Chem. Pharm. Bull. Regular Article UHPLC/MS and NMR

Total Page:16

File Type:pdf, Size:1020Kb

Chem. Pharm. Bull. Regular Article UHPLC/MS and NMR Chemical and Pharmaceutical Bulletin Advance Publication by J-STAGE Advance Publication DOI:10.1248/cpb.c21-00180 May 21, 2021 1 Chem. Pharm. Bull. 2 3 Regular Article 4 5 UHPLC/MS and NMR-Based Metabolomic Analysis of Dried Water Extract of 6 Citrus-Type Crude Drugs 7 8 Takashi Tsujimotoa,b, Ryoko Araia, Taichi Yoshitomia,c, Yutaka Yamamotod, 9 Yoshihiro Ozekib, Takashi Hakamatsukaa and Nahoko Uchiyamaa*1 10 11 aNational Institute of Health Sciences; 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki, 12 Kanagawa 210-9501, Japan: 13 bTokyo University of Agriculture and Technology; 2–24–16 Naka-cho, Koganei, Tokyo 14 184–8588, Japan: 15 cKanagawa Prefectural Institute of Public Health, 1-3-1 Shimomachiya, Chigasaki, 16 Kanagawa 253-0087, Japan: and 17 dTochimoto Tenkaido Co., Ltd.; Oniya Kaibara-cho, Tamba , Hyogo 669-3315, Japan 18 * To whom correspondence should be addressed;. e-mail: [email protected] Ⓒ 2021 The Pharmaceutical Society of Japan 19 Summary 20 Citrus-type crude drugs (CCDs) are commonly used to formulate decoctions in Kampo 21 formula (traditional Japanese medicine). Our previous study reported metabolomic 22 analyses for differentiation of the methanol extracts of Citrus-type crude drugs (CCDs) 23 using UHPLC/MS, and 13C- and 1H-NMR. The present study expanded the scope of its 24 application by analyzing four CCD water extracts (Kijitsu, Tohi, Chimpi, and Kippi); 25 these CCDs are usually used as decoction ingredients in the Kampo formula. A principal 26 component analysis score plot of processed UPLC/MS and NMR analysis data indicated 27 that the CCD water extracts could be classified into three groups. The loading plots 28 showed that naringin and neohesperidin were the distinguishing components. Three 29 primary metabolites, α-glucose, β-glucose, and sucrose were identified as distinguishing 30 compounds by NMR spectroscopy. During the preparation of CCD dry extracts, some 31 compounds volatilized or decomposed. Consequently, fewer compounds were detected 32 than in our previous studies using methanol extract. However, these results suggested 33 that the combined NMR- and LC/MS-based metabolomics can discriminate crude drugs 34 in dried water extracts of CCDs. 35 Keywords: metabolomics; nuclear magnetic resonance; crude drug; citrus; liquid 36 chromatography/mass spectrometry; dried water extract. 37 Chemical and Pharmaceutical Bulletin Advance Publication 38 Introduction 39 In Japan, crude drugs are obtained from medicinal parts of plants or animals, cells, 40 secretions, extracts, and minerals.1,2) Numerous factors can affect the quality of these 41 crude drugs including their botanical origin, geographical divergence, growth conditions, 42 and processing method. The stable provision of crude drugs with reproducible medicinal 43 value is the first step towards establishing the global acceptance and use of traditional 44 Japanese medicines. The methods used to assure the quality of crude drugs include 1) 45 morphological methods, 2) chemical methods, and 3) genotype confirmation. The 46 chemical method involves qualitative and quantitative analyses of index components. 47 Metabolomics has gained importance in recent years as a strategy for quality evaluation 48 and control of crude drugs and the predictable reliability, quality, and efficacy of herbal 49 medicines. Metabolomics is also useful for the classification and identification of 50 natural products containing various organic compounds.3) Metabolomic studies employ 51 various analytical methods such as LC/MS,4) GC/MS,5) and NMR.6) Although LC/MS 52 and GC/MS-based metabolomics are considered superior due to sensitivity and 53 resolution, identification of marker compounds is difficult because of the structural 54 diversity of secondary metabolites of crude drugs. In contrast, NMR-based 55 metabolomics enables the determination or estimation of the structure of marker 56 compounds directly from their chemical shifts and coupling patterns. Thus, it is 57 recommended that all organic compounds with hydrogen or carbon atoms that are 58 difficult to analyze using LC/MS and GC/MS should be characterized by NMR-based Chemical and Pharmaceutical Bulletin Advance Publication 59 metabolomic studies. 