Causality Causality Refers to the Relationship
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Philosophy of Science and Philosophy of Chemistry
Philosophy of Science and Philosophy of Chemistry Jaap van Brakel Abstract: In this paper I assess the relation between philosophy of chemistry and (general) philosophy of science, focusing on those themes in the philoso- phy of chemistry that may bring about major revisions or extensions of cur- rent philosophy of science. Three themes can claim to make a unique contri- bution to philosophy of science: first, the variety of materials in the (natural and artificial) world; second, extending the world by making new stuff; and, third, specific features of the relations between chemistry and physics. Keywords : philosophy of science, philosophy of chemistry, interdiscourse relations, making stuff, variety of substances . 1. Introduction Chemistry is unique and distinguishes itself from all other sciences, with respect to three broad issues: • A (variety of) stuff perspective, requiring conceptual analysis of the notion of stuff or material (Sections 4 and 5). • A making stuff perspective: the transformation of stuff by chemical reaction or phase transition (Section 6). • The pivotal role of the relations between chemistry and physics in connection with the question how everything fits together (Section 7). All themes in the philosophy of chemistry can be classified in one of these three clusters or make contributions to general philosophy of science that, as yet , are not particularly different from similar contributions from other sci- ences (Section 3). I do not exclude the possibility of there being more than three clusters of philosophical issues unique to philosophy of chemistry, but I am not aware of any as yet. Moreover, highlighting the issues discussed in Sections 5-7 does not mean that issues reviewed in Section 3 are less im- portant in revising the philosophy of science. -
Causality and Determinism: Tension, Or Outright Conflict?
1 Causality and Determinism: Tension, or Outright Conflict? Carl Hoefer ICREA and Universidad Autònoma de Barcelona Draft October 2004 Abstract: In the philosophical tradition, the notions of determinism and causality are strongly linked: it is assumed that in a world of deterministic laws, causality may be said to reign supreme; and in any world where the causality is strong enough, determinism must hold. I will show that these alleged linkages are based on mistakes, and in fact get things almost completely wrong. In a deterministic world that is anything like ours, there is no room for genuine causation. Though there may be stable enough macro-level regularities to serve the purposes of human agents, the sense of “causality” that can be maintained is one that will at best satisfy Humeans and pragmatists, not causal fundamentalists. Introduction. There has been a strong tendency in the philosophical literature to conflate determinism and causality, or at the very least, to see the former as a particularly strong form of the latter. The tendency persists even today. When the editors of the Stanford Encyclopedia of Philosophy asked me to write the entry on determinism, I found that the title was to be “Causal determinism”.1 I therefore felt obliged to point out in the opening paragraph that determinism actually has little or nothing to do with causation; for the philosophical tradition has it all wrong. What I hope to show in this paper is that, in fact, in a complex world such as the one we inhabit, determinism and genuine causality are probably incompatible with each other. -
Studies on Causal Explanation in Naturalistic Philosophy of Mind
tn tn+1 s s* r1 r2 r1* r2* Interactions and Exclusions: Studies on Causal Explanation in Naturalistic Philosophy of Mind Tuomas K. Pernu Department of Biosciences Faculty of Biological and Environmental Sciences & Department of Philosophy, History, Culture and Art Studies Faculty of Arts ACADEMIC DISSERTATION To be publicly discussed, by due permission of the Faculty of Arts at the University of Helsinki, in lecture room 5 of the University of Helsinki Main Building, on the 30th of November, 2013, at 12 o’clock noon. © 2013 Tuomas Pernu (cover figure and introductory essay) © 2008 Springer Science+Business Media (article I) © 2011 Walter de Gruyter (article II) © 2013 Springer Science+Business Media (article III) © 2013 Taylor & Francis (article IV) © 2013 Open Society Foundation (article V) Layout and technical assistance by Aleksi Salokannel | SI SIN Cover layout by Anita Tienhaara Author’s address: Department of Biosciences Division of Physiology and Neuroscience P.O. Box 65 FI-00014 UNIVERSITY OF HELSINKI e-mail [email protected] ISBN 978-952-10-9439-2 (paperback) ISBN 978-952-10-9440-8 (PDF) ISSN 1799-7372 Nord Print Helsinki 2013 If it isn’t literally true that my wanting is causally responsible for my reaching, and my itching is causally responsible for my scratching, and my believing is causally responsible for my saying … , if none of that is literally true, then practically everything I believe about anything is false and it’s the end of the world. Jerry Fodor “Making mind matter more” (1989) Supervised by Docent Markus -
1 the University of Chicago the Harris School of Public
THE UNIVERSITY OF CHICAGO THE HARRIS SCHOOL OF PUBLIC POLICY PPHA 421: APPLIED ECONOMETRICS II Spring 2016: Mondays and Wednesdays 10:30 – 11:50 pm, Room 140C Instructor: Professor Koichiro Ito 157 Harris School [email protected] Office hours: Mondays 3-4pm TA: Katherine Goulde: [email protected] Course Description The goal of this course is for students to learn a set of statistical tools and research designs that are useful in conducting high-quality empirical research on topics in applied microeconomics and related fields. Since most applied economic research examines questions with direct policy implications, this course will focus on methods for estimating causal effects. This course differs from many other econometrics courses in that it is oriented towards applied practitioners rather than future econometricians. It therefore emphasizes research design (relative to statistical technique) and applications (relative to theoretical proofs), though it covers some of each. Prerequisites PPHA42000 (Applied Econometrics I) is the prerequisite for this course. Students should be familiar with graduate school level probability and statistics, matrix algebra, and the classical linear regression model at the level of PPHA420. In the Economics department, the equivalent level of preparation would be the 1st year Ph.D. econometrics coursework. In general, I do not recommend taking this course if you have not taken PPHA420: Applied Econometrics I or a Ph.D. level econometrics coursework. This course is a core course for Ph.D. students and MACRM students at Harris School. Those who are not in the Harris Ph.D. program, the MACRM program, or the economics Ph.D. program need permission from the instructor to take the course. -
