Opportunities and Challenges of DLT (Blockchain) in Mobility and Logistics

Total Page:16

File Type:pdf, Size:1020Kb

Opportunities and Challenges of DLT (Blockchain) in Mobility and Logistics Opportunities and Challenges of DLT (Blockchain) in Mobility and Logistics Translation FRAUNHOFER INSTITUTE FOR APPLIED INFORMATION TECHNOLOGY FIT OPPORTUNITIES AND CHALLENGES OF DLT (BLOCKCHAIN) IN MOBILITY AND LOGISTICS Prof. Dr. Gilbert Fridgen Prof. Dr. Nikolas Guggenberger Prof. Dr. Thomas Hoeren Prof. Wolfgang Prinz (PhD) Prof. Dr. Nils Urbach Johannes Baur, Henning Brockmeyer, Wolfgang Gräther, Elisaweta Rabovskaja, Vincent Schlatt, André Schweizer, Johannes Sedlmeir, Lars Wederhake Also with the participation of: Matthias Babel, Martin Brennecke, Patrick Camus, Benedict Drasch, Tobias Guggenberger, Luis Lämmermann, Jannik Lockl, Sven Radszuwill, Alexander Rieger, Nicolas Ruhland, Marco Schmidt, Nico Thanner, Patrick Troglauer, Malte Weißert, Felix Würmseher Contents 1 Management Summary ............................................................................................................ 6 1.1 Purpose of This Report ..................................................................................................................... 6 1.2 General Analysis ............................................................................................................................... 7 1.2.1 Technical aspects ................................................................................................................................................ 7 1.2.2 Socioeconomic aspects ...................................................................................................................................... 8 1.2.2.1 Current situation ............................................................................................................................................. 8 1.2.2.2 Generic roles and application patterns .......................................................................................................... 9 1.2.2.3 Policy on promoting the spread of DLT ....................................................................................................... 10 1.2.2.4 DLT in the mobility sector ............................................................................................................................ 11 1.2.3 Legal considerations ......................................................................................................................................... 11 1.2.3.1 Civil law ......................................................................................................................................................... 11 1.2.3.2 Data protection law ...................................................................................................................................... 11 1.3 Case Studies .................................................................................................................................... 12 1.3.1 Shipping documents ............................................................................................................................................. 12 1.3.2 Charging of electric vehicles ............................................................................................................................. 13 1.3.3 Ridesharing ........................................................................................................................................................... 14 1.3.4 Platooning ........................................................................................................................................................ 15 1.4 Conclusions ..................................................................................................................................... 16 2 Introduction ........................................................................................................................... 18 2.1 Basic Concepts ................................................................................................................................ 18 2.2 Organization of the Study .............................................................................................................. 19 3 Technical Basics ..................................................................................................................... 21 3.1 Basic Concepts ................................................................................................................................ 22 3.1.1 Blockchain networks ............................................................................................................................................ 22 3.1.2 Transaction, distributed ledger, digital signature ............................................................................................ 23 3.1.3 How transactions flow through the blockchain ................................................................................................... 23 3.1.4 Hash values ....................................................................................................................................................... 23 3.1.5 Blocks ................................................................................................................................................................ 24 3.1.6 Consensus mechanisms .................................................................................................................................... 24 3.1.7 Attributes of a blockchain .................................................................................................................................... 25 3.2 Other Concepts ............................................................................................................................... 25 3.2.1 Smart contracts ................................................................................................................................................ 26 3.2.2 Other consensus mechanisms .......................................................................................................................... 27 3.2.3 Sharding ............................................................................................................................................................ 28 3.2.4 Integration of external data .............................................................................................................................. 28 3.2.5 Oracles .............................................................................................................................................................. 28 3.3 Blockchain and DLT Infrastructures ................................................................................................ 29 3.3.1 Classification schemes .......................................................................................................................................... 29 3.3.2 Bitcoin ............................................................................................................................................................... 30 3.3.3 Ethereum .............................................................................................................................................................. 31 3.3.4 Quorum ............................................................................................................................................................. 31 3.3.5 Hyperledger Fabric ........................................................................................................................................... 31 3.3.6 Corda ................................................................................................................................................................. 32 3.3.7 Sovrin .................................................................................................................................................................... 32 3.3.8 IOTA .................................................................................................................................................................. 33 3.3.9 Hedera Hashgraph ............................................................................................................................................ 34 1 3.3.10 Overview of DLT infrastructures ...................................................................................................................... 35 3.4 Governance of DLT Networks ........................................................................................................ 35 3.4.1 Blockchain networks ........................................................................................................................................ 35 3.4.2 Technological governance ............................................................................................................................... 36 3.4.3 Forks ................................................................................................................................................................. 36 3.5 Interoperability and Standardization ............................................................................................. 37 3.5.1 Blockchain-to-Blockchain Communication ..................................................................................................... 37 3.5.2 ISO standards ................................................................................................................................................... 39 3.5.3 Sidechains .......................................................................................................................................................