60 In our previous studies, we reported the metabolomic analyses of the methanol extracts 61 of five Citrus-type crude drugs (CCDs) using 13C- and 1H- NMR.7) We found that 62 13C-NMR-based metabolomics could be an effective method for the differentiation of 63 the five CCDs. We also compared the results from the metabolomic analysis done using 64 LC/MS and 13C-NMR techniques, illustrating differences between these analytical 65 methods;8) the study suggested that 13C-NMR metabolomics could be used for quality 66 control of crude drugs by cross-discrimination.7) Since there have been no reports on 67 13C-NMR metabolomics using processed crude drugs, we considered expanding the 68 application of this method to the discrimination studies of processed crude drugs. In the 69 present study, a metabolomic study on the differentiation of the dried boiling water 70 extracts of citrus-type crude drugs (CCDs water extracts) was conducted to evaluate 71 their quality. We performed UHPLC/MS and 13C- and 1H- NMR analyses of CCD water 72 extracts because these are usually used as the ingredient of decoction in the Kampo 73 formula. In Japan, six types of CCDs derived from the dried peels or fruits of Citrus 74 plants are regulated by the Japanese Pharmacopoeia1) and the Japanese Standards for 75 Non-pharmacopoeial Crude Drugs (non-JP crude drug standards).2) Their attributes are 76 summarized in Supporting Information (Table S1). Herein, we investigated the 77 discrimination of CCD water extracts using four of the six CCDs that are widely used in 78 various applications. 79 Chemical and Pharmaceutical Bulletin Advance Publication 80 Results and discussions 81 Overview of UHPLC/MS 82 A total of 33 CCD water extracts were analyzed in the present study (Table S2, 83 Supporting Information). Initially, 13 compounds were detected using UHPLC/MS 84 analysis and identified by direct comparison with standards or assignments of their 85 high-resolution MS and tandem MS (MS/MS) spectra (Fig. 1). The (+)-UHPLC/MS 86 chromatograms of four types of CCD water extracts are presented in Fig. 2a-d. In the 87 chromatogram of Kijitsu (Fig. 2a), characteristic flavanone neohesperidosides such as 88 naringin (1),9) neohesperidin (2),10) and melitizine (3);11) coumarin derivatives meranzin 89 hydrate (4),12) meranzin (5),13) polymethoxyflavones nobiletin (6),14) and tangeretin 90 (7)15) were observed. In the chromatogram of Tohi (Fig. 2b), two additional compounds 91 to those in Kijitsu were detected, namely neoeriocirin (8)16) and meranzin glucoside 92 (9).17) Flavanone rutinosides, narirutin (10)18) and hesperidin (11),18) and one 93 polymethoxyflavone - 3,5,6,7,8,3',4'-heptamethoxyflavone (12)19) were detected in the 94 chromatograms of Chimpi (Fig. 2c) and Kippi (type 2, Fig. 2d). 95 (-)-UHPLC/MS chromatograms of four types of CCD water extracts are presented in 96 Fig. S1a-d. In the (-)-UHPLC/MS chromatograms of Kijitsu and Tohi, 1, 2, 3, and 8 97 were detected (Fig. S1a-b). An acylated flavanone glycoside brutieridin (13)11) was 98 detected in (-)-UHPLC/MS chromatograms of Kijitsu and Tohi (Fig. S1a-b). 99 100 Overview of 13C- and 1H- NMR Chemical and Pharmaceutical Bulletin Advance Publication 101 The evaluation of the constituents of each CCD water extract using the 13C- and 102 1H-NMR spectra was carried out and the signals of their characteristic constituents were 103 assigned. The structures of the five compounds identified in the NMR analysis are 104 presented in Fig. 1. 105 The C-NMR spectra of the CCD water extracts are presented in Fig. 3a–3d. In the 106 range of 110–210 ppm (aromatic region), flavanone compounds were found in Kijitsu 107 and Tohi (Fig. 3a and 3b). Specifically, aromatic carbon signals from the flavanone 108 skeleton corresponding to naringenin (an aglycon of 1 (118 and 130 ppm)) and 109 hesperetin (an aglycon of 2 (115, 120, and 150 ppm)) were observed in the spectra of 110 Kijitsu (around 165 ppm and 200 ppm, Fig. 3a). 