Movement Empowerment in Mixed-Reality Trampoline Games

Total Page:16

File Type:pdf, Size:1020Kb

Movement Empowerment in Mixed-Reality Trampoline Games Movement Empowerment in Mixed-Reality Trampoline Games Lauri Lehtonen School of Science Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 27.05.2019 Supervisor Prof. Perttu Hämäläinen Advisors Dr Max D. Kaos Dr Raine Kajastila Copyright ⃝c 2019 Lauri Lehtonen Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the master’s thesis Author Lauri Lehtonen Title Movement Empowerment in Mixed-Reality Trampoline Games Degree programme Information Networks Major Media Code of major SCI3047 Supervisor Prof. Perttu Hämäläinen Advisors Dr Max D. Kaos, Dr Raine Kajastila Date 27.05.2019 Number of pages 43 Language English Abstract Lack of motivation for physical activity is a significant public health concern. Ex- ergames or games that require physical exertion can be designed to help alleviate this issue by providing an alternative exercise form that caters to psychological needs important for motivation. Granting people superhuman movement abilities through movement empowerment has been shown to support feeling of competence, an important human need and an essential intrinsic motivation factor posited by self-determination theory. This thesis introduces three mixed-reality trampoline games for the ValoJump trampoline game platform. The games empower movement in both the real world and the game world; a real trampoline exaggerates movement in the real world while the games artificially further exaggerate the movement in the game world. Two of the games were designed and implemented through an iterative process at Valo Motion Oy and one of the games is based on earlier research in Aalto University. This thesis describes the problems we faced when designing the games, how we overcame them and how we created designs that work in the context of commercial indoor activity parks. One of the games is the first mixed-reality empow- erment game for trampolines with multiplayer gameplay. For this game, the thesis also presents an in-the-wild user study in which 26 participants played the game in a Finnish indoor activity park. The game scored high in Physical Activity Enjoyment Survey (PACES) as well as in Ubisoft Perceived Experience Questionnaire (UPEQ) and thus further demonstrated the potential of movement empowered exergames in satisfying human needs important for intrinsic motivation. Keywords Movement empowerment; mixed-reality games; exergames; social play; self-determination theory; trampolines Aalto-yliopisto, PL 11000, 00076 AALTO www.aalto.fi Diplomityön tiivistelmä Tekijä Lauri Lehtonen Työn nimi Liikeen voimistus sekoitetun todellisuuden trampoliinipeleissä Koulutusohjelma Informaatioverkostot Pääaine Media Pääaineen koodi SCI3047 Työn valvoja Prof. Perttu Hämäläinen Työn ohjaaja Max D. Kaos, Raine Kajastila Päivämäärä 27.05.2019 Sivumäärä 43 Kieli Englanti Tiivistelmä Liikuntamotivaation puute on merkittävä kansanterveydellinen ongelma. Liikunta- pelit (exergames), joiden pelaaminen vaatii fyysistä rasitusta, voidaan suunnitella lievittämään tätä ongelmaa. Liikuntapelit voivat tarjota liikuntamuotoja, jotka täyt- tävät liikuntamotivaation kannalta tärkeitä psykologisia tarpeita. On tutkittu, että koetun pätevyyden tunnetta voidaan tukea tarjoamalla ihmisille yliluonnollisia liikku- miskykyjä liikkeen voimistamisen kautta. Pätevyyden tunne on tärkeä psykologinen perustarve ja oleellinen sisäisen motivaation osa. Tämä diplomityö esittelee kolme sekoitetun todellisuuden trampoliinipeliä ValoJump trampoliinipelialustalle. Pelit voi- mistavat liikettä sekä oikeassa maailmassa, että pelimaailmassa; trampoliini liioittelee liikettä oikeassa maailmassa samanaikaisesti kun peli liioittelee liikettä keinotekoisesti pelimaailmassa. Kaksi peleistä on suunniteltu ja toteutettu iteratiivisen suunnittelu- prosessin kautta Valo Motion Oy:ssä ja yksi pohjautuu Aalto Yliopiston aikaisempiin tutkimuksiin. Diplomityö kuvaa ongelmat, joita pelien suunnittelussa kohdattiin, kuinka ongelmat ratkaistiin ja kuinka luotiin pelejä, jotka toimivat kaupallisissa sisäaktiviteettipuistoissa. Yksi peleistä on maailman ensimmäinen sekoitetun to- dellisuuden trampoliinimoninpeli. Kyseisen pelin osalta diplomityö sisältää myös käyttäjätutkimuksen sisäaktiviteettipuistossa. Peli sai korkeat pisteet liikunnan iloa mittaavassa PACES-kyselyssä sekä pelikokemusta mittaavassa UPEQ-kyselyssä. Tut- kimus demonstroi