The Potential of 2-Aza-8-Oxohypoxanthine As a Cosmetic Ingredient

Total Page:16

File Type:pdf, Size:1020Kb

The Potential of 2-Aza-8-Oxohypoxanthine As a Cosmetic Ingredient cosmetics Article The Potential of 2-aza-8-Oxohypoxanthine as a Cosmetic Ingredient Hisae Aoshima 1,*, Masayuki Ito 1, Rinta Ibuki 1 and Hirokazu Kawagishi 2,3,4,* 1 Department of Research and Development, Vitamin C60 BioResearch Corp, Nihonbashidori-Nichoume Bldg, 4F 2-2-6 Nihonbashi Chuo-ku, Tokyo 103-0027, Japan; [email protected] (M.I.); [email protected] (R.I.) 2 Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan 3 Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan 4 Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan * Correspondence: [email protected] (H.A.); [email protected] (H.K.) Abstract: In this study, we verified the effects of 2-aza-8-oxohypoxanthine (AOH) on human epi- dermal cell proliferation by performing DNA microarray analysis. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, which measures mito- chondrial respiration in normal human epidermal keratinocyte (NHEK) cells. Gene expression levels were determined by DNA microarray analysis of 177 genes involved in skin aging and disease. AOH showed a significant increase in cell viability at concentrations between 7.8 and 31.3 µg/mL and a significant decrease at concentrations above 250 µg/mL. DNA microarray analysis showed that Citation: Aoshima, H.; Ito, M.; Ibuki, AOH significantly increased the gene expression of CLDN1, DSC1, DSG1, and CDH1 (E-cadherin), R.; Kawagishi, H. The Potential of which are involved in intercellular adhesion and skin barrier functioning. AOH also up-regulated 2-aza-8-Oxohypoxanthine as a the expression of KLK5, KLK7, and SPIMK5, which are proteases involved in stratum corneum Cosmetic Ingredient. Cosmetics 2021, detachment. Furthermore, AOH significantly stimulated the expression of KRT1, KRT10, TGM1, 8, 60. https://doi.org/10.3390/ and IVL, which are considered general differentiation indicators, and that of SPRR1B, a cornified cosmetics8030060 envelope component protein. AOH exerted a cell activation effect on human epidermal cells. Since AOH did not cause cytotoxicity, it was considered that the compound had no adverse effects on the Academic Editors: skin. In addition, it was found that AOH stimulated the expression levels of genes involved in skin Mohamad Goldust, Martin Kassir and George Kroumpouzos barrier functioning by DNA microarray analysis. Therefore, AOH has the potential for practical use as a cosmetic ingredient. This is the first report of efficacy evaluation tests performed for AOH. Received: 20 May 2021 Accepted: 22 June 2021 Keywords: fairy chemical; 2-aza-8-oxohypoxanthine; microarray analysis; skin barrier function Published: 25 June 2021 Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in 1. Introduction published maps and institutional affil- Turfgrass occasionally grows in the shape of a ring, with thicker growth than the iations. surrounding grass, and thereafter, mushrooms form in the same circle (Figure1). This phenomenon, which occurs on lawns in parks and golf courses, is called “fairy rings.” In Western legend, it is said that fairies make these circles and dance inside of them [1–3]. Since the first paper on “fairy rings” published in 1675 and the subsequent papers were Copyright: © 2021 by the authors. introduced in Nature in 1875, the cause of the phenomenon had remained a mystery for Licensee MDPI, Basel, Switzerland. a long time until our finding on “fairy chemicals” [4]. We cultured the hyphae of one of This article is an open access article the fairy-ring-forming fungi, Lepista sordida, and discovered a plant growth stimulator, distributed under the terms and 2-azahypoxanthine (AHX), in the culture broth. We also found imidazole-4-carboxamide conditions of the Creative Commons (ICA), which suppressed the growth of turfgrass from the broth [5,6]. Furthermore, it Attribution (CC BY) license (https:// has been revealed that AHX was converted into 2-aza-8-oxohypoxanthine (AOH) when creativecommons.org/licenses/by/ absorbed into plants (Figure2)[ 7]. We named AHX, ICA, and AOH as fairy chemicals 4.0/). Cosmetics 2021, 8, 60. https://doi.org/10.3390/cosmetics8030060 https://www.mdpi.com/journal/cosmetics Cosmetics 2021, 8, x FOR PEER REVIEW 2 of 9 Cosmetics 2021, 8, x FOR PEER REVIEW 2 of 9 Cosmetics 2021, 8, 60 2 of 8 been revealed that AHX was converted into 2-aza-8-oxohypoxanthine (AOH) when