111 In the range of 55–110 ppm (heteroatom-connected region), carbohydrate compounds 112 were found in Tohi, Chimpi, and Kippi (Fig. 3b–3d). In contrast, the carbon signals of a 113 glycoside neohesperidose (101 and 106 ppm) (a disaccharide included in 1 and 2) were 114 observed in the spectra of Kijitsu (Fig. 3a) and Tohi (Fig. 3b). For Tohi, Chimpi, and 115 Kippi (2) prepared from matured peels, the carbon signals of sucrose (14) (107 ppm) 116 and glucose (15) (95 and 100 ppm) were confirmed (Fig. 3b–3d). Compound 14 was 117 abundant in Tohi (Fig. 3b) while 15 (95 and 100 ppm) was abundant in the spectra of 118 Chimpi (Fig. 3c) and Kippi (type 2, Fig. 3d). 119 In the aliphatic region, a flavanone skeleton (corresponding to the naringenin skeleton, 120 45 ppm, C-3) was observed. The methyl group at the 6th position of rhamnose (20 ppm) Chemical and Pharmaceutical Bulletin Advance Publication 121 included in 1 and 2 was detected in the spectra of Kijitsu (Fig. 3a). In the spectra of Tohi 122 (Fig. 3b) and Kippi (type 2, Fig. 3d), the aliphatic carbon signals of proline (16) were 123 detected (26 and 32 ppm). 124 The full range 1H-NMR spectra of the four types of CCD water extracts are presented in 125 Fig. S2 a - d; compounds 1, 2, 14, and 15 were identified (Fig. 1). There were fewer 126 compounds detected using water extract compared with our previous studies using 127 MeOH extract.7,8) This could be attributed to the volatilization or decomposition of 128 some of the compounds during the preparation of the CCDs dry extracts.
Recommended publications
  • Like Catalysis and Structural Resolution of Natural Products by a Metalâ
    ARTICLE https://doi.org/10.1038/s41467-020-16699-3 OPEN Hydrolase–like catalysis and structural resolution of natural products by a metal–organic framework ✉ Marta Mon1,4, Rosaria Bruno 2,4, Sergio Sanz-Navarro3,4, Cristina Negro1, Jesús Ferrando-Soria 1 , ✉ Lucia Bartella2, Leonardo Di Donna2, Mario Prejanò2, Tiziana Marino2, Antonio Leyva-Pérez 3 , ✉ ✉ Donatella Armentano 2 & Emilio Pardo 1 The exact chemical structure of non–crystallising natural products is still one of the main 1234567890():,; challenges in Natural Sciences. Despite tremendous advances in total synthesis, the absolute structural determination of a myriad of natural products with very sensitive chemical func- tionalities remains undone. Here, we show that a metal–organic framework (MOF) with alcohol–containing arms and adsorbed water, enables selective hydrolysis of glycosyl bonds, supramolecular order with the so–formed chiral fragments and absolute determination of the organic structure by single–crystal X–ray crystallography in a single operation. This combined strategy based on a biomimetic, cheap, robust and multigram available solid catalyst opens the door to determine the absolute configuration of ketal compounds regardless degradation sensitiveness, and also to design extremely–mild metal–free solid–catalysed processes without formal acid protons. 1 Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, 46980 Paterna, Valencia, Spain. 2 Dipartimento di Chimica e Tecnologie Chimiche (CTC), Università Della Calabria, 87036 Rende, Cosenza, Italy. 3 Instituto
    [Show full text]
  • Chemical Profiles and Simultaneous Quantification of Aurantii Fructus By
    molecules Article Chemical Profiles and Simultaneous Quantification of Aurantii fructus by Use of HPLC-Q-TOF-MS Combined with GC-MS and HPLC Methods Yingjie He 1,2,† ID , Zongkai Li 3,†, Wei Wang 2, Suren R. Sooranna 4 ID , Yiting Shi 2, Yun Chen 2, Changqiao Wu 2, Jianguo Zeng 1,2, Qi Tang 1,2,* and Hongqi Xie 1,2,* 1 Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; [email protected] (Y.H.); [email protected] (J.Z.) 2 National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China; [email protected] (W.W.); [email protected] (Y.S.); [email protected] (Y.C.); [email protected] (C.W.) 3 School of Medicine, Guangxi University of Science and Technology, Liuzhou 565006, China; [email protected] 4 Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London SW10 9NH, UK; [email protected] * Correspondence: [email protected] (Q.T.); [email protected] (H.X.); Fax: +86-0731-8461-5293 (H.X.) † These authors contributed equally to this work. Received: 1 August 2018; Accepted: 29 August 2018; Published: 30 August 2018 Abstract: Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification of the basic chemical components and comprehensive quality control of this herb. In this study, high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was developed to determine the major biochemical markers from AF extract.