liikettä voimistavien liikkunnallisten pelien potentiaalia tyydyttää ihmisen sisäiselle motivaatiolle oleellisia tarpeita. Avainsanat liikkeen voimistaminen, trampoliinit, liikuntapelit 5 Preface I first want to thank my supervisor Professor Perttu Hämäläinen and my advisorDr Max D. Kaos for making this thesis possible. Big thanks for all your guidance and assistance! Special thanks to Max D. Kaos for his considerable involvement in the study and for assisting me with his vast knowledge of exergame research. Additional thanks also to Perttu Hämäläinen for guiding me with my studies and career in the game industry during the past years. I also want to thank Valo Motion CEO Dr Raine Kajastila and the entire Valo Motion team for the great effort in making the ValoJump trampoline game platform a reality. Special thanks to Valo Motion CTO Joni Vähämäki for all the technical guidance and assistance in implementing the ValoJump games and for implementing the tracking software that makes the ValoJump games possible. Thanks also to Lassi Vapaakallio for performing the interviews in our study and sacrificing his weekends for them. Furthermore, I want to thank my parents Marja and Ari Lehtonen and my partner Joanna Wong for their never ending support. Thanks also to my grandma Raili Rajala for believing in me, continuously asking me when I will graduate and for making me warm woolen socks for the cold Finnish winters. Otaniemi, 27.5.2019 Lauri Lehtonen 6 Contents Abstract 3 Abstract (in Finnish) 4 Preface 5 Contents 6 Symbols and abbreviations 8 1 Introduction 9 2 Background 12 2.1 Movement empowerment ......................... 12 2.2 Other Ways of Manipulating Movement . 13 2.3 Intrinsic motivation ............................ 13 2.4 Mixed-Reality ............................... 14 2.5 Gaps in literature ............................. 14 3 Designing Games for Trampolines 15 3.1 Movement Empowerment ......................... 15 3.1.1 Jump Exaggeration ........................ 15 3.1.2 Horizontal Movement Exaggeration . 15 3.2 Design Constraints ............................ 16 3.2.1 Transitioning between jumping and standing . 16 3.2.2 Limited control over flight trajectory . 16 3.2.3 Disconnecting horizontal position . 16 3.2.4 Trampoline Safety ........................ 17 3.2.5 Skill Differences .......................... 17 3.2.6 Game time limitations ...................... 18 3.2.7 Guiding the Player’s Attention . 18 3.2.8 Designing Around Latency .................... 18 3.2.9 A Practical Example ....................... 19 4 Platform and Game Descriptions 21 4.1 The Platform ............................... 21 4.2 Game 1: Skytails ............................. 21 4.2.1 Game Mechanics ......................... 21 4.2.2 Design of Skytails ......................... 22 4.2.3 Remaining Issues ......................... 23 4.3 Game 2: Toywatch ............................ 23 4.3.1 Game Mechanics ......................... 24 4.3.2 Design of Toywatch ........................ 25 4.3.3 Remaining Issues ......................... 26 4.4 Game 3: Super Stomp .......................... 26 7 4.4.1 Game Mechanics ......................... 26 4.4.2 Design of Super Stomp ...................... 27 4.4.3 Remaining Issues ......................... 29 5 Evaluating Super Stomp 30 5.1 Participants ................................ 30 6 Results of the Super Stomp study 31 6.1 Players Had High Autonomy ....................... 32 6.2 Players Felt Competent When Playing . 32 6.3 Players Had High Relatedness ...................... 32 6.4 Spectators Did not Negatively Impact the Play Experience . 34 6.5 Players Felt as if They Had Superpowers . 35 7 Discussion and Key Takeaways 36 7.1 Support Autonomy when Faced with Design Challenges . 36 7.2 Empower Movement to Support Human Needs . 37 7.3 Designing Multiplayer Trampoline Games Is Possible . 