Functional Characterization of Genetic Enzyme Variations in Human Lipoxygenases

Total Page:16

File Type:pdf, Size:1020Kb

Functional Characterization of Genetic Enzyme Variations in Human Lipoxygenases Redox Biology 1 (2013) 566–577 Contents lists available at ScienceDirect Redox Biology journal homepage: www.elsevier.com/locate/redox Functional characterization of genetic enzyme variations in human lipoxygenases Thomas Horn a,n, Kumar Reddy Kakularam b, Monika Anton a, Constanze Richter c, Pallu Reddanna b,d, Hartmut Kuhn a a Institute of Biochemistry, University Medicine Berlin—Charité, Charitéplatz 1, D-10117 Berlin, Germany b Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India c Institute of Nutrition Technology and Nutrition Chemistry, TU Berlin, Gustav-Meyer-Allee 25, D-13355 Berlin, Germany d National Institute of Animal Biotechnology, Hyderabad 500046, Andhra Pradesh, India article info abstract Article history: Mammalian lipoxygenases play a role in normal cell development and differentiation but they have also been Received 28 October 2013 implicated in the pathogenesis of cardiovascular, hyperproliferative and neurodegenerative diseases. As lipid Accepted 1 November 2013 peroxidizing enzymes they are involved in the regulation of cellular redox homeostasis since they produce lipid hydroperoxides, which serve as an efficient source for free radicals. There are various epidemiological Keywords: correlation studies relating naturally occurring variationsinthesixhumanlipoxygenasegenes(SNPsorrare Eicosanoids mutations) to the frequency for various diseases in these individuals, but for most of the described variations no Leukotrienes functional data are available. Employing a combined bioinformatical and enzymological strategy, which Lipoxygenases included structural modeling and experimental site-directed mutagenesis, we systematically explored the Gene polymorphism structural and functional consequences of non-synonymous genetic variations in four different human SNP lipoxygenase genes (ALOX5, ALOX12, ALOX15, and ALOX15B) that have been identified in the human 1000 genome project. Due to a lack of a functional expression system we resigned to analyze the functionality of genetic variations in the hALOX12B and hALOXE3 gene. We found that most of the frequent non-synonymous coding SNPs are located at the enzyme surface and hardly alter the enzyme functionality. In contrast, genetic variations which affect functional important amino acid residues or lead to truncated enzyme variations (nonsense mutations) are usually rare with a global allele frequencyo0.1%. This data suggest that there appears to be an evolutionary pressure on the coding regions of the lipoxygenase genes preventing the accumulation of loss-of-function variations in the human population. & 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license. Introduction cis,cis-1,4-pentadiene structure [1]. Together with various oxygen activating enzymes LOXs increase the cellular oxidizing potential by Lipoxygenases (LOXs) are lipid-peroxidizing enzymes that cata- biosynthesizing lipid hydroperoxides, which serve as an efficient lyze the dioxygenation of poly-unsaturated fatty acids containing a source for free radicals unless they are reduced by peroxide reducing enzymes to the corresponding alcohols [2,3]. LOXs are widely distributed in terrestrial life since they occur in bacteria, fungi, lower marine organisms, plants and higher animals [4,5]. In humans six functional LOX genes (ALOX5, ALOX12, ALOX15, ALOX15B, ALOX12B, and ALOXE3) have been identified [1]. The crystal structures of three Abbreviations: LOXs, lipoxygenases; ALOX, arachidonate lipoxygenase; 5-H(p)ETE, different mammalian LOX isoforms (human ALOX5, rabbit ALOX15, (6E,8Z,11Z,14Z)-5-hydroperoxyeicosa-6,8,11,14-tetraenoic acid; 15-H(p)ETE, porcine ALOX15) have been