Recommended publications
  • Blockchain Healthcare & Policy Synopsis
    Blockchain Healthcare & Policy Synopsis AN EXECUTIVE REPORT OF THE U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES & NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY’S BLOCKCHAIN CHALLENGE October 2016 digitalchamber.org Table of Contents PART I: Blockchain in Healthcare and Research Workshop | 3 | I. Overview & Key Takeaways | 3 | II. Introduction: The White House II.I. Tim Polk, The White House, Office of Science and Technology Policy | 4 | III. Blockchain Level Setting III.I. John Kelsey, National Institute of Standards and Technology | 4 | III.II. Lily Chen, National Institute of Standards and Technology | 5 | IV. Blockchain Reality Check - Alternative IV.I. Evaluating Blockchain and Alternatives: Mance Harmon, Ping Identity | 5 | IV.II. Blockchain Challenges in Real Life: Stephen Wilson, Constellation Research | 6 | IV.III. “Fit for Purpose” Distributed Ledger Technology: Drummond Reed, Respect Network | 6 | V. Blockchain Reality Check - Challenges V.I. DHS Identity Innovations Grants: Many Sporny, Digital Bazaar | 7 | V.II. IoT Device Identity: Tiana Laurence and Andrew Yashchuk, Factom IRIS | 7 | V.III. Decentralized Identifiers (DIDs): Solving the Root Identity Problem, Drummond Reed, Respect Network | 7 | V.IV. Decentralized Certification Service, Adam Migus, XCELERATE Solutions | 8 | VI. Blockchain Challenge Presentations VI.I. Blockchain: The Chain of Trust and its Potential to Transform Healthcare – IBM’s Point of View Srini Attili and Shahram Ebdollahi, IBM Global Business Service Public Sector | 8 | VI.II. Blockchain: Securing
    [Show full text]
  • Chancen Und Herausforderungen Von DLT (Blockchain) in Mobilität Und Logistik
    Chancen und Herausforderungen von DLT (Blockchain) in Mobilität und Logistik FRAUNHOFER-INSTITUT FÜR ANGEWANDTE INFORMATIONSTECHNIK FIT CHANCEN UND HERAUSFORDERUNGEN VON DLT (BLOCKCHAIN) IN MOBILITÄT UND LOGISTIK Prof. Dr. Gilbert Fridgen Prof. Dr. Nikolas Guggenberger Prof. Dr. Thomas Hoeren Prof. Wolfgang Prinz (PhD) Prof. Dr. Nils Urbach Johannes Baur, Henning Brockmeyer, Wolfgang Gräther, Elisaweta Rabovskaja, Vincent Schlatt, André Schweizer, Johannes Sedlmeir, Lars Wederhake Vielen Dank den weiteren Mitwirkenden: Matthias Babel, Martin Brennecke, Patrick Camus, Benedict Drasch, Tobias Guggenberger, Luis Lämmermann, Jannik Lockl, Sven Radszuwill, Alexander Rieger, Marco Schmidt, Nico Thanner, Patrick Troglauer, Florian Vogt, Malte Weißert, Felix Würmseher Inhalt 1 Management Summary .......................................................................................................... 1 1.1 Zielsetzung des Gutachtens ..............................................................................................................1 1.2 Allgemeine Analyse..........................................................................................................................2 1.2.1 Technische Betrachtung ...................................................................................................................................... 2 1.2.2 Gesellschaftlich-ökonomische Perspektive ......................................................................................................... 3 1.2.2.1 Status quo ......................................................................................................................................................