37 8 Limitations 38 9 Conclusion 39 8 Symbols and abbreviations Abbreviations FEC Family Entertainment Center M Mean Average Mdn Median PACES Physical Activity Enjoyment Scale SD Standard Deviation SDT Self-Determination Theory UPEQ Ubisoft Perceived Experience Questionnaire 9 1 Introduction Lack of exercise is a major public health concern [6, 11]. One way to address the problem is to ensure people are motivated to exercise by satisfying their innate human needs. Games have potential to satisfy these needs, as they can offer a great amount of autonomy (e.g., players can choose which character abilities to enhance and freely explore the game world). Games can also support competence by providing challenging tasks to master, and can support relatedness by including multiplayer features that provide an opportunity for social interaction and bonding. These components—autonomy, competence, and relatedness—are considered innate human needs to satisfy for optimal growth and function in psychological theories of human motivation [8, 10]. Games are also in a unique position to empower players by granting them abilities that go beyond what they are capable of in the real world; in other words, they can provide superhuman abilities, such as flying. This can be applied in both traditional video games and exergames
Recommended publications
  • Tesis Doctoral
    De lo virtual a lo físico: expandiendo las fronteras entre arte y vida a través de los juegos digitales emersivos Samuel Gallastegui González Directora de tesis: Cristina Miranda de Almeida de Barros Programa de doctorado: Investigación y Creación en Arte 2006/2008 Tesis presentada y defendida en 2016 Departamento de Arte y Tecnología Universidad del País Vasco - Euskal Herriko Unibertsitatea iii Agradecimientos Han pasado muchos años desde que apareció en mi mente la primera intuición de lo que iba a ser esta tesis. Desde entonces, el proceso ha sido largo e intermitente, pero en él he contado, por suerte, con la compañía de Cristina Miranda de Almeida, que además de ser una gran amiga, es una profesional brillante que siempre me ha proporcionado las indicaciones precisas para orientarme en lo más oscuro y frondoso del bosque de ideas. Me siento muy agradecido por los consejos acertadísimos, la inspiración continua y la libertad intelectual que me ha dado para realizar esta tesis. Quiero dar las gracias, también, a otros académicos que han aportado al proceso: a la profesora de la Universitat Politècnica de València Mau Monleón, por haber organizado una conferencia para dar a conocer Hey Planet!; a los profesores de la Universidad del País Vasco – Euskal Herriko Unibetsitatea Rafa Calderón, Juan Crego, Ander González, Rita Sixto y Patxi Urquijo, que me cedieron su espacio lectivo para divulgar Hey Planet! entre los alumnos; a Josu Rekalde, Catedrático de Bellas Artes, por sus aportaciones conceptuales; y a Benjamín Tejerina, Catedrático de Sociología, por su valiosa contribución a la confección del cuestionario. Debo agradecer a los miembros de Arsgames la experiencia lúdica que compartimos en las calles de Madrid, la cual me ayudó a sintetizar y encauzar muchas ideas de esta tesis doctoral.
    [Show full text]
  • A Literature Review Abstract Using the Alternate Reality Game (ARG)
    Alternate Reality Game in Education: A Literature Review Xiao Hu1 Hongzhi Zhang Zane Ma Rhea Faculty of Education, Monash University, Melbourne Abstract Using the Alternate Reality Game (ARG) game type to improve non-game products is more and more popular in the 21st century. However, as an important field of ARG implementation, the usage of ARG in education area is still at its early stage. This paper seeks to provide an overview of current research about the implementation of ARG in the educational field, as well as make a general conclusion of how ARG techniques can benefit the education context. The authors undertook a literature review that systematically examined the general development trend of educational ARG implementation from the perspectives of timeline and by field of education. By bringing together previously separate and disparate literature, this paper contributes to providing new understanding of this emergent area of gamification research. In the final section, we discuss our findings and propose some challenges to be faced in the future for gamificatiojn in general and for the AGR game type in particular. Key words Alternate Reality Game (ARG), educational ARG, gamification Introduction Gamification is a newly emerging area of academic research. The term first appears in 2008, and then shows a widespread adoption after 2012 (Dicheva et al., 2015). As a newly emerging research topic, the development of gamification theories are still occurring. In fields such as business, education, and public service, gamification is being regarded as an effective tool to reinforce participants’ motivation, and to improve productivity. However, as the development of gamification is still in its infancy, it is necessary for researchers to have an awareness of the larger picture of the evolution of gamification.