ab- sorbed into plants (Figure 2) [7]. We named AHX, ICA, and AOH as fairy chemicals (FCs) afterbeen the revealed title of that the AHXarticle w inas Natureconverted that into covered 2-aza -our8-oxohypoxanthine study [8]. Subsequent (AOH) studieswhen ab- have sorbed(FCs) into after plants the title (Figure of the 2) article [7]. We in Nature namedthat AHX, covered ICA, our and study AOH [ 8as]. Subsequentfairy chemicals studies (FCs) demonstratedhave demonstrated that FCs that endogenously FCs endogenously exist existin all in the all theplants plants tested, tested, including including edible edible parts ofafter three the major title of cereal the article crops, in rice,Nature wheat, that coveredand corn our [7]; study thus, [8]. people Subsequent have eatenstudies FCs have for a demonstratedparts of three that major FCs cereal endogenously crops, rice, wheat,exist in and all cornthe plants [7]; thus, tested, people including have eaten edible FCs forparts longa longtime. time. Furthermore, Furthermore, FCs FCs increased increased the the yieldsof of rice, rice, wheat, wheat, and and other other crops crops under under of three major cereal crops, rice, wheat, and corn [7]; thus, people have eaten FCs for a fieldfield and and greenhouse greenhouse conditions conditions [[5,9,105,9,10].]. These These results results suggest suggest that that FCs FCs are aare new a new family family long time. Furthermore, FCs increased the yields of rice, wheat, and other crops under of plantof plant hormones hormones [11,12 [11,12].]. field and greenhouse conditions [5,9,10]. These results suggest that FCs are a new family of plant hormones [11,12]. Figure 1. FigureFairy rings 1. Fairy appearing rings appearing on golf on course golf course grass. grass. Figure 1. Fairy rings appearing on golf course grass. FigureFigureFigure 2. 2.Structures Structures 2. Structures of of (a of()a ) (2 a-2)azahypoxanthine- 2-azahypoxanthineazahypoxanthine (AHX),(AHX), (AHX), ( (bb)) imidazole imidazole-4-carboxamideimidazole-4-4-carboxamide-carboxamide (ICA),(ICA), (ICA), ( c()c 2-aza-8-oxohypoxanthine)( c2)- aza2-aza-8--oxohypoxanthine8-oxohypoxanthine (AOH),(AOH),(AOH), and and kinetin. and kinetin. kinetin. Kinetin (N6-furfuryladenine) is a member of the cytokinin plant growth hormone KinetinKinetin (N6(N6--furfuryladenine)furfuryladenine) isis aa membermember of of the the cytokinin cytokinin plant plant growth growth hormone hormone familyfamily and and is isknown known for for its its growth growth-promoting-promoting and anti-aginganti-aging effects effects on on plants plants (Figure (Figure2). 2). familyStanley and B. is Levy known of the for Revlon its growth Consumer-promoting Products and Corporation anti-aging stated effects that on kinetin plants is(Figure also 2). Stanley B. Levy of the Revlon Consumer Products Corporation stated that kinetin is also Stanleyuseful B. against Levy humanof the Revlon skin aging Consumer [13]. Many Pro studiesducts have Corporation reported the stated anti-aging that kinetin effects of is also useful against human skin aging [13]. Many studies have reported the anti-aging effects usefulkinetin against on human human skin skin cells aging in clinical [13]. trials Many [14 –studies18]. Therefore, have reported kinetin is the currently anti-aging used aseffects of kinetin on human skin cells in clinical trials [14–18]. Therefore, kinetin is currently used of kinetinan ingredient on human in cosmetics skin cells and in cosmeceuticals. clinical trials [14 Similar–18]. to Therefore, kinetin, FCs kinetin also have is currently a purine used as an ingredient in cosmetics and cosmeceuticals. Similar to kinetin, FCs also have a pu- as ancarbon ingredient skeleton in (Figure cosmet2)ics and and regulate cosmeceuticals. plant growth. Similar Therefore, to kinetin, we thought FCs also that have FCs a pu- rine carbon skeleton (Figure 2) and regulate plant growth. Therefore, we thought that FCs rinemight carbon have skeleton similar ( effectsFigure to 2) kinetin and regulate on human plant skin growth. cells and Therefore, examined them.we thought First of that all, FCs mightthe safety have ofsimilar FCs was effects evaluated. to kinetin AOH on yieldedhuman theskin best cells result and andexamined showed them. no toxicity First of in all, mightthe safety have of similar FCs was effects evaluated. to kinetin AOH on yielded human the skin best cells result and and examined showed them. no toxicity First of in all, the safety of FCs was evaluated. AOH yielded the best result and showed no toxicity in Cosmetics 2021, 8, 60 3 of 8 any of the safety evaluations for cosmetic applications, including Ames test, skin irritation, skin sensitization (DPRA), in vitro phototoxicity tests, and human patch tests [19]. In this study, we focused on AOH and evaluated the viability of normal human epidermal keratinocyte (NHEK) cells to verify the potential of AOH as a cosmetic ingredient. In addition, DNA microarray analysis was performed to analyze the effects of AOH on the skin comprehensively. 