loon, E. E., Hansen, D. M. and Kissling, W. D. 2017. Extinction-driven changes in frugivore communities on oceanic islands. – Ecography doi: 10.1111/ecog.03462 Supplementary material Supplementary material Appendix 1 Sources for species occurrences Austin, J. J., & Arnold, E. N. (2001). Ancient mitochondrial DNA and morphology elucidate an extinct island radiation of Indian Ocean giant tortoises (Cylindraspis). Proceedings of the Royal Society of London B: Biological Sciences, 268, 2515-2523. Barreiros, J. P., Elias, R. B., Lourenço, J., Dias, E., & Borges, P. A. (2010). First records of Tarentola mauritanica (Linnaeus, 1758) (Reptilia; Gekkonidae) in the Azores. Arquipelago. Life and Marine Sciences, 27, 73-75. Boye, P., Hutterer, R., López-Martínez, N., & Michaux, J. (1992). A reconstruction of the Lava mouse (Malpaisomys insularis), an extinct rodent of the Canary Islands. Zeitschrift für Säugetierkunde, 57, 29-38. Carleton, M. D., Olson, S. L., & Vespucci, A. (1999). Amerigo Vespucci and the rat of Fernando de Noronha: a new genus and species of Rodentia (Muridae, Sigmodontinae) from a volcanic island off Brazil's continental shelf. American Museum of Natural History 3256, 1-59. Cheke, A., & Hume, J. P. (2010). Lost land of the Dodo: the ecological history of Mauritius, Réunion and Rodrigues. Bloomsbury Publishing, London. Del Hoyo, J., Elliott, A., & Christie, D. (2010). Handbook of the birds of the world. Lynx Edicions, Barcelona. Dowler, R. C., Carroll, D. S., & Edwards, C. W. (2000). Rediscovery of rodents (Genus Nesoryzomys) considered extinct in the Galapagos Islands. Oryx, 34, 109-118. Eckhardt, R. C. (1972). Introduced plants and animals in the Galapagos Islands. Bioscience, 22, 585-590. Firmat, C., Rodrigues, H. G., Hutterer, R., Rando, J. C., Alcover, J. A., & Michaux, J. (2011). Diet of the extinct Lava mouse Malpaisomys insularis from the Canary Islands: insights from dental microwear. Naturwissenschaften, 98, 33-37. Flannery, T. F. (1995). Mammals of new guinea. Cornell University Press, Ithaca. Flannery, T. F., Colgan, D., & Trimble, J. (1994). A new species of Melomys from Manus Island, Papua New Guinea, with notes on the systematics of the M. rufescens complex (Muridae: Rodentia). Proceedings of the Linnean Society of New South Wales 114, 29- 43. Flannery, T. F., & Wickler, S. (1990). Quaternary murids (Rodentia: Muridae) from Buka Island, Papua New Guinea, with descriptions of two new species. Australian Mammalogy, 13, 127-139. Hansen, D.M. & Galetti, M. (2009). The forgotten megafauna. Science, 324, 42-43. Harris, D. B., & Macdonald, D. W. (2007). Population ecology of the endemic rodent Nesoryzomys swarthi in the tropical desert of the Galapagos Islands. Journal of Mammalogy, 88, 208-219. Hume, J. P., & Prys-Jones, R. P. (2005). New discoveries from old sources with reference to the original bird and mammal fauna of the Mascarene Islands, Indian Ocean. Zoölogische Mededelingen, Leiden, 97, 85-95. Hume, J. P., & Walters, M. (2012). Extinct birds. T & AD Poyser, Bloomsbury, London. Jiménez-Uzcátegui, G., Snell, H. L. (2013). CDF Checklist of Galapagos Mammals - FCD Lista de especies de Mamíferos Galápagos. In: Bungartz, F., Herrera, H., Jaramillo, P., Tirado, N., Jiménez-Uzcátegui, G., Ruiz, D., Guézou, A. & Ziemmeck, F. (eds.). Charles Darwin Foundation Galapagos Species Checklist - Lista de Especies de Galápagos de la Fundación Charles Darwin. Charles Darwin Foundation / Fundación Page 1 Charles Darwin, Puerto Ayora, Galapagos: http://checklists.datazone.darwinfoundation.org/vertebrates/mammalia/ Lavery, T. H., Olds, A. D., Seddon, J. M., & Leung, L. K. P. (2016). The mammals of northern Melanesia: speciation, ecology, and biogeography. Mammal Review, 46, 60- 76. Le Grand, G. (1983). Check list of the birds of the Azores. http://repositorio.uac.pt/handle/10400.3/1025 Mathias, M. D. L. (1988). An annotated list of the mammals recorded from the Madeira Islands. Boletim do Museu Municipal do Funchal, 40, 111-137. Mathias, M. D. L., Ramalhinho, M. G., Santos-Reis, M., Petrucci-Fonseca, F., Libois, R., Fons, R. & Collares-Pereira, M. (1998). Mammals from the Azores islands (Portugal): an updated overview. Mammalia, 62, 397-408. Peterson, R. L. (1966). Recent mammal records from