    [Show full text]
  • Research Article Kioskar: an Augmented Reality Game As a New Business Model to Present Artworks
    Hindawi Publishing Corporation International Journal of Computer Games Technology Volume 2016, Article ID 7690754, 12 pages http://dx.doi.org/10.1155/2016/7690754 Research Article KioskAR: An Augmented Reality Game as a New Business Model to Present Artworks Yoones A. Sekhavat Faculty of Multimedia, Tabriz Islamic Art University, Hakim Nezami Square, Azadi Boulevard, Tabriz, East Azerbaijan 51647-36931, Iran Correspondence should be addressed to Yoones A. Sekhavat; sekhavat@tabriziau.ac.ir Received 26 October 2015; Revised 28 January 2016; Accepted 21 February 2016 Academic Editor: Ali Arya Copyright © 2016 Yoones A. Sekhavat. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper presents the architecture of KioskAR, which is a pervasive game implemented using augmented reality (AR). This game introduces a new business model that makes it possible for players to present their artworks in virtual kiosks using augmented reality, while they are having fun playing the game. In addition to competition between the players in the game, this game requires social interaction between players to earn more points. A user study is conducted to evaluate the sense of presence and the usability of the application. The results of experiments show that KioskAR can achieve a high level of usability as well as sense of presence. 1. Introduction where an object resides in order to play the game. This is an important advantage of pervasive games that is not possible Recent years have witnessed a widespread success of com- in traditional computer games [5].
    [Show full text]
  • Pervasive Gameflow Identifying and Exploring the Mechanisms of Player Enjoyment in Pervasive Games
    Pervasive GameFlow Identifying and Exploring the Mechanisms of Player Enjoyment in Pervasive Games Kalle Jegers PhD Thesis May 2009 Department of Informatics Umeå University Sweden 1 Department of Informatics Umeå University SE-90187 Umeå, Sweden kalle.jegers@informatik.umu.se Copyright © 2009 Kalle Jegers Except: Paper 1© IEEE Computer Society Press, 2006 Paper 2 © IEEE Computer Society Press, 2008 Paper 3 © ACM Inc, 2007 Paper 4 © Shaker Verlag Paper 5 © ACM Inc, 2009 ISBN: 978-91-7264-771-8 ISSN: 1401-4572, RR-09.01 Cover Artwork: Johan Bodén|Creative Camp Tryck/Printed by: Print & Media, Umeå University Umeå, Sweden 2009 2 Acknowledgements Thank you Charlotte Wiberg for you advise and endless support on all levels, and for introducing me to the great world of HCI research- I hope we still have plenty of fun projects ahead of us! Thank you main advisor Mikael Wiberg and former main advisor Victor Kaptelinin for your support, advise and for sharing your wisdom, Thank you John Waterworth, Anna Croon Fors, Karin Danielsson, Daniel Fällman and Henrik Wimelius for your time and valuable feedback during and after the pre seminar, Thank you Johan Waterworth for the excellent proof reading that really helped me improve the manuscript, Thank you Johan Bodén for the excellent cover art work, Thanks to It’s Alive!, Resolution Interactive (Matti Larsson), Simon Vincent and Daniel Gjörwell for the fruitful collaborations in our projects, A very special Thank you to my wife Johanna and my kids Emma and Gustav- for your love, support and patience; you are my reason. 3 4 Preface This thesis is a collection of five papers, complemented by a cover paper.
    [Show full text]
  • Creating a PDF Document Using Pdflatex
    Distributed Technology-Sustained Pervasive Applications (v2.6) – Kim J.L. Nevelsteen arXiv:1604.02892v1 [cs.CY] 11 Apr 2016 Distributed Technology-Sustained Pervasive Applications (v2.6) Kim J.L. Nevelsteen Kim J.L. Nevelsteen, Stockholm University, 2015. ISBN 978-91-7649-277-2 ISSN 1101-8526 DSV Report Series No. 15-016 Printer: Holmbergs, Malmö 2015 Distributor: Department of Computer and Systems Sciences Cover image: rendition of [Lankoski et al. 2004, Figure 2], see pp. 32 Abstract Technology-sustained pervasive games, contrary to technology-supported pervasive games, can be understood as computer games interfacing with the physical world. Pervasive games are known to make use of ‘non-standard input devices’ and with the rise of the Internet of Things (IoT), pervasive applications can be expected to move beyond games. This dissertation is requirements- and development-focused Design Science research for distributed technology-sustained pervasive applications, incorporating knowledge from the domains of Distributed Computing, Mixed Reality, Context-Aware Computing, Geographical Information Systems and IoT. Computer video games have existed for decades, with a reusable game engine to drive them. If pervasive games can be understood as computer games interfacing with the physical world, can computer game engines be used to stage pervasive games? Considering the use of non-standard input devices in pervasive games and the rise of IoT, how will this affect the architectures supporting the broader set of pervasive applications? The use of a game engine can be found in some existing pervasive game projects, but general research into how the domain of pervasive games overlaps with that of video games is lacking.