    [Show full text]
  • High Biological Value Compounds Extraction from Citrus Waste with Non-Conventional Methods
    foods Review High Biological Value Compounds Extraction from Citrus Waste with Non-Conventional Methods Mayra Anticona, Jesus Blesa , Ana Frigola and Maria Jose Esteve * Nutrition and Food Chemistry, University of Valencia, Avda., Vicent Andrés Estellés, s/n., 46100 Burjassot, Spain; [email protected] (M.A.); [email protected] (J.B.); [email protected] (A.F.) * Correspondence: [email protected]; Tel.: +34-963544913 Received: 27 April 2020; Accepted: 15 June 2020; Published: 20 June 2020 Abstract: Citrus fruits are extensively grown and much consumed around the world. Eighteen percent of total citrus cultivars are destined for industrial processes, and as a consequence, large amounts of waste are generated. Citrus waste is a potential source of high biological value compounds, which can be used in the food, pharmaceutical, and cosmetic industries but whose final disposal may pose a problem due to economic and environmental factors. At the same time, the emerging need to reduce the environmental impact of citrus waste and its responsible management has increased. For these reasons, the study of the use of non-conventional methods to extract high biological value compounds such as carotenoids, polyphenols, essential oils, and pectins from this type of waste has become more urgent in recent years. In this review, the effectiveness of technologies such as ultrasound assisted extraction, microwave assisted extraction, supercritical fluid extraction, pressurized water extraction, pulsed electric field, high-voltage electric discharges, and high hydrostatic pressures is described and assessed. A wide range of information concerning the principal non-conventional methods employed to obtain high-biological-value compounds from citrus waste as well as the most influencing factors about each technology are considered.
    [Show full text]
  • Bergamot (Citrus Bergamia, Risso): the Effects of Cultivar and Harvest Date on Functional Properties of Juice and Cloudy Juice
    antioxidants Article Bergamot (Citrus bergamia, Risso): The Effects of Cultivar and Harvest Date on Functional Properties of Juice and Cloudy Juice Angelo Maria Giuffrè Università degli Studi Mediterranea di Reggio Calabria, AGRARIA—Dipartimento di Agricoltura, Risorse forestali, Ambiente Risorse zootecniche, Ingegneria agraria, Alimenti—Contrada Melissari, 89124 Reggio Calabria, Italy; amgiuff[email protected] Received: 27 May 2019; Accepted: 9 July 2019; Published: 12 July 2019 Abstract: Reggio Calabria province (South Italy) is known for being almost the only area of cultivation of the bergamot fruit, grown principally for its essential oil, but today much studied for the health benefits of its juice. The biometrics and physico-chemical properties of the three (Citrus bergamia Risso) existing genotypes namely Castagnaro, Fantastico and Femminello were studied during fruit ripening from October to March. Castagnaro cultivar had the biggest and heaviest fruit during this harvest period. ◦Brix (7.9–10.0), pH (2.2–2.8) and formol number (1.47–2.37 mL NaOH 0.1 N/100 mL) were shown to be influenced by both the genotype and harvest date. Titratable acidity (34.98–59.50 g/L) and vitamin C (ascorbic acid) (341–867 g/L) decreased during fruit ripening. The evolution of flavonoids such as neoeriocitrin, naringin, neohesperidin, brutieridin and melitidin was studied both in bergamot juice and in the bergamot cloudy juice which is the aqueous extract of bergamot during fruit processing. Bergamot cloudy juice contained a higher quantity of flavonoids compared to the juice. This study gives important information regarding the cultivar and the harvest date for producers who want to obtain the highest juice quantity or the highest juice quality from the bergamot fruit.