solved [6–8] and despite subtle struc- (5Z,8Z,11Z,13E)-15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid; 12-H(p)ETE, tural differences there is a high degree of structural similarity (5Z,8Z,10E,14Z)-12-hydroperoxyeicosa-5,8,10,14-tetraenoic acid; 8-H(p)ETE, between different LOX isoforms. Human LOXs (hALOX) have been (5Z,9E,11Z,14Z)-8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid; IPTG, Isopropyl-β-D- fl thiogalactopyranosid; HETE, hydroxyeicosatetraenoic acid; H(p)ETE, implicated in the pathogenesis of cardiovascular and in ammatory hydroperoxyeicosatetraenoic acid; LTA4, 4-[(2S,3S)-3-[(1E,3E,5Z,8Z)-tetradeca-1,3,5, diseases as well as in various forms of cancer but the detailed 8-tetraen-1-yl]oxiran-2-yl]butanoic acid; LTB4, 5(S),12(R)-dihydroxy-6,8,10,14-(Z,E,E,Z)- mechanistic basis for their pathophysiological roles is still a matter eicosatetraenoic acid; LTC4, (5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-[(4S)-4-amino-4-carboxy- of discussion [9–12]. butanamido]-2-[(carboxymethyl) carbamoyl]ethyl]sulfanyl}-5-hydroxyeicosa-7,9,11, 14-tetraenoic acid; UTR, untranslated region In different epidemiological correlation studies genetic varia- n Corresponding author. Tel.: þ49 30 450 528 040; fax: þ49 30 450 528 905. tions in hALOX genes have been related to an increased risk of E-mail address: [email protected] (T. Horn). colorectal cancer [13,14], stroke [15], bronchial asthma [16] and 2213-2317 & 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license. http://dx.doi.org/10.1016/j.redox.2013.11.001 T. Horn et al. / Redox Biology 1 (2013) 566–577 567 atherosclerosis [17]. Unfortunately, most of these variations occur Sigma Aldrich (Hamburg, Germany), HPLC standards of 5(7)- either in intronic, in the promoter or in other non-coding DNA HETE, 8(7)-HETE, 11(7)-HETE, 12(7)-HETE, 13(7)-HODE, regions and thus, functional characterization of these genetic varia- and 15(7)-HETE from Cayman Chem. (distributed by Biomol, tionsisdifficult. However, there are scattered reports, in which the Hamburg, Germany), sodium borohydride from Aldrich (Steinheim, functionality of some genetic variations has been studied: (i) A non- Germany), ampicillin from Life Technologies, Inc. (Eggenstein, synonymous SNP in the hALOX12 gene (rs28395860) has been Germany), kanamycin and isopropyl-β-thiogalactopyranoside (IPTG) identified, which leads to a non-conservative Gln261Arg exchange. from Carl Roth GmbH (Karlsruhe, Germany). HPLC solvents were This mutation has been correlated to the pathogenesis of osteoporo- ordered from Baker (Deventer, Netherlands) or VWR International sis, breast cancer and schizophrenia [18–20].Unfortunately, func- GmbH (Darmstadt, Germany). Restriction enzymes were purchased tional data on the recombinant enzyme indicated that this mutation from Fermentas (St. Leon-Rot, Germany). Oligonucleotide synthesis did hardly impact the in vitro enzyme function [21]. (ii) Heterozygous was performed at BioTez (Berlin, Germany) and DNA sequencing was allele carriers of the hALOX15 Thr560Met SNP (rs34210653) have a carried out at Eurofins MWG Operon (Ebersberg, Germany). The E. significant higher risk for coronary artery disease (CAD) [22]. In vitro coli strain XL-1 blue was purchased from Stratagene (La Jolla, CA), the mutagenesis studies indicated that this amino acid exchange leads to E. coli strain BL21(DE3)pLysS and the fluorescent dye SYPRO Oranges anearnullvariantoftheenzymeandthemolecularbasisfortheloss were purchased from Invitrogen (Carlsbad, California, USA). The in the enzyme activity has been explored in detail [23].Asimilar EnBase fed batch system was obtained from the company Biosilta naturally occurring near null variant (rs61099320) of this enzyme has (Oulu, Finland). recently been described but because of its low occurrence frequency no epidemiological correlation study