    [Show full text]
  • Does Augmented Reality Affect Sociability, Entertainment
    applied sciences Article Does Augmented Reality Affect Sociability, Entertainment, and Learning? A Field Experiment Nina Savela 1,* , Atte Oksanen 1 , Markus Kaakinen 2, Marius Noreikis 3 and Yu Xiao 3 1 Faculty of Social Sciences, Tampere University, 33100 Tampere, Finland; atte.oksanen@tuni.fi 2 Institute of Criminology and Legal Policy, University of Helsinki, 00100 Helsinki, Finland; markus.kaakinen@helsinki.fi 3 Department of Communications and Networking, Aalto University, 02150 Espoo, Finland; mnoreikis@yahoo.com (M.N.); yu.xiao@aalto.fi (Y.X.) * Correspondence: nina.savela@tuni.fi Received: 14 January 2020; Accepted: 15 February 2020; Published: 19 February 2020 Abstract: Augmented reality (AR) applications have recently emerged for entertainment and educational purposes and have been proposed to have positive effects on social interaction. In this study, we investigated the impact of a mobile, indoor AR feature on sociability, entertainment, and learning. We conducted a field experiment using a quiz game in a Finnish science center exhibition. We divided participants (N = 372) into an experimental group (AR app users) and two control groups (non-AR app users; pen-and-paper participants), including 28 AR users of follow-up interviews. We used Kruskal–Wallis rank test to compare the experimental groups and the content analysis method to explore AR users’ experiences. Although interviewed AR participants recognized the entertainment value and learning opportunities for AR, we did not detect an increase in perceived sociability, social behavior, positive affect, or learning performance when comparing the experimental groups. Instead, AR interviewees experienced a strong conflict between the two different realities. Despite the engaging novelty value of new technology, performance and other improvements do not automatically emerge.
    [Show full text]
  • Pokémon GO: a Pervasive Game and Learning Community
    Pokémon GO: A Pervasive Game and Learning Community Gunver Majgaard1 and Lasse Juel Larsen2 1Mærsk Mc-Kinney Møller Institute, Embodied System for Robotics and Learning, University of Southern Denmark 2Department for the Study of Culture, University of Southern Denmark gum@mmmi.sdu.dk ljl@sdu.dk Abstract; The present article argues that the mobile augmented reality game Pokémon GO demonstrates what we have chosen to coin a pervasive learning community. Normally, communities are centred on a specific game, associated real-world events, and online communities, but Pokémon is different since the digital game world runs parallel with game activities in physical reality. This mobile and pervasive structure changes communities from previous binary modes of being either in or out of community to a heterogeneous possibility space of being engaged in all kinds of places all the time while interacting with friends, acquaintances, and strangers thereby reshaping and expanding learning formations of communities. This study is built upon field observations, interviews, and online questionnaires of Pokémon GO players. We wanted to find out who played Pokémon GO, when they played, where they played, and with whom they played, for how long how learning took place, and how the Pokémon Go communities were shaped. In the course of our investigation we found that Pokémon GO makes players physically active while moving around discovering, interacting, and learning new aspects of the game while finding novel places in the cityscape. We found that players engage the game and each other both online (as expected) and in real life in new places at all hours of the day thereby placing players in a new form of gaming scenario and learning environment, which we have chosen to call a pervasive learning community.