    [Show full text]
  • Bergamot Natural Products Eradicate Cancer Stem Cells
    Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism Fiorillo, M, Peiris-Pagès, M, Sanchez-Alvarez, R, Bartella, L, Di Donna, L, Dolce, V, Sindona, G, Sotgia, F, Cappello, AR and Lisanti, MP http://dx.doi.org/10.1016/j.bbabio.2018.03.018 Title Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism Authors Fiorillo, M, Peiris-Pagès, M, Sanchez-Alvarez, R, Bartella, L, Di Donna, L, Dolce, V, Sindona, G, Sotgia, F, Cappello, AR and Lisanti, MP Type Article URL This version is available at: http://usir.salford.ac.uk/id/eprint/46861/ Published Date 2018 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. 1 Bergamot natural products eradicate cancer stem cells (CSCs) by 2 targeting mevalonate, Rho-GDI-signalling and mitochondrial 3 metabolism 4 5 6 Marco Fiorillo 1,2,3, Maria Peiris-Pagès 1, Rosa Sanchez-Alvarez 1, Lucia Bartella 4, 7 Leonardo Di Donna 4, Vincenza Dolce 3, Giovanni Sindona 4, Federica Sotgia 1,2*, 8 Anna Rita Cappello 3* and Michael P. Lisanti 1,2,5* 9 10
    [Show full text]
  • Bergamot Natural Products Eradicate Cancer Stem Cells (Cscs) By
    Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism Fiorillo, M, Peiris-Pagès, M, Sanchez-Alvarez, R, Bartella, L, Di Donna, L, Dolce, V, Sindona, G, Sotgia, F, Cappello, AR and Lisanti, MP http://dx.doi.org/10.1016/j.bbabio.2018.03.018 Title Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism Authors Fiorillo, M, Peiris-Pagès, M, Sanchez-Alvarez, R, Bartella, L, Di Donna, L, Dolce, V, Sindona, G, Sotgia, F, Cappello, AR and Lisanti, MP Type Article URL This version is available at: http://usir.salford.ac.uk/id/eprint/46861/ Published Date 2018 USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. 1 Bergamot natural products eradicate cancer stem cells (CSCs) by 2 targeting mevalonate, Rho-GDI-signalling and mitochondrial 3 metabolism 4 5 6 Marco Fiorillo 1,2,3, Maria Peiris-Pagès 1, Rosa Sanchez-Alvarez 1, Lucia Bartella 4, 7 Leonardo Di Donna 4, Vincenza Dolce 3, Giovanni Sindona 4, Federica Sotgia 1,2*, 8 Anna Rita Cappello 3* and Michael P. Lisanti 1,2,5* 9 10
    [Show full text]
  • 1 Principles of Liquid Chromatography-Mass
    To my family [INDEX] INDEX List of publications and conference contributes V Introduction 1 CHAPTER I 1 Principles of Liquid Chromatography-Mass Spectrometry Coupling 2 1.1 Introduction 2 1.2 High Performance Liquid Chromatography (HPLC) 3 1.2.1 Chromatographic properties 5 1.3 HPLC Instrumentation 6 1.3.1 Mobile phase reservoirs 7 1.3.2 Pump system 7 1.3.3 Sample injection system 7 1.3.4 The column 8 1.3.5 Detectors 9 1.4 Mass Spectrometry: Principles and Instrumentation 9 1.4.1 Introduction 9 1.4.2 Mass spectrometer components 10 1.4.3 Ion Sources 10 1.4.3.1 Electron Ionization 11 1.4.3.2 Chemical Ionization 13 1.4.3.3 Atmospheric Pressure Chemical Ionization (APCI) 14 1.4.3.4 Electrospray Ionization (ESI) 16 1.4.3.5 Desorption Electrospray Ionization (DESI) 20 1.4.3.6 Direct Analysis in Real Time (DART) 22 1.4.3.7 Matrix-Assisted Laser Desorption Ionization (MALDI) 24 I [INDEX] 1.5 Mass Analyzers 26 1.5.1 Introduction 26 1.5.2 Linear Quadrupole (Q) Analyzers 30 1.5.3 Ion Trap Analyzers 33 1.5.4 Quadrupole Ion Traps (QIT) 33 1.5.5 Linear Ion Traps (LIT) 34 1.5.6 Time-of-Flight (TOF)Analyzers 35 1.5.6.1 Linear Time-of-Flight Analyzer 37 1.5.6.2 Delayed Pulsed Extraction 38 1.5.6.3 Reflectron Time-of-Flight Analyzers 39 1.5.7 Tandem Mass Spectrometry 41 References (Chapter I) 44 CHAPTER II 2 Recent Ambient Ionization Methods for Mass spectrometry: 50 Paper Spray and Leaf Spray 2.1 Introduction 50 2.2 Paper Spray Ionization for Mass Spectrometry (PS-MS) 52 2.3 Leaf Spray Mass Spectrometry (LS-MS) 56 References (Chapter II) 59 CHAPTER III