has yet been carried out [24]. (iii) Inactive enzyme variations in hALOX12B and hALOXE3 have Methods been associated with a rare skin dysfunction called autosomal recessive congenital ichthyosis (ARCI) [25]. (iv) In a recent report Recombinant expression and purification of hALOX15, hALOX5, the non-synonymous SNP rs2228065, which leads to a Glu254Lys hALOX12 and hALOX15B exchange in hALOX5, was significantly associated with a higher risk of bronchial asthma [26], whereas it was not associated with an In order to express hALOX15 as a His-tag fusion protein, the increased risk of breast cancer [27]. Unfortunately, no functional data coding region of the corresponding cDNA was first amplified by arecurrentlyavailableforthis particular enzyme variant. RT-PCR from human blood and then cloned into the pET28b Completion of the human 1000 Genome project provided an expression vector between the SalI (N-terminus) and HindIII integrated map of genetic variations in 1092 individuals from all (C-terminus) restriction sites. For the wild-type enzyme and for over the world [28] and the corresponding database (www.1000ge- each mutant a 0.5 l fed batch liquid culture (EnBase, Biosilta) of E. nomes.org) also includes a large number of genetic variations in coli BL12(DE3)pLysS was grown overnight at 30 1C until an OD600 enzymes and receptors of the arachidonic acid cascade. Although of about 15 was reached. Expression of the recombinant protein this database does not sufficiently cover the genetic diversity in all was then induced by addition of 1 mM IPTG (final concentration) parts of the world, particularly in Southeast Asia [29],itservesasa and the culture was kept for 24 h at 23 1C until a final OD600 of suitable source for detailed studies on the functionality of naturally 25–30. Bacteria were centrifuged (3,600g,41C, 10 min) and resus- occurring genetic variants of enzymes, hormones, receptors, and pended in 45 ml phosphate buffered saline (PBS). Cells were lysed structural
Recommended publications
  • Gene Expression Polarization
    Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O.
    [Show full text]
  • Bioinorganic Chemistry of Nickel
    inorganics Editorial Bioinorganic Chemistry of Nickel Michael J. Maroney 1,* and Stefano Ciurli 2,* 1 Department of Chemistry and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, 240 Thatcher Rd. Life Sciences, Laboratory Rm N373, Amherst, MA 01003, USA 2 Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale G. Fanin 40, I-40127 Bologna, Italy * Correspondence: [email protected] (M.J.M.); [email protected] (S.C.) Received: 11 October 2019; Accepted: 11 October 2019; Published: 30 October 2019 Following the discovery of the first specific and essential role of nickel in biology in 1975 (the dinuclear active site of the enzyme urease) [1], nickel has become a major player in bioinorganic chemistry,particularly in microorganisms, having impacts on both environmental settings and human pathologies. At least nine classes of enzymes are now known to require nickel in their active sites, including catalysis of redox [(Ni,Fe) hydrogenases, carbon monoxide dehydrogenase, methyl coenzyme M reductase, acetyl coenzyme A synthase, superoxide dismutase] and nonredox (glyoxalase I, acireductone dioxygenase, lactate isomerase, urease) chemistries. In addition, the dark side of nickel has been illuminated in regard to its participation in microbial pathogenesis, cancer, and immune responses. Knowledge gleaned from the investigations of inorganic chemists into the coordination and redox chemistry of this element have boosted the understanding of these biological roles of nickel in each context. In this issue, eleven contributions, including four original research articles and seven critical reviews, will update the reader on the broad spectrum of the role of nickel in biology.