the Galapagos Islands. Mammalia, 30, 441-445. Ramos, J. A. (1995). The diet of the Azores bullfinch Pyrrhula murina and floristic variation within its range. Biological Conservation, 71, 237-249. Rodebrand, S. (2010). Checklist of the birds of the Azores including 2009. https://www.yumpu.com/it/document/view/24063313/checklist-of-the-birds-of-the- azores-including-2009 Sahley, C. T., Cervantes, K., Pacheco, V., Salas, E., Paredes, D., & Alonso, A. (2015). Diet of a sigmodontine rodent assemblage in a Peruvian montane forest. Journal of Mammalogy, 96, 1071-1080. Shah, N. (2001). Eradication of alien predators in the Seychelles: an example of conservation action on tropical islands. Biodiversity and Conservation, 10, 1219-1220. Steadman, D. W. (2006). Extinction and biogeography of tropical Pacific birds. University of Chicago Press, Chicago. Steadman, D. W., & Ray, C. E. (1982). The relationships of Megaoryzomys curioi, an extinct cricetine rodent (Muroidea, Muridae) from the Galapagos Islands, Ecuador. Smithsonian Institution Press. Steadman, D. W., Stafford, T. W., Donahue, D. J., & Jull, A. T. (1991). Chronology of Holocene vertebrate extinction in the Galápagos Islands. Quaternary Research, 36, 126- 133. Timm, R. M., Weijola, V., Aplin, K. P., Donnellan, S. C., Flannery, T. F., Thomson, V., & Pine, R. H. (2016). A new species of Rattus (Rodentia: Muridae) from Manus Island, Papua New Guinea. Journal of Mammalogy, 97, 861-878. Turvey, S. T. (Ed.). (2009). Holocene extinctions. Oxford University Press, Oxford. Wharton, D., Dowler, R., & Watts, J. (2012). Some analyses and recommendations on diet formulation for conservation breeding of the Galapagos Rice Rat of Isla Santiago, Nesoryzomys swarthi. Zoo Biology, 31, 498-505. White, J. P. (2004). Where the wild things are: prehistoric animal translocation in the circum New Guinea archipelago. In: Fitzpatrick, S. M. (ed.): Voyages of discovery: the archaeology of islands. Westport, Praeger, p. 147-164. Wickler, S. (2001). The prehistory of Buka: stepping stone island in the northern Solomons Dept. of Archaeology and Natural History and Centre for Archaeological Research, Australian National University. www.birdingazores.com (access date February 2016) www.avibase.bsc-eoc.org (access date February 2016) Page 2 Sources for body mass Arnold, E. N. (1979). Indian Ocean giant tortoises: their systematics and island adaptations. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 286, 127-145. Arnold, E. N. (1980). Recently extinct reptile populations from Mauritius and Reunion, Indian Ocean. Journal of Zoology, 191, 33-47. Arnold, E. N., & Bour, R. (2008). A new Nactus gecko (Gekkonidae) and a new Leiolopisma skink (Scincidae) from La Réunion, Indian Ocean, based on recent fossil remains and ancient DNA sequence. Zootaxa, 1705, 40-50. Austin, J. J., & Arnold, E. N. (2001). Ancient mitochondrial DNA and morphology elucidate an extinct island radiation of Indian Ocean giant tortoises (Cylindraspis). Proceedings of the Royal Society of London B: Biological Sciences, 268, 2515-2523. Balen, B. (2008). Bare-eyed White-eye (Woodfordia superciliosa). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.) (2014). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. Baptista, L.F., Trail, P.W., Horblit, H.M. & de Juana, E. (2016). Rarotonga Fruit-dove (Ptilinopus rarotongensis). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. (retrieved from http://www.hbw.com/node/54331 on 10 February 2016). Baptista, L.F., Trail, P.W., Horblit, H.M. & Kirwan, G.M. (2016). Grey-green Fruit-dove (Ptilinopus purpuratus). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. (retrieved from http://www.hbw.com/node/54335 on 10 February 2016). Baptista, L.F., Trail, P.W., Horblit, H.M., Kirwan, G.M. & Sharpe, C.J. (2016). Tooth-billed Pigeon (Didunculus strigirostris). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. (retrieved from http://www.hbw.com/node/54282 on 10 February 2016). Barnagaud, J. Y., Kissling, W.D., Sandel, B., Eiserhardt, W. L., Şekercioğlu, Ç. H., Enquist, B. J., Tsirogiannis, C. & Svenning, J. C. (2014). Ecological traits influence the phylogenetic structure of bird species cooccurrences worldwide. Ecology letters, 17, 811-820. Bauer, A. M., & Russell, A. P. (1986). Hoplodactylus delcourti n. sp.(Reptilia: Gekkonidae), the largest known gecko. New Zealand Journal of Zoology, 13, 141-148. Cheke, A., & Hume, J. P. (2010). Lost land of the Dodo: the ecological history of Mauritius, Réunion and Rodrigues. Bloomsbury Publishing, London. Collar, N. (1997). Blue-crowned Lorikeet (Vini australis). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.) (2014). Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona. (retrieved from http://www.hbw.com/node/54456 on 17 February 2016). Collar, N. (2016). Omao (Myadestes obscurus). In: del Hoyo, J., Elliott, A., Sargatal,