    [Show full text]
  • Evaluating Display Modalities Using a Mixed Reality Game
    Evaluating Display Modalities Using a Mixed Reality Game Hitesh Nidhi Sharma,1 Zachary O. Toups,1 Igor Dolgov,2 Andruid Kerne,3 Ajit Jain3 1Play & Interactive Experiences for Learning Lab, Dept. Computer Science, New Mexico State University 2Perception, Action, & Cognition in Mediated Artificial & Natural Environments Lab, Dept. Psychology, New Mexico State University 3Interface Ecology Lab, Dept. Computer Science & Engineering, Texas A&M University hitesharmaa@gmail.com, z@cs.nmsu.edu, id@nmsu.edu, andruid@ecologylab.net, ajit@ecologylab.net (a) (b) (c) hint destination current overall waypoints time photographic clue photographic clue progress indicator progress indicator remaining elapsed Figure 1. The PhotoNav game user interface, showing player progress along a course, guided by a hint photographic clue to a destination photographic clue. UI components populate the bottom. The current progress indicator shows the advancement of a player toward the current waypoint. The overall progress indicator shows progression along all the waypoints. In: (a) the player starts at the first waypoint (7 waypoints remain), (b) the player moves from 2nd to the 3rd waypoint (5 waypoints remain), (c) the player continuing progression nearing the current destination (5 waypoints remain). ABSTRACT INTRODUCTION We design and study a mixed reality game, PhotoNav, to inves- Handheld displays, in the form of smartphones and gaming tigate wearable computing display modalities. We study game devices, are common in many parts of the world; wrist-worn play, varying display modality: head-mounted, handheld, and and head-mounted displays (HMDs) have begun to proliferate. wrist-worn. PhotoNav requires the player to split attention Open questions remain about the ability of wearable computers between the physical world and display by using geotagged to enhance performance, improve situation awareness, and photographs as clues for navigation.
    [Show full text]
  • F001b23a38ae17cf54e23ccc4ff4
    I Alternate Reality Games For Behavioral and Social Science Research Copyright © by Ruthanna Gordon, Ph.D. and ETC Press 2015 ISBN (Print): 978-1-312-78105-4 ISSN (Online): 978-1-312-91112-3 TEXT: The text of this work is licensed under a Creative Commons Attribution-NonCommercial-NonDerivative 2.5 License (http://creativecommons.org/licenses/by-nc-nd/2.5/) IMAGES: All images appearing in this work are property of the respective copyright owners, and are not released into the Creative Commons. The respective owners reserve all rights. II Alternate Reality Games For Behavioral and Social Science Research Ruthanna Gordon, Ph.D. Production of this book was funded by the IARPA Office of Smart Collection TRUST Program, but it is not officially endorsed by ODNI, IARPA, or U.S. Government. All opinions and discussions in this review are those of the author, and do not necessarily reflect those of the ODNI, IARPA, or U.S. Government. III IV Table of Contents Executive Summary 1 1 Introduction 3 2 Current Practices and Limitations 7 3 Alternate Reality Games 15 4 What Can We Learn From Related Activities? 23 5 What Can We Learn From Analogous Activities? 31 6 How are ARGs Used in Research? 35 7 What Can We Learn From Other Applications of ARGs? 43 8 What Do Research ARGs Need For Success? 51 9 Making a Difference: How ARG-Based Methodologies Can Improve BSSR Research 87 10 Conclusions 97 Bibliography 99 Appendix 1: Games Discussed 110 Appendix 2: Recommended Readings 114 Appendix 3: What a Research ARG Might Look Like 116 Acknowledgements 119 About the Author 121 V VI Executive Summary Researchers in the behavioral, social, and neurophysiological sciences have recently begun to explore the limitations of many traditional lab and field-based studies.
    [Show full text]
  • A Technocultural Ethnography of Pervasive Gaming Dan Dixon
    PLAYING WITH REALITY: A TECHNOCULTURAL ETHNOGRAPHY OF PERVASIVE GAMING DAN DIXON A thesis submitted in partial fulfilment of the requirements of the University of the West of England, Bristol for the degree of Doctor of Philosophy Faculty of Arts, Creative Industries and Education, University of the West of England, Bristol August 2016 1 Abstract Pervasive games are an experimental game design practice that engages with technology development and everyday space. Tese experiences range from technology experiments to avant-garde performances to explorative urban play. Tis PhD is an ethnographic exploration of two questions. First, how did the technocultural situation of pervasive games shape their history and future? Secondly, how does this technocultural situation shape and affect the enactment (the design, play and performance) and the core experience? Tis thesis is comprised of ethnographic research carried out at pervasive gaming festivals, analysis of games and interviews with designers, artists and technologists working in the field. It reflects a historical situation in an emerging and dynamic field of practice. Te work develops a set of methods that use the concepts of liminality, materiality and practice to inform an assemblage of data gathering and analysis techniques that are specifically intended to engage with new technocultural forms. Tis is intended to deliver an understanding of these forms in a wider cultural relationship as well as give insight into how they are experienced. It uncovers a framework of tensions that explain the underlying nature of the play experience and design of pervasive games. Te research uncovers overlooked aspects of the practice of pervasive gaming. Firstly the ways in which the social and cultural background of the players and designers moulds the form, content and meta-narrative of these games.