    [Show full text]
  • Downloaded from GEO
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.252007; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Oxylipin metabolism is controlled by mitochondrial b-oxidation during bacterial inflammation. Mariya Misheva1, Konstantinos Kotzamanis1*, Luke C Davies1*, Victoria J Tyrrell1, Patricia R S Rodrigues1, Gloria A Benavides2, Christine Hinz1, Robert C Murphy3, Paul Kennedy4, Philip R Taylor1,5, Marcela Rosas1, Simon A Jones1, Sumukh Deshpande1, Robert Andrews1, Magdalena A Czubala1, Mark Gurney1, Maceler Aldrovandi1, Sven W Meckelmann1, Peter Ghazal1, Victor Darley-Usmar2, Daniel White1, and Valerie B O’Donnell1 1Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, UK, 2Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA, 4Cayman Chemical 1180 E Ellsworth Rd, Ann Arbor, MI 48108, United States, 5UK Dementia Research Institute at Cardiff, Cardiff University, UK Address correspondence: Valerie O’Donnell, [email protected] or Daniel White, [email protected], Systems Immunity Research Institute, Cardiff University *Both authors contributed equally to the study 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.17.252007; this version posted November 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Integrated Multivariate Analysis of Transcriptomic Data Reveals Immunological Mechanisms in Mice After Leishmania Infantum Infec
    1 Integrated multivariate analysis of transcriptomic data 2 reveals immunological mechanisms in mice after 3 Leishmania infantum infection 4 5 Génesis Palacios1, Raquel Diaz-Solano1, Basilio Valladares1,2,4, Roberto Dorta- 6 Guerra1,3, Emma Carmelo1,2,4*. 7 1 Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, 8 Universidad de la Laguna, La Laguna, Islas Canarias, Spain.2 Departamento de 9 Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, 10 Toxicología, Medicina Legal y Forense y Parasitología. 3 Departamento de 11 Matemáticas, Estadística e Investigación Operativa, Facultad de Ciencias, 12 Universidad de La Laguna, La Laguna, Spain. 4 Red de Investigación Colaborativa 13 en Enfermedades Tropicales (RICET). 14 15 16 17 18 19 20 21 1 22 SUPPLEMENTAL MATERIAL 23 Supplementary file 1. List of TaqMan assays used for RT-qPCR analysis using 24 QuantStudioTM 12K Flex Real-Time PCR System. 25 PANEL 1. N° Assay ID GEN NOMBRE DEL GEN GRUPO 1 Mm00437762_m1 B2m beta-2 microglobulin 2 Mm00446968_m1 Hprt hypoxanthine guanine phosphoribosyl transferase 3 Mm00435617_m1 Pgk1 phosphoglycerate kinase 1 Endogenous gene 4 Mm01277042_m1 Tbp TATA box binding protein expression 5 Mm01201237_m1 Ubc ubiquitin C tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation 6 Mm01722325_m1 Ywhaz protein, zeta polypeptide 7 Mm00599890_m1 Ifngr1 interferon gamma receptor 1 8 Mm00492626_m1 Ifngr2 interferon gamma receptor 2 9 Mm01168134_m1 Ifng interferon gamma 10 Mm01178820_m1 Tgfb1 transforming growth factor,
    [Show full text]
  • Interactions Between the Parasite Philasterides Dicentrarchi and the Immune System of the Turbot Scophthalmus Maximus.A Transcriptomic Analysis
    biology Article Interactions between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus.A Transcriptomic Analysis Alejandra Valle 1 , José Manuel Leiro 2 , Patricia Pereiro 3 , Antonio Figueras 3 , Beatriz Novoa 3, Ron P. H. Dirks 4 and Jesús Lamas 1,* 1 Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 2 Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] 3 Institute of Marine Research, Consejo Superior de Investigaciones Científicas-CSIC, 36208 Vigo, Spain; [email protected] (P.P.); antoniofi[email protected] (A.F.); [email protected] (B.N.) 4 Future Genomics Technologies, Leiden BioScience Park, 2333 BE Leiden, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +34-88-181-6951; Fax: +34-88-159-6904 Received: 4 September 2020; Accepted: 14 October 2020; Published: 15 October 2020 Simple Summary: Philasterides dicentrarchi is a free-living ciliate that causes high mortality in marine cultured fish, particularly flatfish, and in fish kept in aquaria. At present, there is still no clear picture of what makes this ciliate a fish pathogen and what makes fish resistant to this ciliate. In the present study, we used transcriptomic techniques to evaluate the interactions between P. dicentrarchi and turbot leucocytes during the early stages of infection. The findings enabled us to identify some parasite genes/proteins that may be involved in virulence and host resistance, some of which may be good candidates for inclusion in fish vaccines.