Recommended publications
  • THE UNDERCROFT We Must Expire in Hope{ of Resurrection to Life Again
    THE UNDERCROFT We must Expire in hope{ of Resurrection to Life Again 1 Editorial Illu{tration{ Daniel Sell Matthew Adams - 43 Jeremy Duncan - 51, 63 Anxious P. - 16 2 Skinned Moon Daughter Cedric Plante - Cover, 3, 6, 8, 9 Benjamin Baugh Sean Poppe - 28 10 101 Uses of a Hanged Man Barry Blatt Layout Editing & De{ign Daniel Sell 15 The Doctor Patrick Stuart 23 Everyone is an Adventurer E{teemed Con{ultant{ Daniel Sell James Maliszewski 25 The Sickness Luke Gearing 29 Dead Inside Edward Lockhart 41 Cockdicktastrophe Chris Lawson 47 Nine Summits and the Matter of Birth Ezra Claverie M de in elson Ma ia S t y a it mp ic of Authent Editorial Authors live! Hitler writes a children’s book, scratches his name off and hides it among the others. Now children grow up blue and blond, unable to control their minds, the hidden taint in friendly balloons and curious caterpillars wormed itself inside and reprogrammed them into literary sleeper agents ready to steal our freedom. The swine! We never saw it coming. If only authors were dead. But if authors were dead you wouldn’t be able to find them, to sit at their side and learn all they had to say on art and beautiful things, on who is wrong and who is right, on what is allowed and what is ugly and what should be done about this and that. We would have only words and pictures on a page, if we can’t fill in the periphery with context then how will we understand anything? If they don’t tell us what to enjoy, how to correctly enjoy it, then how will we know? Who is right and who is mad? Whose ideas are poisonous and wrong? Call to arms! Stop that! Help me! We must slather ourselves in their selfish juices.
    [Show full text]
  • On Ulva Island
    Abundance and dispersal of translocated common skink (Oligosoma polychroma) on Ulva Island Helen Sharpe A report submitted in partial fulfilment of the Post-graduate Diploma in Wildlife Management University of Otago 2011 University of Otago Department of Zoology P.O. Box 56, Dunedin New Zealand WLM Report Number: 250 Abundance and dispersal of translocated common skink (Oligosoma polychroma) on Ulva Island A report prepared for the Department of Conservation in association with Otago University’s Diploma of Wildlife Management. Helen Sharpe July 2011 2 Abundance and dispersal of translocated common skink (Oligosoma polychroma) on Ulva Island Contents Summary 2 Introduction 3 Methods 4 Results 8 Discussion 9 Recommendations 13 Acknowledgements 15 References 16 Figures and tables 18 3 Abundance and dispersal of translocated common skink (Oligosoma polychroma) on Ulva Island Summary This report describes a monitoring study carried out in 2011 to investigate the abundance and distribution of common skink (Oligosoma polychroma) on Ulva Island, Southland, New Zealand. Common skinks were introduced to Ulva in 2005 and 2006 for ecosystem restoration, and to investigate effects of weka (Gallirallus australis scotti) predation. Skinks were monitored over 3 non-consecutive days using artificial cover objects. Where possible skinks were caught, weighed, measured and photographed. A total of 18 sightings were made which indicates a substantial drop in both populations but especially at West End Beach. A combination of insufficient habitat and predation/competition by weka are the probable causes. However some uncertainties with monitoring are acknowledged, with regard to sub-optimal weather conditions and ‘settling’ time for new ACOS. Skinks appear not to have dispersed more than 20-30 metres from their release site.