Causation As Folk Science
1. Introduction Each of the individual sciences seeks to comprehend the processes of the natural world in some narrow do- main—chemistry, the chemical processes; biology, living processes; and so on. It is widely held, however, that all the sciences are unified at a deeper level in that natural processes are governed, at least in significant measure, by cause and effect. Their presence is routinely asserted in a law of causa- tion or principle of causality—roughly, that every effect is produced through lawful necessity by a cause—and our ac- counts of the natural world are expected to conform to it.1 My purpose in this paper is to take issue with this view of causation as the underlying principle of all natural processes. Causation I have a negative and a positive thesis. In the negative thesis I urge that the concepts of cause as Folk Science and effect are not the fundamental concepts of our science and that science is not governed by a law or principle of cau- sality. This is not to say that causal talk is meaningless or useless—far from it. Such talk remains a most helpful way of conceiving the world, and I will shortly try to explain how John D. Norton that is possible. What I do deny is that the task of science is to find the particular expressions of some fundamental causal principle in the domain of each of the sciences. My argument will be that centuries of failed attempts to formu- late a principle of causality, robustly true under the introduc- 1Some versions are: Kant (1933, p.218) "All alterations take place in con- formity with the law of the connection of cause and effect"; "Everything that happens, that is, begins to be, presupposes something upon which it follows ac- cording to a rule." Mill (1872, Bk. -
C.S. Peirce's Abduction from the Prior Analytics
Providence College DigitalCommons@Providence Community Scholar Publications Providence College Community Scholars 7-1996 C.S. Peirce's Abduction from the Prior Analytics William Paul Haas Follow this and additional works at: https://digitalcommons.providence.edu/comm_scholar_pubs Haas, William Paul, "C.S. Peirce's Abduction from the Prior Analytics" (1996). Community Scholar Publications. 2. https://digitalcommons.providence.edu/comm_scholar_pubs/2 This Article is brought to you for free and open access by the Providence College Community Scholars at DigitalCommons@Providence. It has been accepted for inclusion in Community Scholar Publications by an authorized administrator of DigitalCommons@Providence. For more information, please contact [email protected]. WILLIAM PAUL HAAS July 1996 C.S. PEIRCE'S ABDUCTION FROM THE PRIOR ANALYTICS In his Ancient Formal Logic. Professor Joseph Bochenski finds Aristotle's description of syllogisms based upon hypotheses to be "difficult to understand." Noting that we do not have the treatise which Aristotle promised to write, Bochenski laments the fact that the Prior Analytics, where it is treated most explicitly, "is either corrupted or (which is more probable) was hastily written and contains logical errors." (1) Charles Sanders Peirce wrestled with the same difficult text when he attempted to establish the Aristotelian roots of his theory of abductive or hypothetical reasoning. However, Peirce opted for the explanation that the fault was with the corrupted text, not with Aristotle's exposition. Peirce interpreted the text of Book II, Chapter 25 thus: Accordingly, when he opens the next chapter with the word ' Ajray (¿y-q a word evidently chosen to form a pendant to 'Errctyuyrj, we feel sure that this is what he is coming to. -
Donald Rubin Three-Day Course in Causality 5 to 7 February 2020 At
Donald Rubin Three-day Course in Causality 5 to 7 February 2020 at Waldhotel Doldenhorn, Kandersteg About the Course Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In the course, the world-renowned expert Donald Rubin (Prof. em. Harvard) presents statistical methods for studying such questions. The course will follow his book Causal Inference for Statistics, Social, and Biomedical Sciences (Cambridge University Press, 2016) and starts with the notion of potential outcomes, each corresponding to the outcome that would be realized if a subject were exposed to a particular treatment or regime. In this approach, causal effects are comparisons of such potential outcomes. The fundamental problem of causal inference is that we can only observe one of the potential outcomes for a particular subject. Prof. Rubin will discuss how randomized experiments allow us to assess causal effects and then turn to observational studies. They lay out the assumptions needed for causal inference and describe the leading analysis methods, including matching, propensity-score methods, and instrumental variables. Many detailed applications will be shown, with special focus on practical aspects for the empirical researcher. About the Lecturer Donald B. Rubin is Professor Emeritus of Statistics, Harvard University, where he has been professor from 1984 to 2018 and department chair for fifteen years. Since 2018 he is professor at the Yau Mathematical Sciences Center, Tsinghua University, China, and Murray Shusterman Senior Research Fellow at the Department of Statistical Science, Fox School of Business, Temple University, Philadelphia. -
Theory with Applications to Voting and Deliberation Experiments!