    [Show full text]
  • Cysteine Dioxygenase 1 Is a Metabolic Liability for Non-Small Cell Lung Cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M
    bioRxiv preprint doi: https://doi.org/10.1101/459602; this version posted November 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cysteine dioxygenase 1 is a metabolic liability for non-small cell lung cancer Authors: Yun Pyo Kang1, Laura Torrente1, Min Liu2, John M. Asara3,4, Christian C. Dibble5,6 and Gina M. DeNicola1,* Affiliations: 1 Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA 2 Proteomics and Metabolomics Core Facility, Moffitt Cancer Center and Research Institute, Tampa, FL, USA 3 Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA, USA 4 Department of Medicine, Harvard Medical School, Boston, MA, USA 5 Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Boston, MA, USA 6 Department of Pathology, Harvard Medical School, Boston, MA, USA *Correspondence to: [email protected]. Keywords: KEAP1, NRF2, cysteine, CDO1, sulfite Summary NRF2 is emerging as a major regulator of cellular metabolism. However, most studies have been performed in cancer cells, where co-occurring mutations and tumor selective pressures complicate the influence of NRF2 on metabolism. Here we use genetically engineered, non-transformed primary cells to isolate the most immediate effects of NRF2 on cellular metabolism. We find that NRF2 promotes the accumulation of intracellular cysteine and engages the cysteine homeostatic control mechanism mediated by cysteine dioxygenase 1 (CDO1), which catalyzes the irreversible metabolism of cysteine to cysteine sulfinic acid (CSA). Notably, CDO1 is preferentially silenced by promoter methylation in non-small cell lung cancers (NSCLC) harboring mutations in KEAP1, the negative regulator of NRF2.
    [Show full text]
  • The Role of Ferroptosis in Breast Cancer Patients: a Comprehensive Analysis Zeng-Hong Wu1,2, Yun Tang3,Hongyu1 and Hua-Dong Li4
    Wu et al. Cell Death Discovery (2021) 7:93 https://doi.org/10.1038/s41420-021-00473-5 Cell Death Discovery ARTICLE Open Access The role of ferroptosis in breast cancer patients: a comprehensive analysis Zeng-Hong Wu1,2, Yun Tang3,HongYu1 and Hua-Dong Li4 Abstract Breast cancer (BC) affects the breast tissue and is the second most common cause of mortalities among women. Ferroptosis is an iron-dependent cell death mode that is characterized by intracellular accumulation of reactive oxygenspecies(ROS).Weconstructed a prognostic multigene signature based on ferroptosis-associated differentially expressed genes (DEGs). Moreover, we comprehensively analyzed the role of ferroptosis-associated miRNAs, lncRNAs, and immune responses. A total of 259 ferroptosis-related genes wereextracted.KEGGfunction analysis of these genes revealed that they were mainly enriched in the HIF-1 signaling pathway, NOD-like receptor signaling pathway, central carbon metabolism in cancer, and PPAR signaling pathway. Fifteen differentially expressed genes (ALOX15, ALOX15B, ANO6, BRD4, CISD1, DRD5, FLT3, G6PD, IFNG, NGB, NOS2, PROM2, SLC1A4, SLC38A1,andTP63) were selected as independent prognostic factors for BC patients. Moreover, T cell functions, including the CCR score, immune checkpoint, cytolytic activity, HLA, inflammation promotion, para-inflammation, T cell co-stimulation, T cell co-inhibition, and type II INF responses were significantly different between the low- risk and high-risk groups of the TCGA cohort. Immune checkpoints between the two groups revealed that the expressions of PDCD-1 (PD-1), CTLA4, LAG3, TNFSF4/14, TNFRSF4/8/9/14/18/25,andIDO1/2 among others were significantly different. A total of 1185 ferroptosis-related lncRNAs and 219 ferroptosis-related miRNAs were also included in this study.