    [Show full text]
  • Keystone Species: the Concept and Its Relevance for Conservation Management in New Zealand
    Keystone species: the concept and its relevance for conservation management in New Zealand SCIENCE FOR CONSERVATION 203 Ian J. Payton, Michael Fenner, William G. Lee Published by Department of Conservation P.O. Box 10-420 Wellington, New Zealand Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Titles are listed in the DOC Science Publishing catalogue on the departmental website http:// www.doc.govt.nz and printed copies can be purchased from [email protected] © Copyright July 2002, New Zealand Department of Conservation ISSN 11732946 ISBN 047822284X This report was prepared for publication by DOC Science Publishing, Science & Research Unit; editing by Lynette Clelland and layout by Ruth Munro. Publication was approved by the Manager, Science & Research Unit, Science Technology and Information Services, Department of Conservation, Wellington. CONTENTS Abstract 5 1. Introduction 6 2. Keystone concepts 6 3. Types of keystone species 8 3.1 Organisms controlling potential dominants 8 3.2 Resource providers 10 3.3 Mutualists 11 3.4 Ecosystem engineers 12 4. The New Zealand context 14 4.1 Organisms controlling potential dominants 14 4.2 Resource providers 16 4.3 Mutualists 18 4.4 Ecosystem engineers 19 5. Identifying keystone species 20 6. Implications for conservation management 21 7. Acknowledgements 22 8. References 23 4 Payton et al.Keystone species: the concept and its relevance in New Zealand Keystone species: the concept and its relevance for conservation management in New Zealand Ian J.
    [Show full text]
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • CURRICULUM VITAE (September 2011)
    CURRICULUM VITAE (September 2011) David William Steadman Present Positions and Address: Curator of Ornithology; Associate Director for Collections and Research Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL 32611. Telephone (352) 273-1969; Fax (352) 846-0287; E-mail, [email protected] Primary Research Interests: Ornithology, zooarchaeology, and vertebrate paleontology of tropical and subtropical regions. Extinction, systematics, and historic biogeography of birds on Caribbean and Pacific islands. Paleontology, biogeography, evolution, and community ecology of New World landbirds. Education: Ph.D. Geosciences, University of Arizona, 1982 M.S. Zoology, University of Florida, 1975 B.S. Biology, Edinboro State College, 1973 Recent Employment History: August 2001 – June 2004, August 2007 – present: Assistant/Associate Director for Collections and Research, Florida Museum of Natural History March 2000 – February 2003: University of Florida Research Foundation Professor August 1995 – present: Assistant/Associate/Full Curator of Ornithology, Florida Museum of Natural History February 1985 – July 1995: Associate and Senior Scientist (Zoology), and Curator of Vertebrates, New York State Museum Research Grants: August 2011 (ongoing) Collaborative Research: Long-term Dynamics and Resilience of Terrrestrial Plant and Animal Communities in the Bahamas. National Science Foundation (J. Franklin, DWS, P.L. Fall; total award $414,000; UF portion $164,573). August 2011 (ongoing) U.S.-Peru Planning Visit: Planning a Collaborative Program of Vertebrate Paleontology in Northwestern Peru. $21,296. National Science Foundation. November 2009 (ongoing) Logistical and Intellectual Foundation for Teaching Field Courses in the Bahamas and Turks & Caicos Islands. $22,168. Faculty Enhancement Opportunity Award, Provost’s Office, University of Florida.
    [Show full text]
  • Can Unwanted Suburban Tortoises Rescue Native Hawaiian Plants?