Randomized Evaluation of Institutions: Theory with Applications to Voting and Deliberation Experiments Yves Atchadey and Leonard Wantchekonz June 24, 2009 Abstract We study causal inference in randomized experiments where the treatment is a decision making process or an institution such as voting, deliberation or decentralized governance. We provide a statistical framework for the estimation of the intrinsic e¤ect of the institution. The proposed framework builds on a standard set-up for estimating causal e¤ects in randomized experiments with noncompliance (Hirano-Imbens-Rubin-Zhou [2000]). We use the model to re- analyze the e¤ect of deliberation on voting for programmatic platforms in Benin (Wantchekon [2008]), and provide practical suggestions for the implementation and analysis of experiments involving institutions. 1 Introduction Randomized experiments are a widely accepted approach to infer causal relations in statis- tics and the social sciences. The idea dates back at least to Neyman (1923) and Fisher (1935) and has been extended by D. Rubin and coauthors (Rubin (1974), Rubin (1978), Rosenbaum and Rubin (1983)) to observational studies and to other more general experimental designs. In this approach, causality is de…ned in terms of potential outcomes. The causal e¤ect of a treatment, say Treatment 1 (compared to another treatment, Treatment 0) on the variable Y and on the statistical unit i is de…ned as Y i(1) Y i(0) (or its expected value) where Y i(j) is the value we would observe on unit i if it receives Treatment j. The estimation of this e¤ect is problematic because unit i cannot be given both Treatment 1 and Treatment 0. -
Human Visual Motion Perception Shows Hallmarks of Bayesian Structural Inference Sichao Yang1,2,6*, Johannes Bill3,4,6*, Jan Drugowitsch3,5,7 & Samuel J
www.nature.com/scientificreports OPEN Human visual motion perception shows hallmarks of Bayesian structural inference Sichao Yang1,2,6*, Johannes Bill3,4,6*, Jan Drugowitsch3,5,7 & Samuel J. Gershman4,5,7 Motion relations in visual scenes carry an abundance of behaviorally relevant information, but little is known about how humans identify the structure underlying a scene’s motion in the frst place. We studied the computations governing human motion structure identifcation in two psychophysics experiments and found that perception of motion relations showed hallmarks of Bayesian structural inference. At the heart of our research lies a tractable task design that enabled us to reveal the signatures of probabilistic reasoning about latent structure. We found that a choice model based on the task’s Bayesian ideal observer accurately matched many facets of human structural inference, including task performance, perceptual error patterns, single-trial responses, participant-specifc diferences, and subjective decision confdence—especially, when motion scenes were ambiguous and when object motion was hierarchically nested within other moving reference frames. Our work can guide future neuroscience experiments to reveal the neural mechanisms underlying higher-level visual motion perception. Motion relations in visual scenes are a rich source of information for our brains to make sense of our environ- ment. We group coherently fying birds together to form a fock, predict the future trajectory of cars from the trafc fow, and infer our own velocity from a high-dimensional stream of retinal input by decomposing self- motion and object motion in the scene. We refer to these relations between velocities as motion structure. -
Arxiv:1805.08845V4 [Stat.ML] 10 Jul 2021 Outcomes Such As Images, Sequences, and Graphs
Counterfactual Mean Embeddings Krikamol Muandet∗ [email protected] Max Planck Institute for Intelligent Systems Tübingen, Germany Motonobu Kanagaway [email protected] Data Science Department, EURECOM Sophia Antipolis, France Sorawit Saengkyongam [email protected] University of Copenhagen Copenhagen, Denmark Sanparith Marukatat [email protected] National Electronics and Computer Technology Center National Science and Technology Development Agency Pathumthani, Thailand Abstract Counterfactual inference has become a ubiquitous tool in online advertisement, recommen- dation systems, medical diagnosis, and econometrics. Accurate modelling of outcome distri- butions associated with different interventions—known as counterfactual distributions—is crucial for the success of these applications. In this work, we propose to model counter- factual distributions using a novel Hilbert space