    [Show full text]
  • Quantitative Proteomics Analysis of Young and Elderly Skin with DIA Mass Spectrometry Reveals New Skin Aging-Related Proteins
    www.aging-us.com AGING 2020, Vol. 12, No. 13 Research Paper Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins Jing Ma1,2, Mengting Liu1,2, Yaochi Wang1,2, Cong Xin1,2, Hui Zhang1,2, Shirui Chen1,2, Xiaodong Zheng1,2, Xuejun Zhang1,2, Fengli Xiao1,2,3, Sen Yang1,2 1Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China 2Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China 3The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China Correspondence to: Fengli Xiao, Sen Yang; email: [email protected], [email protected] Keywords: aging, epidermal proteins, skin rejuvenation and aging, proteome, mass spectrometer Received: February 25, 2020 Accepted: May 27, 2020 Published: June 29, 2020 Copyright: Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis.
    [Show full text]
  • Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Scholarship, Research, and Creative Work at Bryn Mawr College | Bryn Mawr College... Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College Chemistry Faculty Research and Scholarship Chemistry 2018 Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C. Prendergast William Paul Malachowski Bryn Mawr College, [email protected] Arpita Mondal Peggy Scherle Alexander J. Muller Let us know how access to this document benefits ouy . Follow this and additional works at: https://repository.brynmawr.edu/chem_pubs Part of the Chemistry Commons Custom Citation George C. Prendergast, William J. Malachowski, Arpita Mondal, Peggy Scherle, and Alexander J. Muller. 2018. "Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer." International Review of Cell and Molecular Biology 336: 175-203. This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. https://repository.brynmawr.edu/chem_pubs/25 For more information, please contact [email protected]. Indoleamine 2,3-Dioxygenase and Its Therapeutic Inhibition in Cancer George C. Prendergast, William, Malachowski, Arpita Mondal, Peggy Scherle, and Alexander J. Muller International Review of Cell and Molecular Biology 336: 175-203. http://doi.org/10.1016/bs.ircmb.2017.07.004 ABSTRACT The tryptophan catabolic enzyme indoleamine 2,3-dioxygenase-1 (IDO1) has attracted enormous attention in driving cancer immunosuppression, neovascularization, and metastasis. IDO1 suppresses local CD8+ T effector cells and natural killer cells and induces CD4+ T regulatory cells (iTreg) and myeloid-derived suppressor cells (MDSC). The structurally distinct enzyme tryptophan dioxygenase (TDO) also has been implicated recently in immune escape and metastatic progression.
    [Show full text]
  • BPS Complete Catalog
