Cc Step by Step Western Canada

Total Page:16

File Type:pdf, Size:1020Kb

Cc Step by Step Western Canada A CARTOGRAPHIC APPROACH You may wonder: how do I get from the unfinished map to the finished map? We like to approach this in a step-by-step method. This is a sensible way to proceed to help you get all the information you want shown on the map. It insures that the map is legible and neat. We always stress neatness to our students. We tell them that the map is not just for them, but for other people to see and read also. The following step-by-step method works well with all of our classroom maps. Try it with your students, and they will end up with a map they will be proud of! A Step-by-Step Guide to WESTERN CANADA To help you label and complete the maps in the CANADA CartoCraze unit, we have shown the activities for Western Canada broken down in the following series. This Step-by-step approach to the cartography of the maps can be applied to all the CartoCraze units. LABELING PLACES! Print neatly! For a good start, begin by labeling the Provinces: BRITISH COLUMBIA ALBERTA Next, label the capitals: Victoria Edmonton Add a few large cities: Calgary Vancouver Prince Rupert Add others, such as Medicine Hat You can also identify neighboring places, such as: UNITED STATES ALASKA Yukon Territory Northwest Territory Saskatchewan WATER AND MOUNTAINS Continue labeling and begin to color! For a good start, begin by labeling the bodies of water already on the map: PACIFIC OCEAN Lake Athabasca Fraser River North Saskatchewan River South Saskatchewan River Add other bodies of water, such as: Peace River Start adding color to the map. With a blue colored pencil: Shade coastlines Trace the rivers Color the lake Add some large mountain ranges to this map. Sketch the triangular shapes and add some green and brown color: Rocky Mountains Coast Mountains DECORATIVE DETAILS Add some artistic touches to your map! Add a MAP KEY, listing the symbols and colors used on the map. Design a Compass Rose. Label the cardinal and intermediate directions on the Compass rose Add some decoration to the map: Color the border Color the title Color the Compass Rose .
Recommended publications
  • Polar Bear Predation on Beluga in the Canadian Arctic
    162 SHORTPAPERS AND NOTES 4- 4- . 1972. Prime aux travailleurs du mondeEllesmere Island,Northwest Territories. As polaire. In: W. P. Adams and F. Helleiner none of the fifteen local hunters had ever wit- (eds), International Geography 1972 (Papers nessed such an event, and only one had ever submitted to the 22nd InternationalGeo- heard of it before, I assumed bear predationon graphicalCongress, Montreal), University whales to be very rare,and consequently of Toronto Press, 1 : 381-84. recorded whatever information I could obtain SBuck, W. K. and J. F. Henderson. 1965. The at the time. role of mineral resources in the development According to the hunter's narrative, move- andcolonization of northernCanada. In: ment of a partiallygrounded iceberg about W. V. Bladen, (ed) Canadian population and 200 metres offshore had preventedfreezing of a northern colonization, University of Toronto smallarea of watersurrounding the berg. Press,p. 106. Winter trapment of whales is known to occur during unusual conditionsof sea-ice formationl, aDubnie, A. and W. K. Buck. 1965. Progress of and as the open sea was at least 30 kilometres mineraldevelopment in northern Canada. distantfrom this localityin March it seems Polar Record, 12 (81): 701. probable that a small number of beluga had 7Rea, K. J. 1968. The political economy of the endeavoured to passthe winter inthe open Canadian North. University of Toronto Press, wateralongside this berg. Atsome time in p. 187.. March a medium-sized female bear had caught SWolforth, J. 1971. The evolution and economy and removed an adult female beluga together of the Delta Community. Northern Science with another adult and a grey-coloured sub- ResearchGroup, Department of Indian adult beluga both of unspecified sex; the adult Affairs and Northern Development, Ottawa female beluga was draggedabout 7 metres from (Mackenzie Delta Research Project no.