2. Materials and Methods 2.1. Chemicals and Reagents AOH was synthesized from 5-aminoimidazole-4-carboxamide as previously described [7,20,21]. NHEKs (Kurabo Industries Ltd., Osaka, Japan) were cultured in HuMedia KG2 (KG2) and HuMedia KB2 (KB2) media (Kurabo Industries Ltd.). 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 2-propanol were pur- chased from Kanto Chemical Co., Inc. (Tokyo, Japan). QIAzol Lysis Reagent and an miRNeasy Mini Kit were purchased from QIAGEN (Hilden, Germany).
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • P190a Rhogap Induces CDH1 Expression and Cooperates with E-Cadherin to Activate LATS Kinases and Suppress Tumor Cell Growth
    p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth Ouyang, Hanyue; Luong, Phi; Frödin, Morten; Hansen, Steen H. Published in: Oncogene DOI: 10.1038/s41388-020-1385-2 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Ouyang, H., Luong, P., Frödin, M., & Hansen, S. H. (2020). p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth. Oncogene, 39(33), 5570- 5587. https://doi.org/10.1038/s41388-020-1385-2 Download date: 05. okt.. 2021 Oncogene (2020) 39:5570–5587 https://doi.org/10.1038/s41388-020-1385-2 ARTICLE p190A RhoGAP induces CDH1 expression and cooperates with E-cadherin to activate LATS kinases and suppress tumor cell growth 1 1 2 1 Hanyue Ouyang ● Phi Luong ● Morten Frödin ● Steen H. Hansen Received: 26 March 2020 / Revised: 9 June 2020 / Accepted: 29 June 2020 / Published online: 8 July 2020 © The Author(s) 2020. This article is published with open access Abstract The ARHGAP35 gene encoding p190A RhoGAP (p190A) is significantly altered by both mutation and allelic deletion in human cancer, but the functional implications of such alterations are not known. Here, we demonstrate for the first time that p190A is a tumor suppressor using a xenograft mouse model with carcinoma cells harboring defined ARHGAP35 alterations. In vitro, restoration of p190A expression in carcinoma cells promotes contact inhibition of proliferation (CIP) through activation of LATS kinases and phosphorylation of the proto-oncogenic transcriptional co-activator YAP.
    [Show full text]
  • The Schizosaccharomyces Pombe Cdt2 Gene, a Target of G1-S Phase-Specific Transcription Factor Complex DSC1, Is Required for Mito
    Copyright 2003 by the Genetics Society of America The Schizosaccharomyces pombe cdt2؉ Gene, a Target of G1-S Phase-Specific Transcription Factor Complex DSC1, Is Required for Mitotic and Premeiotic DNA Replication Shu-hei Yoshida,* Hiba Al-Amodi,† Taro Nakamura,* Christopher J. McInerny† and Chikashi Shimoda*,1 *Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan and †Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom Manuscript received November 16, 2002 Accepted for publication March 24, 2003 ABSTRACT We have defined five sev genes by genetic analysis of Schizosaccharomyces pombe mutants, which are defective in both proliferation and sporulation. sev1 ϩ/cdt2 ϩ was transcribed during the G1-S phase of the mitotic cell cycle, as well as during the premeiotic S phase. The mitotic expression of cdt2 ϩ was regulated by the MCB-DSC1 system. A mutant of a component of DSC1 affected cdt2 ϩ expression in vivo, and a cdt2 ϩ promoter fragment containing MCB motifs bound DSC1 in vitro. Cdt2 protein also accumulated in S phase and localized to the nucleus. cdt2 null mutants grew slowly at 30Њ and were unable to grow at 19Њ. These cdt2 mutants were also medially sensitive to hydroxyurea, camptothecin, and 4-nitroquinoline- 1-oxide and were synthetically lethal in combination with DNA replication checkpoint mutations. Flow cytometry analysis and pulsed-field gel electrophoresis revealed that S-phase progression was severely retarded in cdt2 mutants, especially at low temperatures. Under sporulation conditions, premeiotic DNA replication was impaired with meiosis I blocked.