    BPSCATALOG ENZYMES KITS CELL LINES SCREENING SERVICES INNOVATIVE PRODUCTS TO FUEL YOUR EXPERIMENTS Unique, expert portfolio 2017 OUR MISSION: To provide the highest quality life science products and services worldwide in a timely manner to assist in accelerating drug discovery research and development for the treatment of human diseases. INNOVATION WE CONTINUOUSLY STRIVE TO BE FIRST TO MARKET BY PROVIDING EXPERTISE IN EXPRESSING HIGHLY ACTIVE ENZYMES MULTIPLE ASSAY DETECTION FORMATS HUMAN, MURINE AND MONKEY VERSIONS OF RECOMBINANT PROTEINS BIOTINYLATED VERSIONS OF MANY IMMUNE CHECKPOINT RECEPTORS 1ST AND MOST EXTENSIVE PARP ISOZYME PORTFOLIO 1ST AND MOST EXTENSIVE PDE ISOZYME PORTFOLIO 1ST COMPLETE SUITE OF HDAC AND SIRT ENZYMES 1ST AVAILABLE PARP AND TANKYRASE PROFILING SERVICES 1ST COMMERCIALLY AVAILABLE HISTONE DEMETHYLASES LARGEST OFFERING OF METHYLTRANSFERASES LARGEST OFFERING OF DEMETHYLASES OVER 200 PRODUCTS AND SERVICES EXCLUSIVE TO BPS RELIABILITY BPS IS CITED IN PEER-REVIEWED JOURNALS AND PUBLICATIONS AROUND THE WORLD NATURE GENETICS THE JOURNAL OF BIOLOGICAL CHEMISTRY JOURNAL OF CELL SCIENCE ANALYTICAL BIOCHEMISTRY BBRC NATURE CHEMICAL BIOLOGY ACS MEDICINAL CHEMISTRY LETTERS JOURNAL OF NATURAL PRODUCTS CHEMMEDCHEM MOLECULAR CANCER THERAPEUTICS & MANY MORE TABLE OF CONTENTS ACETYLTRANSFERASE 4 APOPTOSIS 4-5 ANTIBODIES 6-9 BIOTINYLATION 10-11 BROMODOMAINS 12-14 CELL BASED ASSAY KITS 15 CELL LINES 16-17 CELL SURFACE RECEPTORS 18-20 CYTOKINE(S) 21-24 DEACETYLASE(S) 25-27 DEMETHYLASE(S) 28-29 HEAT SHOCK PROTEINS 30 IMMUNOTHERAPY
    [Show full text]
  • (ALOX15B) (NM 001039130) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC214018 15 Lipoxygenase 2 (ALOX15B) (NM_001039130) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: 15 Lipoxygenase 2 (ALOX15B) (NM_001039130) Human Tagged ORF Clone Tag: Myc-DDK Symbol: ALOX15B Synonyms: 15-LOX-2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 5 15 Lipoxygenase 2 (ALOX15B) (NM_001039130) Human Tagged ORF Clone – RC214018 ORF Nucleotide >RC214018 representing NM_001039130 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGCCGAGTTCAGGGTCAGGGTGTCCACCGGAGAAGCCTTCGGGGCTGGCACATGGGACAAAGTGTCTG TCAGCATCGTGGGGACCCGGGGAGAGAGCCCCCCACTGCCCCTGGACAATCTCGGCAAGGAGTTCACTGC GGGCGCTGAGGAGGACTTCCAGGTGACGCTCCCGGAGGACGTAGGCCGAGTGCTGCTGCTGCGCGTGCAC AAGGCGCCCCCAGTGCTGCCCCTGCTGGGGCCCCTGGCCCCGGATGCCTGGTTCTGCCGCTGGTTCCAGC TGACACCGCCGCGGGGCGGCCACCTCCTCTTCCCCTGCTACCAGTGGCTGGAGGGGGCGGGGACCCTGGT GCTGCAGGAGGGTACAGCCAAGGTGTCCTGGGCAGACCACCACCCTGTGCTCCAGCAACAGCGCCAGGAG GAGCTTCAGGCCCGGCAGGAGATGTACCAGTGGAAGGCTTACAACCCAGGTTGGCCTCACTGCCTGGATG AAAAGACAGTGGAAGACTTGGAGCTCAATATCAAATACTCCACAGCCAAGAATGCCAACTTTTATCTACA
    [Show full text]
  • Meta-Analysis of Mutations in ALOX12B Or ALOXE3 Identified in a Large Cohort of 224 Patients
    University of Groningen Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients Hotz, Alrun; Kopp, Julia; Bourrat, Emmanuelle; Oji, Vinzenz; Komlosi, Katalin; Giehl, Kathrin; Bouadjar, Bakar; Bygum, Anette; Tantcheva-Poor, Iliana; Hellstrom Pigg, Maritta Published in: Genes DOI: 10.3390/genes12010080 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2021 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Hotz, A., Kopp, J., Bourrat, E., Oji, V., Komlosi, K., Giehl, K., Bouadjar, B., Bygum, A., Tantcheva-Poor, I., Hellstrom Pigg, M., Has, C., Yang, Z., Irvine, A. D., Betz, R. C., Zambruno, G., Tadini, G., Suessmuth, K., Gruber, R., Schmuth, M., ... Fischer, J. (2021). Meta-Analysis of Mutations in ALOX12B or ALOXE3 Identified in a Large Cohort of 224 Patients. Genes, 12(1), [80]. https://doi.org/10.3390/genes12010080 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal.
    [Show full text]