    [Show full text]
  • 2016-05-31 Overview of Swirlds Hashgraph
    Overview of Swirlds Hashgraph Leemon Baird [email protected] May 31, 2016 The hashgraph data structure and Swirlds consensus algorithm provide a new platform for distributed consensus. This paper gives an overview of some of its properties, and comparisons with the Bitcoin blockchain. In this paper, the term “blockchain” will generally refer to the system used in Bitcoin, rather than the large number of variants that have been proposed. The goal of a distributed consensus algorithm is to allow a community of users to come to an agreement on the order in which some of them generated transactions, when no single member is trusted by everyone. In this way, it is a system for generating trust, when individuals do not already trust each other. The Swirlds hashgraph system achieves this along with being fair, fast, provable, Byzantine, ACID compliant, efficient, inexpensive, timestamped, DoS resistant, and optionally non-permissioned. This is what those terms mean: The hashgraph is fair, because no individual can manipulate the order of the transactions. For example, imagine a stock market, where Alice and Bob both try to buy the last available share of a stock at the same moment for the same price. In blockchain, a miner might put both those transactions in a single block, and have complete freedom to choose what order they occur. Or the miner might choose to only include Alice’s transaction, and delay Bob’s to some future block. In the hashgraph, there is no way for an individual to affect the consensus order of those transactions. The best Alice can do is to invest in a better internet connection so that her transaction reaches everyone before Bob’s.
    [Show full text]
  • The Performance, Interoperability and Integration of Distributed Ledger Technologies
    LICENTIATE T H E SIS Emanuel Palm Palm Emanuel Department of Computer Science and Electrical Engineering Division of EISLAB The Performance, Interoperability ISSN 1402-1757 The Performance, Interoperability and Integration of Distributed Ledger Technologies and Integration Interoperability of Distributed Ledger The Performance, and Integration of ISBN 978-91-7790-402-1 (print) ISBN 978-91-7790-403-8 (pdf) Luleå University of Technology 2019 Distributed Ledger Technologies Emanuel Palm Industrial Electronics The Performance, Interoperability and Integration of Distributed Ledger Technologies EmanuelK.Palm Dept. of Computer Science and Electrical Engineering Lule˚a University of Technology Lule˚a, Sweden Supervisors: Ulf Bodin, Olov Schel´en and Jerker Delsing Printed by Luleå University of Technology, Graphic Production 2019 ISSN 1402-1757 ISBN 978-91-7790-402-1 (print) ISBN 978-91-7790-403-8 (pdf) Luleå 2019 www.ltu.se To my beloved wife, Sofia. iii iv Abstract In the wake of the financial crisis of 2008, Bitcoin emerged as a radical new alternative to the fiat currencies of the traditional banking sector. Through the use of a novel kind of probabilistic consensus algorithm, Bitcoin proved it possible to guarantee the integrity of a digital currency by relying on network majority votes instead of trusted institutions. By showing that it was technically feasible to, at least to some extent, replace the entire banking sector with computers, many significant actors started asking what else this new technology could help automate. A subsequent, seemingly inevitable, wave of efforts produced a multitude of new distributed ledger systems, architectures and applications, all somehow attempting to leverage distributed consensus algorithms to replace trusted intermediaries, facilitating value ownership, transfer and regulation.