    [Show full text]
  • Northwest Territories Territoires Du Nord-Ouest British Columbia
    122° 121° 120° 119° 118° 117° 116° 115° 114° 113° 112° 111° 110° 109° n a Northwest Territories i d i Cr r eighton L. T e 126 erritoires du Nord-Oues Th t M urston L. h t n r a i u d o i Bea F tty L. r Hi l l s e on n 60° M 12 6 a r Bistcho Lake e i 12 h Thabach 4 d a Tsu Tue 196G t m a i 126 x r K'I Tue 196D i C Nare 196A e S )*+,-35 125 Charles M s Andre 123 e w Lake 225 e k Jack h Li Deze 196C f k is a Lake h Point 214 t 125 L a f r i L d e s v F Thebathi 196 n i 1 e B 24 l istcho R a l r 2 y e a a Tthe Jere Gh L Lake 2 2 aili 196B h 13 H . 124 1 C Tsu K'Adhe L s t Snake L. t Tue 196F o St.Agnes L. P 1 121 2 Tultue Lake Hokedhe Tue 196E 3 Conibear L. Collin Cornwall L 0 ll Lake 223 2 Lake 224 a 122 1 w n r o C 119 Robertson L. Colin Lake 121 59° 120 30th Mountains r Bas Caribou e e L 118 v ine i 120 R e v Burstall L. a 119 l Mer S 117 ryweather L. 119 Wood A 118 Buffalo Na Wylie L. m tional b e 116 Up P 118 r per Hay R ark of R iver 212 Canada iv e r Meander 117 5 River Amber Rive 1 Peace r 211 1 Point 222 117 M Wentzel L.
    [Show full text]
  • University of Alberta
    University of Alberta Genetic Population Structure of Walleye (Sander vitreus) in Northern Alberta and Application to Species Management by Lindsey Alison Burke A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Systematics and Evolution Biological Sciences ©Lindsey Alison Burke Fall 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-62977-2 Our file Notre référence ISBN: 978-0-494-62977-2 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque
    [Show full text]
  • Mountain Goat Population Ecology and Habitat Use Along the Juneau Access Road Corridor, Alaska
    Final Wildlife Research Report, ADFG/DWC/WRR-2012-02 Mountain goat population ecology and habitat use along the Juneau Access road corridor, Alaska Kevin S. White, David P. Gregovich, Grey W. Pendleton, Neil L. Barten, Ryan Scott, Anthony Crupi and Doug N. Larsen ©2005 ADFG/photo by Kevin White May 2012 Alaska Department of Fish and Game Division of Wildlife Conservation Final Wildlife Research Reports are fi nal reports detailing the objectives, methods, data collected and fi ndings of a particular research project undertaken by ADF&G Division of Wildlife Conservation staff and partners. They are written to provide broad access to information obtained through the project. While these are fi nal reports, further data analysis may result in future adjustments to the conclusions. Please contact the author(s) prior to citing material in these reports. These reports are professionally reviewed by research staff in the Division of Wildlife Conservation. They are provided a number for internal tracking purposes. This Wildlife Research Report was reviewed and approved for publication by Rod Flynn, Reseach Coodinator for Region 1, for the Division of Wildlife Conservation. Wildlife Research Reports are available from the Alaska Department of Fish and Game’s Division of Wildlife Conservation, PO Box 115526, Juneau, Alaska 99811-5526; phone (907) 465-4190; email: dfg.dwc.publications@ alaska.gov; website: www.adfg.alaska.gov. The report may also be accessed through most libraries, via interlibrary loan from the Alaska State Library or the Alaska Resources Library and Information Service (www.arlis.org). This document should be cited as: White, K. S., D.