    [Show full text]
  • Preprinttouch-Less Interactive Augmented Reality Game on Vision Based Wearable Device
    PreprintTouch-less Interactive Augmented Reality Game on Vision Based Wearable Device Zhihan Lv · Alaa Halawani · Shengzhong Feng · Shafiq ur Re´hman · Haibo Li Received: 26/09/2014 / Accepted: 20/04/2015 Abstract There is an increasing interest in creating pervasive games based on emerg- ing interaction technologies. In order to develop touch-less, interactive and aug- mented reality games on vision-based wearable device, a touch-less motion inter- action technology is designed and evaluated in this work. Users interact with the augmented reality games with dynamic hands/feet gestures in front of the camera, which triggers the interaction event to interact with the virtual object in the scene. Three primitive augmented reality games with eleven dynamic gestures are developed based on the proposed touch-less interaction technology as proof. At last, a compar- ing evaluation is proposed to demonstrate the social acceptability and usability of the touch-less approach, running on a hybrid wearable framework or with Google Glass, as well as workload assessment, user’s emotions and satisfaction. Keywords Wearable Device · Smartphone Game · Hand Free · Pervasive Game · Augmented Reality Game · Touch-less All authors are corresponding authors. Z. Lv SIAT, Chinese Academy of Science in China E- mail: lvzhihan@gmail.com A. Halawani Tillmpad fysik och elektronik of Umea˚ University in Sweden Computer Engineering and Science Dept., Palestine Polytechnic University, Hebron, Palestine E-mail: alaa.halawani@umu.se S. Feng SIAT, Chinese Academy of Science in China E- mail: sz.feng@siat.ac.cn Sh.Re´hman Tillmpad fysik och elektronik of Umea˚ University in Sweden E- mail: shafiq.urehman@umu.se H.
    [Show full text]
  • Improving the User Knowledge and User Experience by Using Augmented Reality in a Smart City Context
    Improving the user knowledge and user experience by using Augmented Reality in a Smart City context Pravesh Yagol i IMPROVING THE USER KNOWLEDGE AND USER EXPERIENCE BY USING AUGMENTED REALITY IN A SMART CITY CONTEXT Dissertation Supervised by Francisco Ramos, PhD Professor, Institute of New Imaging Technologies, Universitat Jaume I, Castellón, Spain Dissertation Co-supervised by Christian Kray, PhD Professor, Institute for Geoinformatics Westfälische Wilhelms-Universität, Münster, Germany Vitor Santos, PhD Assistant Professor, Sistemas e Tecnologias da Informação Informação Universidade Nova de Lisboa, Lisbon, Portugal February 22, 2018 ACKNOWLEDGMENTS First of all, I am duly grateful to the European Commission for granting me with the scholarship to pursue my masters study. I would like to express my deep gatitude to Prof Francisco Ramos, my research supervisor, for his valuable and constructive suggestions during the planning, developementand successful completion of this research work. His willingness to give his time and proper guidance has been very much appreciated. I would like to extend my sincere gratitude to my co-supervisors Dr. Vitor Santos and Dr. Christian Kray for their encouragement, guidance, constructive suggestions and criticisms throughout the project. I am highly obliged in taking the opportunity to sincerely thank all my professors from UJI and ifgi who bestowed me with multidisciplinary knowledge and skills and helped to develop professionalism in me. I would also like to extend my thanks to all the administrative staffs from UJI and ifgi for their help in offering me proper guidance and timley informations during the entire masters program. Finally, I wish to thank my friends and family for their encouragement, unconditional love and support throughout my study.
    [Show full text]