    [Show full text]
  • Similarities and Differences in Extracellular Vesicle Profiles
    biomedicines Article Similarities and Differences in Extracellular Vesicle Profiles between Ischaemic Stroke and Myocardial Infarction Laura Otero-Ortega 1,† , Elisa Alonso-López 1,† , María Pérez-Mato 1,†, Fernando Laso-García 1,† , Mari Carmen Gómez-de Frutos 1 , Luke Diekhorst 1 , María Laura García-Bermejo 2, Elisa Conde-Moreno 2 , Blanca Fuentes 1, María Alonso de Leciñana 1 , Eduardo Armada 3, Lorena Buiza-Palomino 4, Exuperio Díez-Tejedor 1,‡ and María Gutiérrez-Fernández 1,*,‡ 1 Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neuroscience Area of IdiPAZ, Hospital La Paz Institute for Health Research–IdiPAZ, La Paz University Hospital, Universidad Autónoma de Madrid, 28046 Madrid, Spain; [email protected] (L.O.-O.); [email protected] (E.A.-L.); [email protected] (M.P.-M.); [email protected] (F.L.-G.); [email protected] (M.C.G.-d.F.); [email protected] (L.D.); [email protected] (B.F.); [email protected] (M.A.d.L.); [email protected] (E.D.-T.) 2 Biomarkers and Therapeutic Targets Unit, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; [email protected] (M.L.G.-B.); [email protected] (E.C.-M.) 3 Acute Cardiac Care Unit, Cardiology Department, IdiPAZ Health Research Institute, 28046 Madrid, Spain; [email protected] 4 Clinical Analysis Department, La Paz University Hospital, 28046 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-207-1028 † These authors share first author position. ‡ These authors contributed equally to this work. Citation: Otero-Ortega, L.; Abstract: Extracellular vesicles (EVs) are involved in intercellular signalling through the transfer of Alonso-López, E.; Pérez-Mato, M.; molecules during physiological and pathological conditions, such as ischaemic disease.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Rat Cell Junction PathwayFinder Cat. no. 330231 PARN-213ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Rat Cell Junction PathwayFinder RT² Profiler PCR Array profiles the expression of 84 key genes encoding components of various subcellular macromolecular structures connecting cells to each other or to the extracellular matrix (ECM). Cell junctions include focal adhesions, tight junctions, gap junctions, adherens junctions, desmosomes, and hemidesmosomes, and each one plays a specific role in adhesion, communication, and transduction of mechanical force. Tight junctions seal adjacent epithelial cells together, preventing the passage of most dissolved molecules as well as membrane-bound lipids and proteins between the apical and basolateral epithelial surfaces.
    [Show full text]
  • MALE Protein Name Accession Number Molecular Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean H Mean PDAC Mean T-Test PDAC Vs. H T-Test
    MALE t-test t-test Accession Molecular H PDAC PDAC vs. PDAC vs. Protein Name Number Weight CP1 CP2 H1 H2 PDAC1 PDAC2 CP Mean Mean Mean H CP PDAC/H PDAC/CP - 22 kDa protein IPI00219910 22 kDa 7 5 4 8 1 0 6 6 1 0.1126 0.0456 0.1 0.1 - Cold agglutinin FS-1 L-chain (Fragment) IPI00827773 12 kDa 32 39 34 26 53 57 36 30 55 0.0309 0.0388 1.8 1.5 - HRV Fab 027-VL (Fragment) IPI00827643 12 kDa 4 6 0 0 0 0 5 0 0 - 0.0574 - 0.0 - REV25-2 (Fragment) IPI00816794 15 kDa 8 12 5 7 8 9 10 6 8 0.2225 0.3844 1.3 0.8 A1BG Alpha-1B-glycoprotein precursor IPI00022895 54 kDa 115 109 106 112 111 100 112 109 105 0.6497 0.4138 1.0 0.9 A2M Alpha-2-macroglobulin precursor IPI00478003 163 kDa 62 63 86 72 14 18 63 79 16 0.0120 0.0019 0.2 0.3 ABCB1 Multidrug resistance protein 1 IPI00027481 141 kDa 41 46 23 26 52 64 43 25 58 0.0355 0.1660 2.4 1.3 ABHD14B Isoform 1 of Abhydrolase domain-containing proteinIPI00063827 14B 22 kDa 19 15 19 17 15 9 17 18 12 0.2502 0.3306 0.7 0.7 ABP1 Isoform 1 of Amiloride-sensitive amine oxidase [copper-containing]IPI00020982 precursor85 kDa 1 5 8 8 0 0 3 8 0 0.0001 0.2445 0.0 0.0 ACAN aggrecan isoform 2 precursor IPI00027377 250 kDa 38 30 17 28 34 24 34 22 29 0.4877 0.5109 1.3 0.8 ACE Isoform Somatic-1 of Angiotensin-converting enzyme, somaticIPI00437751 isoform precursor150 kDa 48 34 67 56 28 38 41 61 33 0.0600 0.4301 0.5 0.8 ACE2 Isoform 1 of Angiotensin-converting enzyme 2 precursorIPI00465187 92 kDa 11 16 20 30 4 5 13 25 5 0.0557 0.0847 0.2 0.4 ACO1 Cytoplasmic aconitate hydratase IPI00008485 98 kDa 2 2 0 0 0 0 2 0 0 - 0.0081 - 0.0