    [Show full text]
  • PAH Sediment Studies in Lake Athabasca and the Athabasca River Ecosystem Related to the Fort Mcmurray Oil Sands Operations: Sources and Trends
    © 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Web: www.witpress.com Email [email protected] Paper from: Oil and Hydrocarbon Spills III, CA Brebbia (Editor). ISBN 1-85312-922-4 PAH sediment studies in Lake Athabasca and the Athabasca River ecosystem related to the Fort McMurray oil sands operations: sources and trends M, S, Evansl, B. Billeck2, L. Lockhart2, J. P, Bechtold3, M. B. Yunker4 &G. Stern2 ‘National Water Research Institute, Environment Canada, Canada. 2Freshwater Institute, Department ofFisheries and Oceans, Canada, 3Golder Associates Ltd, Canada 4Brentwood Bay, Canada Abstract The oil sands operations in northern Alberta are among the most modem in the world, However, because the operations are extensive and lie on either side of the Athabasca River, there are concerns that they will adversely affect downstream environments such as the Athabasca River, its tributaries, the Peace-Athabasca deltas and Lake Athabasca, Research and monitoring programs are now investigating hydrocarbon sources, fate, and time trends in these aquatic ecosystems. Natural hydrocarbon sources (oil sands) are numerous along the Athabasca River and its tributaries. Petrogenic hydrocarbons also are abundant in downstream lakes. Lower molecular weight compounds such as naphthalene and fluorene tend to increase in concentration ffom upstream sources to downstream depositional areas, There is little or no evidence of temporal trends of increasing PAH concentrations in sediment cores collected in Lake Athabasca and the Athabasca delta lakes, suggesting no or minimal impact from the oil sands operations, Some PAHs exceed interim sediment quality guidelines and some bioassay studies have shown evidence of toxicity, particularly in the Athabasca delta.
    [Show full text]
  • Oil Sands Development Contributes Polycyclic Aromatic Compounds to the Athabasca River and Its Tributaries
    Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries Erin N. Kellya, Jeffrey W. Shortb, David W. Schindlera,1, Peter V. Hodsonc, Mingsheng Maa, Alvin K. Kwana, and Barbra L. Fortina aDepartment of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; bOceana, 175 South Franklin Street, Suite 422, Juneau, Alaska 99801; and cDepartment of Biology and School of Environmental Studies, Queen’s University, Kingston, ON, Canada K7L 3N6 Contributed by David W. Schindler, October 23, 2009 (sent for review September 21, 2009) For over a decade, the contribution of oil sands mining and processing We conducted an independent, detailed, and accessible assess- to the pollution of the Athabasca River has been controversial. We ment of the loadings of polycyclic aromatic compounds (PAC) to show that the oil sands development is a greater source of contam- the north-flowing Athabasca River, its tributaries, the Athabasca ination than previously realized. In 2008, within 50 km of oil sands Delta, and Lake Athabasca (Fig. 1). In February to March and June upgrading facilities, the loading to the snowpack of airborne partic- to August 2008, we sampled water using polyethylene membrane ulates was 11,400 T over 4 months and included 391 kg of polycyclic devices (PMDs). In March, the accumulated snowpack was sam- aromatic compounds (PAC), equivalent to 600 T of bitumen, while 168 pled at most sites. Athabasca River sites were selected upstream and kg of dissolved PAC was also deposited. Dissolved PAC concentrations downstream of oil sands mining and processing activity. Upstream in tributaries to the Athabasca increased from 0.009 ␮g/L upstream of and downstream sites near oil sands development are directly oil sands development to 0.023 ␮g/L in winter and to 0.202 ␮g/L in exposed to erosion of the McMurray geologic formation (McMF), summer downstream.
    [Show full text]
  • Chapter 5: Canada
    156-164 U2 CH05 S1 TWIP-860976 3/22/04 10:49 PM Page 156 pter ha C 55 CanadaCanada Social Studies To learn more about Canada’s people Chapter Overview Visit The World and Its and places, view The World and Its People Web site at twip.glencoe.com and People Chapter 5 video. click on Chapter 5—Chapter Overviews to preview information about Canada. 156 156-164 U2 CH05 S1 TWIP-860976 3/22/04 10:49 PM Page 157 Compare-Contrast Make this foldable to help you analyze the similarities and differences between the landforms, climate, and cultures of northern and southern Canada. Step 1 Mark the midpoint of the side Step 2 Turn the paper and fold the edge of a sheet of paper. outside edges in to touch at the midpoint. Draw a mark at the midpoint. Step 3 Turn and label your foldable as shown. Northern Canada Southern Canada Reading and Writing As you read the chapter, collect and write information under the appropriate tab that will help you compare and contrast northern and southern Canada. Sharing a Border The boundary line between Canada and the United States forms the longest unprotected border in the world. Citizens of these countries have been allowed to travel freely across the border, which is symbolic of the free trade between these nations. ▼ ▼ Vancouver, British Columbia 156-164 U2 CH05 S1 TWIP-860976 3/22/04 10:50 PM Page 158 Guide to Reading Main Idea 11 A Resource-Rich Canada is a vast country with many landforms and resources.