    CAN UNWANTED SUBURBAN TORTOISES RESCUE NATIVE HAWAIIAN PLANTS? by David A. Burney, James O. Juvik, Lida Pigott Burney, and Tomas Diagne 104 THE TORTOISE ・ 2012 hrough a series of coincidences, surplus pet tortoises in Hawaii may end up offering a partial solution to the seemingly insurmountable challenge posed by invasive plants in the Makauwahi Cave Reserve Ton Kaua`i. This has come about through a serendipitous intersection of events in Africa, the Mascarene Islands, North America, and Hawaii. The remote Hawaiian Islands were beyond the reach of naturally dispersing island tortoises, but the niches were apparently still there. Giant flightless ducks and geese evolved on these islands with tortoise-like beaks and other adaptations as terrestrial “meso-herbivores.” Dating of these remarkable fossil remains shows that they went extinct soon after the arrival of Polynesians at the beginning of the last millennium leaving the niches for large native herbivores entirely empty. Other native birds, including important plant pollinators, and some plant species have also suffered extinction in recent centuries. This trend accelerated after European settlement ecosystem services and a complex mix of often with the introduction of many invasive alien plants conflicting stakeholder interests clearly requires and the establishment of feral ungulate populations new paradigms and new tools. such as sheep, goats, cattle, and European swine, as Lacking any native mammalian herbivores, the well as other insidious invasives such as deer, rats, majority of the over 1,000 native Hawaiian plant mongoose, feral house cats, and even mosquitoes, species on the islands have been widely regarded which transmit avian malaria to a poorly resistant in the literature as singularly lacking in defensive native avifauna.
    [Show full text]
  • Origins of Endemic Island Tortoises in the Western Indian Ocean: a Critique of the Human-Translocation Hypothesis
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Origins of endemic island tortoises in the western Indian Ocean: a critique of the human-translocation hypothesis Hansen, Dennis M ; Austin, Jeremy J ; Baxter, Rich H ; de Boer, Erik J ; Falcón, Wilfredo ; Norder, Sietze J ; Rijsdijk, Kenneth F ; Thébaud, Christophe ; Bunbury, Nancy J ; Warren, Ben H Abstract: How do organisms arrive on isolated islands, and how do insular evolutionary radiations arise? In a recent paper, Wilmé et al. (2016a) argue that early Austronesians that colonized Madagascar from Southeast Asia translocated giant tortoises to islands in the western Indian Ocean. In the Mascarene Islands, moreover, the human-translocated tortoises then evolved and radiated in an endemic genus (Cylindraspis). Their proposal ignores the broad, established understanding of the processes leading to the formation of native island biotas, including endemic radiations. We find Wilmé et al.’s suggestion poorly conceived, using a flawed methodology and missing two critical pieces of information: the timing and the specifics of proposed translocations. In response, we here summarize the arguments thatcould be used to defend the natural origin not only of Indian Ocean giant tortoises but also of scores of insular endemic radiations world-wide. Reinforcing a generalist’s objection, the phylogenetic and ecological data on giant tortoises, and current knowledge of environmental and palaeogeographical history of the Indian Ocean, make Wilmé et al.’s argument even more unlikely. DOI: https://doi.org/10.1111/jbi.12893 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-131419 Journal Article Accepted Version Originally published at: Hansen, Dennis M; Austin, Jeremy J; Baxter, Rich H; de Boer, Erik J; Falcón, Wilfredo; Norder, Sietze J; Rijsdijk, Kenneth F; Thébaud, Christophe; Bunbury, Nancy J; Warren, Ben H (2017).
    [Show full text]
  • Leading the Recovery of Two of Samoa's Most Threatened Bird
    LEADING THE RECOVERY OF TWO OF SAMOA’S MOST THREATENED BIRD SPECIES the tooth-billed pigeon (Manumea) and the mao (Ma’oma’o) through ecological research to identify current threats BIODI VERSITY CO NSERVATION LESSONS LEARNED TECHNICAL SERIES 25 BIODIVERSITY CONSERVATION LESSONS LEARNED TECHNICAL SERIES Leading the recovery of two of Samoa’s most threatened bird species, the tooth-billed pigeon (Manumea) and the mao (Ma’oma’o) 25 through ecological research to identify current threats Biodiversity Conservation Lessons Learned Technical Series is published by: Critical Ecosystem Partnership Fund (CEPF) and Conservation International Pacific Islands and Oceans Program (CI-Pacific) PO Box 2035, Apia, Samoa T: + 685 21593 E: [email protected] W: www.conservation.org The Critical Ecosystem Partnership Fund is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. A fundamental goal is to ensure civil society is engaged in biodiversity conservation. Conservation International Pacific Islands and Oceans Program. 2013. Biodiversity Conservation Lessons Learned Technical Series 25: Leading the recovery of two of Samoa’s most threatened bird species, the tooth-billed pigeon (Manumea) and the mao (Ma’oma’o) through ecological research to identify current threats. Conservation International, Apia, Samoa Authors: David Butler, Rebecca Stirnemann Design/Production: Joanne Aitken, The Little Design Company, www.thelittledesigncompany.com Cover Photograph: © Rebecca Stirnemann Series Editor: Leilani Duffy, Conservation International Pacific Islands and Oceans Program Conservation International is a private, non-profit organization exempt from federal income tax under section 501c(3) of the Internal Revenue Code.
