Boxicity, poset dimension, and excluded minors Louis Esperet∗ Veit Wiechert Laboratoire G-SCOP Institut f¨urMathematik CNRS, Univ. Grenoble Alpes Technische Universit¨atBerlin Grenoble, France Berlin, Germany
[email protected] Submitted: Apr 12, 2018; Accepted: Nov 27, 2018; Published: Dec 21, 2018 c The authors. Abstract In this short note, we relate the boxicity of graphs (and the dimension of posets) with their generalized coloring parameters. In particular, together with known estimates, our results imply that any graph with no Kt-minor can be represented as the intersection of O(t2 log t) interval graphs (improving the previous bound of 4 15 2 O(t )), and as the intersection of 2 t circular-arc graphs. Mathematics Subject Classifications: 05C15, 05C83, 06A07 1 Introduction The intersection G1 \···\ Gk of k graphs G1;:::;Gk defined on the same vertex set V , is the graph (V; E1 \:::\Ek), where Ei (1 6 i 6 k) denotes the edge set of Gi. The boxicity box(G) of a graph G, introduced by Roberts [19], is defined as the smallest k such that G is the intersection of k interval graphs. Scheinerman proved that outerplanar graphs have boxicity at most two [20] and Thomassen proved that planar graphs have boxicity at most three [24]. Outerplanar graphs have no K4-minor and planar graphs have no K5-minor, so a natural question is how these two results extend to graphs with no Kt-minor for t > 6. It was proved in [6] that if a graph has acyclic chromatic number at most k, then its boxicity is at most k(k − 1).