    [Show full text]
  • British Columbia Coastal Range and the Chilkotins
    BRITISH COLUMBIA COASTAL RANGE AND THE CHILKOTINS The Coast Mountains of British Columbia are remote with limited accessibility by float plane, helicopter or boating up its deep inlets along the coast and hiking in. The mountains along British Columbia and SE Alaska intermix with the sea in a complex maze of fjords, with thousands of islands. It is a true wilderness where not exploited by logging and salmon farming pens. But there are some areas accessible from roads that can be explored, including west of Lillooet, the Chilcotins, and the Garibaldi Range. The Coast Mountains extend approximately 1,600 kilometres (1,000 mi) long from the southeastern boundaries are surrounded by the Fraser River and the Interior Plateau while its far northwestern edge is delimited by the Kelsall and Tatshenshini Rivers at the north end of the Alaska Panhandle, beyond which are the Saint Elias Mountains. The western mountain slopes are covered by dense temperate rainforest with heavily glaciated peaks and icefields that include Mt Waddington and Mt Silverthrone. Mount Waddington is the highest mountain of the Coast Mountains and the highest that lies entirely within British Columbia, located northeast of the head of Knight Inlet with an elevation of 4,019 metres (13,186 ft). The range along its eastern flanks tapers to the dry Interior Plateau and the boreal forests of the southern Chilkotins north to the Spatsizi Plateau Wilderness Provincial Park. The mountain range's name derives from its proximity to the sea coast, and it is often referred to as the Coast Range. The range includes volcanic and non-volcanic mountains and the extensive ice fields of the Pacific and Boundary Ranges, and the northern end of the volcanic system known as the Cascade Volcanoes.
    [Show full text]
  • REPORT Processes Controlling the Growth and Evolution Of
    REPORT Processes Controlling the Growth and Evolution of Continental Batholiths, Coast Mountains, British Columbia, Canada Terrace, British Columbia, Canada 12–17 August 2018 CONVENERS SUMMARY OF EXISTING DATA Harold Stowell, Geological Sciences, University of Alabama, The Coast Mountains batholith includes 170 to 45 Ma plutons Tuscaloosa, Alabama, 35487-0338, USA, [email protected] that vary from gabbro to leucogranite that intruded host rocks Margaret Rusmore, Dept. of Geology, Occidental College, from two composite terranes (e.g., Cecil et al., 2018). These rocks Los Angeles, California 90041, USA, [email protected] have provided stimulus for numerous geological research and Glenn Woodsworth, Geological Survey of Canada, Vancouver, mapping projects, including the pioneering maps produced by the British Columbia V6B 5J3, Canada, [email protected] Geological Survey of Canada, particularly by the late W.W. Hutchison (1982) and J.A. Roddick (1970). These maps delineated INTRODUCTION the fundamental contacts for the Coast Mountains batholith and This Thompson Field Forum brought together 27 geoscientists the tectonostratigraphic framework that the plutons intruded. The in Terrace, British Columbia, Canada, to discuss the processes maps served as the foundation for decades of research, led chiefly responsible for production of batholiths in continental magmatic by Lincoln Hollister and Maria Crawford, who guided numerous arcs. The forum focused on how the existing petrologic, geo- projects with students, post-docs, and other colleagues. Their chronologic, and structural data for the Coast Mountains batholith work led to fundamental advances in knowledge of granulite can inform modern paradigms for batholith growth and magma metamorphism, crustal thickening during batholith growth, the genesis. Decades-old models based on a robust but limited dataset production of batholith melts, and collapse of thickened crust along the well-exposed Skeena River corridor between Terrace during the last stages of batholith growth.