representation called counterfactual mean embedding (CME). The CME embeds the associated counterfactual distribution into a reproducing kernel Hilbert space (RKHS) endowed with a positive definite kernel, which allows us to perform causal inference over the entire landscape of the counterfactual distri- bution. Based on this representation, we propose a distributional treatment effect (DTE) which can quantify the causal effect over entire outcome distributions. Our approach is nonparametric as the CME can be estimated under the unconfoundedness assumption from observational data without requiring any parametric assumption about the underlying dis- tributions. We also establish a rate of convergence of the proposed estimator which depends on the smoothness of the conditional mean and the Radon-Nikodym derivative of the un- derlying marginal distributions. Furthermore, our framework allows for more complex arXiv:1805.08845v4 [stat.ML] 10 Jul 2021 outcomes such as images, sequences, and graphs. -
Introduction Meta-Ethical Speculations About Rights and Obligations
NON-NATURALISM REVISITED; RIGHTS/OBLIGA TIONS AS EMERGENT ENTITIES Eike-Henner W. KLUGE University of Victoria Introduction Meta-ethical speculations about rights and obligations. as indeed meta-ethical speculations in general, are characterized by profound disagreement over the nature of the relevant terms. I Broadly spea king, we can distinguish three general types of approaches: realism, nominalism and non-cognitivism.2 Each of these occurs in several variations. For instance, realism may be naturalistic - which is to say, it may attempt to reduce the relevant expressions to claims dealing with ordinary properties; or it may be non-naturalistic - which is to say, it may claim that wh at ultimately grounds such expressions are properties sui generis: distinct from ordinary ones but ontologically on a par with them. 3 Nominalism, in turn, may analyze right/obligation locutions as statements about (explicit or implicit) contractual agreements, or as reportive of custom, convention or habit - but in any case will view their meanings as a matter of pure convention.4 Non-cognitivism, finally, may be either emotive, attitudinal or performative in focus - or any combination of these- 1. Cf. W.K. Frankena, Ethies (Prentice Hall, Englewood Cliffs, New Jersey, 1963) pp. 4 ff. and "Recent Conceptions of Morality" in H.-N. Castaöeda and George Nakhnikian, eds. Morality and the Language 0/ Conduet (Wayne State U. Press, Detroit, 1965) pp. 1-24, and R.ß. Brandt, Ethieal Theory (Prentice Hall, Englewood Cliffs, N.J. 1959) pp. 7-10 et passim. Brandt also refers to it as "critical ethics". 2. This nomenclature is not quite that currently in vogue. -
Moritz Schlick and Bas Van Fraassen: Two Different Perspectives on Causality and Quantum Mechanics Richard Dawid1
Moritz Schlick and Bas van Fraassen: Two Different Perspectives on Causality and Quantum Mechanics Richard Dawid1 Moritz Schlick’s interpretation of the causality principle is based on Schlick’s understanding of quantum mechanics and on his conviction that quantum mechanics strongly supports an empiricist reading of causation in his sense. The present paper compares the empiricist position held by Schlick with Bas van Fraassen’s more recent conception of constructive empiricism. It is pointed out that the development from Schlick’s understanding of logical empiricism to constructive empiricism reflects a difference between the understanding of quantum mechanics endorsed by Schlick and the understanding that had been established at the time of van Fraassen’s writing. 1: Introduction Moritz Schlick’s ideas about causality and quantum mechanics dealt with a topic that was at the forefront of research in physics and philosophy of science at the time. In the present article, I want to discuss the plausibility of Schlick’s ideas within the scientific context of the time and compare it with a view based on a modern understanding of quantum mechanics. Schlick had already written about his understanding of causation in [Schlick 1920] before he set out to develop a new account of causation in “Die Kausalität in der gegenwärtigen Physik” [Schlick 1931]. The very substantial differences between the concepts of causality developed in the two papers are due to important philosophical as well as physical developments. Philosophically, [Schlick 1931] accounts for Schlick’s shift from his earlier position of critical realism towards his endorsement of core tenets of logical empiricism.