    [Show full text]
  • WO 2018/189672 Al 18 October 2018 (18.10.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/189672 Al 18 October 2018 (18.10.2018) W !P O PCT (51) International Patent Classification: Published: A61K 36/752 (2006.01) A61P 3/10 (2006.01) — with international search report (Art. 21(3)) A61K 36/26 (2006.01) A61P 9/12 (2006.01) — before the expiration of the time limit for amending the A61P 3/06 (2006.01) claims and to be republished in the event of receipt of (21) International Application Number: amendments (Rule 48.2(h)) PCT/IB20 18/052498 (22) International Filing Date: 10 April 2018 (10.04.2018) (25) Filing Language: Italian (26) Publication Langi English (30) Priority Data: 102017000040866 12 April 2017 (12.04.2017) IT (71) Applicant: HERBAL E ANTIOXIDANT DERI¬ VATIVES S.R.L. ED IN FORMA ABBREVIATA H&AD S.R.L. [IT/IT]; Zona Industriale Localita Chiusi, Strada Provinciale SNC, 89032 Bianco (RC) (IT). (72) Inventors: BOMBARDELLI, Ezio; Via Gabetta, 13, 27027 Gropello Cairoli (PV) (IT). MOLLACE, Vincenzo; c/o Herbal E Antioxidant Derivatives S.r.l. Ed In Forma Ab- breviata H&ad S.r.l., Zona Industriale Localita Chiusi, Stra da Provinciale SNC, 89032 Bianco (RC) (IT). (74) Agent: MINOJA, Fabrizio; Via Plinio, 63, 20129 MILANO (IT). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Analytical Profile and Antioxidant and Anti-Inflammatory Activities
    antioxidants Article Analytical Profile and Antioxidant and Anti-Inflammatory Activities of the Enriched Polyphenol Fractions Isolated from Bergamot Fruit and Leave Giovanna Baron 1,† , Alessandra Altomare 1,† , Marco Mol 1 , Jessica Leite Garcia 1,2 , Camila Correa 2 , Angela Raucci 3, Luigi Mancinelli 3, Sarah Mazzotta 1 , Laura Fumagalli 1 , Giuseppe Trunfio 4, Luigi Tucci 4, Elena Lombardo 4, Domenico Malara 4, Elzbieta Janda 5 , Vincenzo Mollace 5, Marina Carini 1, Ezio Bombardelli 6 and Giancarlo Aldini 1,* 1 Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; [email protected] (G.B.); [email protected] (A.A.); [email protected] (M.M.); [email protected] (J.L.G.); [email protected] (S.M.); [email protected] (L.F.); [email protected] (M.C.) 2 Medical School, Sao Paulo State University (Unesp), Botucatu 18618-687, Brazil; [email protected] 3 Experimental Cardio-oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea, 4, 20138 Milan, Italy; [email protected] (A.R.); [email protected] (L.M.) 4 H&AD Srl, 89032 Bianco, Italy; g.trunfi[email protected] (G.T.); [email protected] (L.T.); [email protected] (E.L.); [email protected] (D.M.) 5 Department of Health Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; [email protected] (E.J.); [email protected] (V.M.) 6 Plantexresearch Srl, 20122 Milan, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-02-503-19296 Citation: Baron, G.; Altomare, A.; † Giovanna Baron and Alessandra Altomare contributed equally to this work.