    [Show full text]
  • The Geochemistry of Saline Springs in the Athabasca Oil Sands Region and Their Impact on the Clearwater and Athabasca Rivers
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-01-08 The geochemistry of saline springs in the Athabasca oil sands region and their impact on the Clearwater and Athabasca rivers Gue, Anita Gue, A. (2013). The geochemistry of saline springs in the Athabasca oil sands region and their impact on the Clearwater and Athabasca rivers (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/28159 http://hdl.handle.net/11023/400 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY The geochemistry of saline springs in the Athabasca oil sands region and their impact on the Clearwater and Athabasca rivers by Anita Eleanor Gue A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF GEOSCIENCE CALGARY, ALBERTA DECEMBER, 2012 © Anita Eleanor Gue 2012 ii UNIVERSITY OF CALGARY FACULTY OF GRADUATE STUDIES The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies for acceptance, a thesis entitled “The geochemistry of saline springs in the Athabasca oil sands region and their impact on the Clearwater and Athabasca rivers” submitted by Anita Eleanor Gue in partial fulfilment of the requirements for the degree of Master of Science.
    [Show full text]
  • Match the Names Below with Their Locations on the Map by Writing the Correct Letter in the Blank. ___1. Arctic Lowlands ___
    INTERACTIVE STUDENT NOTEBOOK P r e v i e w Match the names below with their locations on the map by writing the correct letter in the blank. Physical Features of Canada 70ºN 60º 80ºN 90ºW 70ºW 20ºW e cl N 70ºN 100ºW tic Cir 60ºN ARCTIC OCEA N c Ar 130ºW 120ºW 110ºW 20ºW Arctic Ci 170ºW rcle Baffin Bay 30ºW D 160ºW 150ºW YUKON TERRITORY NORTHERN REGION PA CIFI C OCEAN Whitehorse Great Bear Lake NORTHWEST Iqaluit 40ºW 140ºW TERRITORIES NUNAVUT L a b r a d o r S e a Great Slave PACIFIC REGION Lake NEWFOUNDLAND & G LABRADOR BRITISH Kuujjuaq COLUMBIA ºN F H u d s o n 50 Fort St. John Churchill Goose Bay R B a y 0 250 500 miles O ALBERTA MANITOBA 130ºW C K 50ºN Edmonton E Y 50ºW A 0 250 500 kilometers M PRAIRIE REGION QUEBEC ATLANTI C T REGION Lambert Azimuthal Equal-Area S Lake Vancouver . Calgary PRINCE EDWARD projection Winnipeg 130W Victoria ONTARIO ISLAND SASKATCHEWAN CORE REGION Elevation C NOVA Quebec SCOTIA Feet Meters Winnipeg Halifax Montreal 40ºN Over 10,000 Over 3,050 Superior ke La B 5,001–10,000 1,526–3,050 N Ottawa NEW BRUNSWICK 2,001–5,000 611–1,525 n Lake Lake a Toronto ATLANTIC g i Huron Ontario 1,001–2,000 306–610 W h E c i M 0–1,000 0–305 OCEAN e ie S k Er a L. L 70ºW 60ºW WCA_ISN_07_Pre _____Canada 1. Arctic Lowlands First Proof TCI23 08 _____ 2.
    [Show full text]
  • Streamflow Input to Lake Athabasca, Canada
    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geoscientific Geoscientific Model Development Model Development Discussions Open Access Open Access Hydrol. Earth Syst. Sci., 17, 1681–1691, 2013 Hydrology and Hydrology and www.hydrol-earth-syst-sci.net/17/1681/2013/ doi:10.5194/hess-17-1681-2013 Earth System Earth System © Author(s) 2013. CC Attribution 3.0 License. Sciences Sciences Discussions Open Access Open Access Ocean Science Ocean Science Discussions Streamflow input to Lake Athabasca, Canada Open Access Open Access K. Rasouli1, M. A. Hernandez-Henr´ ´ıquez2, and S. J. Dery´ 2 Solid Earth Solid Earth 1Department of Civil and Environmental Engineering, University of Waterloo, 200 University Ave W., Waterloo, Discussions ON, N2L 3G1, Canada 2Environmental Science and Engineering Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada Open Access Open Access Correspondence to: S. J. Dery´ ([email protected]) The Cryosphere The Cryosphere Discussions Received: 4 July 2012 – Published in Hydrol.
    [Show full text]