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Cell Adhesion Molecules in Normal Skin and Melanoma
    biomolecules Review Cell Adhesion Molecules in Normal Skin and Melanoma Cian D’Arcy and Christina Kiel * Systems Biology Ireland & UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +353-1-716-6344 Abstract: Cell adhesion molecules (CAMs) of the cadherin, integrin, immunoglobulin, and selectin protein families are indispensable for the formation and maintenance of multicellular tissues, espe- cially epithelia. In the epidermis, they are involved in cell–cell contacts and in cellular interactions with the extracellular matrix (ECM), thereby contributing to the structural integrity and barrier for- mation of the skin. Bulk and single cell RNA sequencing data show that >170 CAMs are expressed in the healthy human skin, with high expression levels in melanocytes, keratinocytes, endothelial, and smooth muscle cells. Alterations in expression levels of CAMs are involved in melanoma propagation, interaction with the microenvironment, and metastasis. Recent mechanistic analyses together with protein and gene expression data provide a better picture of the role of CAMs in the context of skin physiology and melanoma. Here, we review progress in the field and discuss molecular mechanisms in light of gene expression profiles, including recent single cell RNA expression information. We highlight key adhesion molecules in melanoma, which can guide the identification of pathways and Citation: D’Arcy, C.; Kiel, C. Cell strategies for novel anti-melanoma therapies. Adhesion Molecules in Normal Skin and Melanoma. Biomolecules 2021, 11, Keywords: cadherins; GTEx consortium; Human Protein Atlas; integrins; melanocytes; single cell 1213. https://doi.org/10.3390/ RNA sequencing; selectins; tumour microenvironment biom11081213 Academic Editor: Sang-Han Lee 1.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Transcriptome Profiling and Differential Gene Expression In
    G C A T T A C G G C A T genes Article Transcriptome Profiling and Differential Gene Expression in Canine Microdissected Anagen and Telogen Hair Follicles and Interfollicular Epidermis Dominique J. Wiener 1,* ,Kátia R. Groch 1 , Magdalena A.T. Brunner 2,3, Tosso Leeb 2,3 , Vidhya Jagannathan 2 and Monika M. Welle 3,4 1 Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Science, Texas A&M University, College Station, TX 77843, USA; [email protected] 2 Institute of Genetics, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; [email protected] (M.A.T.B.); [email protected] (T.L.); [email protected] (V.J.) 3 Dermfocus, Vetsuisse Faculty, University Hospital of Bern, 3010 Bern, Switzerland; [email protected] 4 Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland * Correspondence: [email protected]; Tel.: +1-979-862-1568 Received: 30 June 2020; Accepted: 3 August 2020; Published: 4 August 2020 Abstract: The transcriptome profile and differential gene expression in telogen and late anagen microdissected hair follicles and the interfollicular epidermis of healthy dogs was investigated by using RNAseq. The genes with the highest expression levels in each group were identified and genes known from studies in other species to be associated with structure and function of hair follicles and epidermis were evaluated. Transcriptome profiling revealed that late anagen follicles expressed mainly keratins and telogen follicles expressed GSN and KRT15. The interfollicular epidermis expressed predominately genes encoding for proteins associated with differentiation. All sample groups express genes encoding for proteins involved in cellular growth and signal transduction.
    [Show full text]