    [Show full text]
  • Cryptaxforensic, When Cryptocurrency, Taxation, and Digital Forensic Collide: an Overview of Indonesian Cryptocurrency Market
    CRYPTAXFORENSIC, WHEN CRYPTOCURRENCY, TAXATION, AND DIGITAL FORENSIC COLLIDE: AN OVERVIEW OF INDONESIAN CRYPTOCURRENCY MARKET Dimaz Ankaa Wijayaa, Dony Ariadi Suwarsonob a Monash University, Australia Email: [email protected] b Directorate General of Taxes, Indonesia Email: [email protected] ABSTRACT Blockchain has emerged into one of the most promising technologies for the future. Its most successful implementation in the form of cryptocurrency has shifted many existing paradigms where financial instruments were limited by locations or jurisdictions. While blockchain is touted to offer many significant and promising features on the other hand it also increases the difficulty level in the taxation area as well as digital forensics. We investigated the issues and explores the real- world situation and how taxation and digital forensics can cope with these technology challenges. Blockchain telah berkembang menjadi salah satu teknologi yang paling menjanjikan di masa mendatang. Implementasi blockchain yang paling sukses saat ini, mata uang kripto, telah mulai memberikan dampak perubahan paradigma yang ada, di mana instrument keuangan tradisional terbatas pada waktu dan yurisdiksi. Blockchain digadang-gadang dapat menawarkan fitur-fitur yang signifikan dan menjanjikan, namun di sisi lain dapat meningkatkan kesulitan dalam bidang perpajakan dan juga forensik digital. Kami menginvestigasi persoalan ini dan mengeksplorasi kondisi nyata yang ada, termasuk pula mempelajari bagaimana perpajakan dan forensic digital dapat beradaptasi terhadap tantangan teknologi ini. KEYWORDS: cryptocurrency, taxation, digital forensic, market, blockchain 1. INTRODUCTION The launch of Bitcoin in early 2009 marks the birth of the cryptocurrency industry. The field has grown rapidly in the last few years that now its market value reaches several hundred billion US dollar1.
    [Show full text]
  • The Irruption of Cryptocurrencies Into Twitter Cashtags: a Classifying Solution
    Received December 18, 2019, accepted February 8, 2020, date of publication February 13, 2020, date of current version February 25, 2020. Digital Object Identifier 10.1109/ACCESS.2020.2973735 The Irruption of Cryptocurrencies Into Twitter Cashtags: A Classifying Solution ANA FERNÁNDEZ VILAS , REBECA P. DÍAZ REDONDO , AND ANTÓN LORENZO GARCÍA Information and Computing Lab, AtlantTIC Research Center, School of Telecommunications Engineering, University of Vigo, 36310 Vigo, Spain Corresponding author: Ana Fernández Vilas ([email protected]) This work was supported in part by the European Regional Development Fund (ERDF), in part by the Galician Regional Government through the Atlantic Research Center for Information and Communication Technologies (AtlantTIC), and in part by the Spanish Ministry of Economy and Competitiveness through the National Science Program under Grant TEC2014-54335-C4-3-R and Grant TEC2017-84197-C4-2-R. ABSTRACT There is a consensus about the good sensing characteristics of Twitter to mine and uncover knowledge in financial markets, being considered a relevant feeder for taking decisions about buying or holding stock shares and even for detecting stock manipulation. Although Twitter hashtags allow to aggregate topic-related content, a specific mechanism for financial information also exists: Cashtag (consisting of the company ticker preceded by $) is a supporting mechanism to track financial tweets referring to a company listed in a stock market. However, according to our experiments and due to the lack of conventions in cashtags usage, the irruption of cryptocurrencies has resulted in a significant degradation on the cashtag-based aggregation of posts. Unfortunately, Twitter' users may use homonym tickers to refer to cryptocurrencies and to companies in stock markets, which means that filtering by cashtag may result on both posts referring to stock companies and cryptocurrencies.
    [Show full text]
  • Bitcoin, and Wash Sales, and Straddles: Oh My! by Stevie D
    When you have to be right Financial Services Bitcoin, and Wash Sales, By Stevie D. Conlon, Anna Vayser, and Straddles: and Robert Schwaba Oh My! Reprinted with permission from Tax Notes, July 23, 2018, p. 505 © 2018 Tax Analysts. All rights reserved. Analysts does not claim copyright in any public domain or third party content. TAX PRACTICE tax notes® Bitcoin, and Wash Sales, and Straddles: Oh My! by Stevie D. Conlon, Anna Vayser, and Robert Schwaba and related investments. Heightened attention to the potential tax issues has accompanied this increase.1 2018 has also seen a fall in the value of cryptocurrency at times.2 Buying and selling cryptocurrency in times of price fluctuation can result in losses, sometimes sizable. Certain tax rules may defer the recognition of losses for a variety of asset classes, but whether these rules are applicable to tax losses on cryptocurrency and token dispositions remains an open question. Federal income tax law includes the wash sale and straddle rules, which prevent the immediate recognition of capital losses for tax purposes in Stevie D. Conlon is a some cases. This article discusses the potential vice president and tax application of the wash sale and straddle rules, and regulatory counsel which could in some cases defer tax losses from for Wolters Kluwer and coauthor of Principles of cryptocurrencies and cryptocurrency-related Financial Derivatives: investments. U.S. & International Taxation (1999). Anna Bitcoin Vayser is a product Bitcoin is the most well-known of more than manager and Robert 1,500 cryptocurrencies.3 Tokens, which are digital Schwaba is a senior tax instruments representing a digital asset or utility, and regulatory are often issued in initial coin offerings (ICOs).