    [Show full text]
  • Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process.
    [Show full text]
  • Human Translocation As an Alternative Hypothesis to Explain the Presence of Giant Tortoises on Remote Islands in the Southwestern Indian Ocean
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/298072054 Human translocation as an alternative hypothesis to explain the presence of giant tortoises on remote islands in the Southwestern Indian Ocean ARTICLE in JOURNAL OF BIOGEOGRAPHY · MARCH 2016 Impact Factor: 4.59 · DOI: 10.1111/jbi.12751 READS 63 3 AUTHORS: Lucienne Wilmé Patrick Waeber Missouri Botanical Garden ETH Zurich 50 PUBLICATIONS 599 CITATIONS 37 PUBLICATIONS 113 CITATIONS SEE PROFILE SEE PROFILE Jörg U. Ganzhorn University of Hamburg 208 PUBLICATIONS 5,425 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Lucienne Wilmé letting you access and read them immediately. Retrieved on: 18 March 2016 Journal of Biogeography (J. Biogeogr.) (2016) PERSPECTIVE Human translocation as an alternative hypothesis to explain the presence of giant tortoises on remote islands in the south-western Indian Ocean Lucienne Wilme1,2,*, Patrick O. Waeber3 and Joerg U. Ganzhorn4 1School of Agronomy, Water and Forest ABSTRACT Department, University of Antananarivo, Giant tortoises are known from several remote islands in the Indian Ocean Madagascar, 2Missouri Botanical Garden, (IO). Our present understanding of ocean circulation patterns, the age of the Madagascar Research & Conservation Program, Madagascar, 3Forest Management islands, and the life history traits of giant tortoises makes it difficult to com- and Development, Department of prehend how these animals arrived
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Avifauna from the Teouma Lapita Site, Efate Island, Vanuatu, Including a New Genus and Species of Megapode
    Archived at the Flinders Academic Commons: http://dspace.flinders.edu.au/dspace/ ‘This is the peer reviewed version of the following article: Worthy, T., Hawkins, S., Bedford, S. and Spriggs, M. (2015). Avifauna from the Teouma Lapita Site, Efate Island, Vanuatu, including a new genus and species of megapode. Pacific Science, 69(2) pp. 205-254. which has been published in final form at DOI: http://dx.doi.org/10.2984/69.2.6 Article: http://www.bioone.org/doi/full/10.2984/69.2.6 Journal: http://www.uhpress.hawaii.edu/t-pacific-science Copyright 2015, University of Hawaii Press. Published version of the article is reproduced here with permission from the publisher." Avifauna from the Teouma Lapita Site, Efate Island, Vanuatu, Including a New Genus and Species of Megapode1 Trevor H. Worthy,2,5 Stuart Hawkins,3 Stuart Bedford,4 and Matthew Spriggs 4 Abstract: The avifauna of the Teouma archaeological site on Efate in Vanuatu is described. It derives from the Lapita levels (3,000 – 2,800 ybp) and immedi- ately overlying middens extending to ~2,500 ybp. A total of 30 bird species is represented in the 1,714 identified specimens. Twelve species are new records for the island, which, added to previous records, indicates that minimally 39 land birds exclusive of passerines were in the original avifauna. Three-fourths of the 12 newly recorded species appear to have become extinct by the end of Lapita times, 2,800 ybp. The avifauna is dominated by eight species of columbids (47.5% Minimum Number Individuals [MNI ]) including a large extinct tooth- billed pigeon, Didunculus placopedetes from Tonga, and a giant Ducula sp.
    [Show full text]