    [Show full text]
  • Citrus Bergamia) Flavanones and Biological Activity of Their Circulating Metabolites in Human Pro-Angiogenic Cells
    nutrients Article Bioavailability of Bergamot (Citrus bergamia) Flavanones and Biological Activity of Their Circulating Metabolites in Human Pro-Angiogenic Cells Valentina Spigoni 1,†, Pedro Mena 2,† ID , Federica Fantuzzi 1, Michele Tassotti 2, Furio Brighenti 2, Riccardo C. Bonadonna 1,3, Daniele Del Rio 2,* ID and Alessandra Dei Cas 1,3,* 1 Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; [email protected] (V.S.); [email protected] (F.F.); [email protected] (R.C.B.) 2 The Laboratory of Phytochemicals in Physiology, Department of Food & Drugs, University of Parma, 43125 Parma, Italy; [email protected] (P.M.); [email protected] (M.T.); [email protected] (F.B.) 3 Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy * Correspondence: [email protected] (D.D.R.); [email protected] (A.D.C.); Tel.: +39-0521-903830 (D.D.R.); +39-0521-033321 (A.D.C.) † These authors contributed equally to this work. Received: 1 November 2017; Accepted: 1 December 2017; Published: 6 December 2017 Abstract: Myeloid angiogenic cells (MACs) play a key role in endothelial repairing processes and functionality but their activity may be impaired by the lipotoxic effects of some molecules like stearic acid (SA). Among the dietary components potentially able to modulate endothelial function in vivo, (poly)phenolic compounds represent serious candidates. Here, we apply a comprehensive multidisciplinary approach to shed light on the prospects of Bergamot (Citrus bergamia), a citrus fruit rich in flavanones and other phenolic compounds, in the framework of lipotoxicity-induced MACs impairment.
    [Show full text]
  • Bergamot Bpf
    BERGAMOT BPF CLINICAL APPLICATIONS • Helps Maintain Healthy Cholesterol Levels Already Within the Normal Range • Multidimensional Support for Cardiovascular Health • Preserves Arterial Health and Elasticity WATCH • Supports Healthy CoQ-10 Levels VIDEO CARDIOVASCULAR HEALTH Bergamot contains a powerful and unique array of cholesterol- LDL cholesterol levels. Also, bergamot is rich in brutieridin and balancing and cardio-protective polyphenolic flavonoids. melitidin, which have a unique ability to modulate the HMG-CoA Established clinical research has demonstrated that bergamot reductase enzyme. polyphenols help maintain healthy total cholesterol (TC), high Using a patented extraction technology through collaborative density lipoprotein (HDL), low density lipoprotein (LDL), very works of various universities and research institutions, Bergamot low density lipoprotein (VLDL) and triglyceride (TRI) levels. contains Bergamonte® BPE-C, an industry-leading extract Research has also demonstrated that Bergamot provides containing the albedo (the white rind material), typically removed antioxidant-balancing properties and maintains normal during the extraction process, creating a bergamot extract that is inflammatory balance to help preserve coronary arteries. true to the whole bergamot fruit. Overview Cardiovascular Properties† Optimizing cardiovascular health is a leading concern for many In a placebo-controlled, clinical trial consisting of 77 patients adults, and maintaining healthy cholesterol levels, LDL particle divided into four treatment
    [Show full text]
  • Citrus Bergamia , Risso
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 May 2019 doi:10.20944/preprints201905.0334.v1 Peer-reviewed version available at Antioxidants 2019, 8, 221; doi:10.3390/antiox8070221 Bergamot (Citrus bergamia, Risso): the effects of cultivar and harvest date on functional properties of juice and cloudy. Angelo Maria Giuffrè Università degli Studi Mediterranea di Reggio Calabria, AGRARIA - Dipartimento di Agricoltura, Risorse forestali, Ambiente Risorse zootecniche, Ingegneria agraria, Alimenti – Contrada Melissari, 89124 - Reggio Calabria (Italia). Correspondence: Dr. Angelo M. Giuffrè, Dipartimento di Agraria, Università degli Studi 'Mediterranea' di Reggio Calabria, Contrada Melissari, (89124, Reggio Calabria, Italy). E.mail: [email protected]. Phone +39 (0) 965.1694362. Keywords Antoxidants, Bergamot, Bioactive compound, Biometrics, Biomolecules, Citrus bergamia Risso, Cloudy. Abstract Reggio Calabria province (South Italy) is known for being almost the only area of cultivation of the bergamot fruit, grown principally for its essential oil, but today much studied for the health benefits of its juice. The biometrics and physico-chemical properties of the three (Citrus bergamia Risso) existing genotypes namely Castagnaro, Fantastico and Femminello were studied during fruit ripening from October to March. Castagnaro cv had the biggest and heaviest fruit during this harvest period. °Brix (7.9-10.0), pH (2.2-2.8) and Formol number (1.47-2.37 mL NaOH 0.1N/100mL) were shown to be influenced by both the genotype and by the harvest date. Titratable acidity (34.98-59.50 g/L) and Vitamin C (Ascorbic acid) (341-867 g/L) decreased during fruit © 2019 by the author(s). Distributed under a Creative Commons CC BY license.
    [Show full text]