    [Show full text]
  • What's Next in Blockchain Research?
    What’s Next in Blockchain Research? – An Identification of Key Topics Using a Multidisciplinary Perspective Horst Treiblmaier, Melanie Swan, Primavera de Filippi, Mary Lacity, Thomas Hardjono, Henry Kim To cite this version: Horst Treiblmaier, Melanie Swan, Primavera de Filippi, Mary Lacity, Thomas Hardjono, et al.. What’s Next in Blockchain Research? – An Identification of Key Topics Using a Multidisciplinary Perspective. Database for Advances in Information Systems, In press. hal-03098483 HAL Id: hal-03098483 https://hal.archives-ouvertes.fr/hal-03098483 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Data Base for Advances in Information Systems What’s Next in Blockchain Research? – An Identification of Key Topics Using a Multidisciplinary Perspective Horst Treiblmaier [email protected] Melanie Swan [email protected] Primavera de Filippi [email protected] Mary Lacity [email protected] Thomas Hardjono [email protected] Henry Kim [email protected] Date of Acceptance: 6/23/2020 This file is the unedited version of a manuscript that has been accepted for publication in The Data Base for Advances in Information Systems. Feel free to distribute this file to those interested in reading about this forthcoming research.
    [Show full text]
  • Hedera: a Public Hashgraph Network & Governing Council
    Hedera: A Public Hashgraph Network & Governing Council The trust layer of the internet Dr. Leemon Baird, Mance Harmon, and Paul Madsen WHITEPAPER V.2.1 LAST UPDATED AUGUST 15, 2020 SUBJECT TO FURTHER REVIEW & UPDATE 1 Vision To build a trusted, secure, and empowered digital future for all. Mission We are dedicated to building a trusted and secure online world that empowers you. Where you can work, play, buy, sell, create, and engage socially. Where you have safety and privacy in your digital communities. Where you are confident when interacting with others. Where this digital future is available to all. Hello future. © 2018-2020 Hedera Hashgraph, LLC. All rights reserved. WHITEPAPER 2 Executive Summary Distributed ledger technologies (DLT) have the potential to disrupt and transform existing markets in multiple industries. However, in our opinion there are five fundamental obstacles to overcome before distributed ledgers can be widely accepted and adopted by enterprises. In this paper we will examine these obstacles and discuss why Hedera Hashgraph is well-suited to support a vast array of applications and become the world’s first mass-adopted public distributed ledger. 1. PERFORMANCE - The most compelling use cases for DLT require hundreds of thousands of transactions per second, and many require consensus latency measured in seconds. These performance metrics are orders of magnitude beyond what current public DLT platforms can achieve. 2. SECURITY - If public DLT platforms are to facilitate the transfer of trillions of dollars of value, they will be targeted by hackers, and so will need the strongest possible network security. Having the strongest possible security starts with the consensus algorithm itself, with its security properties formally proven mathematically.
    [Show full text]
  • Research and Applied Perspective to Blockchain Technology: a Comprehensive Survey
    applied sciences Review Research and Applied Perspective to Blockchain Technology: A Comprehensive Survey Sumaira Johar 1,* , Naveed Ahmad 1, Warda Asher 1, Haitham Cruickshank 2 and Amad Durrani 1 1 Department of Computer Science, University of Peshawar, Peshawar 25000, Pakistan; [email protected] (N.A.); [email protected] (W.A.); [email protected] (A.D.) 2 Institute of Communication Systems, University of Surrey, Guildford GU2 7JP, UK; [email protected] * Correspondence: [email protected] Abstract: Blockchain being a leading technology in the 21st century is revolutionizing each sector of life. Services are being provided and upgraded using its salient features and fruitful characteristics. Businesses are being enhanced by using this technology. Countries are shifting towards digital cur- rencies i.e., an initial application of blockchain application. It omits the need of central authority by its distributed ledger functionality. This distributed ledger is achieved by using a consensus mechanism in blockchain. A consensus algorithm plays a core role in the implementation of blockchain. Any application implementing blockchain uses consensus algorithms to achieve its desired task. In this paper, we focus on provisioning of a comparative analysis of blockchain’s consensus algorithms with respect to the type of application. Furthermore, we discuss the development platforms as well as technologies of blockchain. The aim of the paper is to provide knowledge from basic to extensive from blockchain architecture to consensus methods, from applications to development platform, from challenges and issues to blockchain research gaps in various areas. Citation: Johar, S.; Ahmad, N.; Keywords: blockchain; applications; consensus mechanisms Asher, W.; Cruickshank, H.; Durrani, A.
    [Show full text]
  • Evidence from the Cross-Section of 417 Cryptocurrencies
    Erasmus University Rotterdam Erasmus School of Economics Cryptocurrency market factors: Evidence from the cross-section of 417 cryptocurrencies Name student: Albert Kriˇstof Student ID number: 507365 Supervisor: Simon Mayer Second assessor: Jan Lemmen Date final version: 21-01-2020 The content of this thesis is the sole responsibility of the author and does not reflect the view of either Erasmus School of Economics or Erasmus University. Contents 1 Introduction 2 2 Data 2 3 Examined factors 3 3.1 Size . 3 3.2 Volume . 4 3.3 Momentum . 5 4 Cross-sectional results 6 4.1 One-factor model . 9 4.2 Two-factor models . 10 4.3 Three-factor model . 19 5 Three-factor model risk premia 21 6 Conclusion 22 7 Appendix 23 7.1 Data - Details . 23 7.2 Methodology . 26 1 1 Introduction This thesis focuses on the behaviour of returns of cryptocurrencies. While "cryptos" other than Bitcoin emerged as an asset class only recently, they have already managed to attract attention of both institutional and retail investors to an extent that led to a public "crypto" mania in the fall of 2017. Even though the initial hype has ceased and prices deflated from their all- time-highs, it is important to examine the behaviour of cryptocurrency returns in the light of evidence from the stock market to assess whether participants in the cryptocurrency market follow the same behavioral patterns as stock market participants. Our work in principle follows on the work of Liu, Tsyvinski, and Wu (2019). We inspect a set of market factors observed in the stock market, namely size, volume, and momentum, and test whether such factors exist in the cryptocurrency return data.
    [Show full text]
  • HALA SYSTEMS Seeking Justice with Tamper-Proof Evidence on Hedera Hashgraph
    HALA SYSTEMS Seeking Justice with Tamper-Proof Evidence on Hedera Hashgraph HEDERA HASHGRAPH, LLC TABLE OF CONTENTS 01. REDEFINING TRUTH IN A DIGITAL AGE ..................................................................................... 3 02. TAMPER-PROOF EVIDENCE ................................................................................................... 4 Remove Centralized Control 4 Verifiable Provenance 4 03. EXPLORING PUBLIC LEDGERS ................................................................................................ 5 04. CONTENT AUTHENTICITY WITH HEDERA .................................................................................. 6 Architecture 6 Hedera Consensus Service 6 05. APPLYING THIS ARCHITECTURE ............................................................................................. 7 HALA SYSTEMS EBOOK 2 01. REDEFINING TRUTH IN A DIGITAL AGE When the world first came online we were able to trust a photograph or video with our own eyes. Fast forward a few decades and we’re rapidly entering into a new era defined by fake news and deep fakes. The ability to readily manipulate content forces us to rethink the notion of truth. Of data as evidence. Thankfully, new technologies like blockchain and distributed ledgers have since emerged to evolve our ability to trust data. Rooted in innovations in computer science, these decentralized networks provide us with an opportunity to remove potential points of manipulation to better ensure the authenticity of content. While it can be reasonably thought that not all images or videos require this level of trust, some clearly do. Consider a humanitarian crisis. When a video recording the time or location of an event can alter an opportunity for justice, we must reconsider our working model and the tools available to us. Hala Systems was founded on a belief that technology can work to better protect and support civilians. Sentry is Hala’s early warning system that generates credible, real-time, situational awareness of threats in the toughest places on earth.
    [Show full text]